Outline

- Relativistic Kinematics
- (4-momentum) 2 invariance, invariant mass
- Hypothesis testing, production thresholds
- Cross-sections, flux and luminosity, accelerators
- Particle lifetime, decay length, width

Today

- Classification of particles

F Fermions and bosons

- Leptons, hadrons, quarks
- Mesons, baryons
- Quark Model
- Meson and baryon multiplets
- Isospin, strangeness, c, b, † quarks
- Particle Interactions
- Colour charge, QCD, gluons, fragmentation, running couplings
- Strong and weak decays, conservation rules
- Virtual particles and range of forces
- Parity, charge conjugation, CP
- Weak decays of quarks
- Charmonium and upsilon systems
- Electroweak Interactions
- Charged and neutral currents

Previous

lecture

- Lecture 13 (4 slides/page) - Quark flavour conservation, CKM matrix
- Griffiths, pp. 74-77, 324-329.
- Williams not the best for this topic
- W,Z,LEP experiments
- Higgs and the future
- LHC Experiments
- Future - introduction to accelerator physics

W coupling to quarks

- Cabibbo theory
- W boson couples to lepton/neutrinos with universal coupling, 9
- W boson couples to u quark and a d quark with coupling $g . \mathbf{V}_{\text {ud }}$

- W does not couple directly to physical/mass states of u and d quarks
- Actually couples to a u-type and a linear combination of d-type quarks in all 3 generations
- Without this, would be no decay of lightest strange mesons, etc.!
- Effectively, a "rotation" of mass eigenstates to the weak eigenstates

$$
\begin{aligned}
&\binom{d^{\prime}}{s^{\prime}}=\left|\begin{array}{ll}
V_{u d} & V_{u s} \\
V_{c d} & V_{c s}
\end{array}\right|\binom{d}{s} \\
&=\left(\begin{array}{cc}
\cos \theta_{C} & \sin \theta_{C} \\
-\sin \theta_{C} & \cos \theta_{C}
\end{array}\right)\binom{d}{s} \\
& \text { i.e. } \quad d^{\prime}=d \cos \theta_{C}+s \sin \theta_{C} \\
& s^{\prime}=-d \sin \theta_{C}+s \cos \theta_{C} \\
& \theta_{C} \approx 13.1^{0}
\end{aligned}
$$

Cabibbo Theory and Golden Rule

- Convention to "rotate" d type quarks, but could equally well rotate u type quarks

- Cabibbo theory is historical name when dealing with $1^{\text {st }}$ and $2^{\text {nd }}$ generations only

$$
\begin{aligned}
\binom{d^{\prime}}{s^{\prime}} & =\left|\begin{array}{ll}
V_{u d} & V_{u s} \\
V_{c d} & V_{c s}
\end{array}\right|\binom{d}{s} \\
& =\left(\begin{array}{cc}
\cos \theta_{C} & \sin \theta_{C} \\
-\sin \theta_{C} & \cos \theta_{C}
\end{array}\right)\binom{d}{s} \\
& =\left(\begin{array}{ll}
0.974 & 0.225 \\
0.225 & 0.974
\end{array}\right)\binom{d}{s}
\end{aligned}
$$

- "Fermi Golden Rule" for
decay/scattering rates - see QM text
- Rate is product of two terms

$$
\begin{aligned}
& \text { Rate }=\frac{2 \pi}{h}\left|M_{f i}\right|^{2} \rho(E) \\
& \rho(E) \text { is phase space factor }, d N / d E
\end{aligned}
$$

- A dynamical term, derived from Feynman diagrams.
- Enters as the |QM amplitude| ${ }^{2}$, (sometimes called "matrix element" ${ }^{2}$)
- For our case, amplitude is proportional to the product of couplings present in diagram
- A kinematical term, purely depending on energy/momenta/masses
- Independent of particle types
- Variously called "phase space factor" or "density of states"
- More energy available in final state (apart from masses) increases this statistical counting factor: number of states possible with energy Eavailable

Example: Cabibbo Suppression

Relative rates $\frac{D^{+} \rightarrow \bar{K}^{0} \pi^{+}}{D^{+} \rightarrow \pi^{0} \pi^{+}} \propto\left|V_{u d} V_{c s}\right|^{2} /\left|V_{u d} V_{c d}\right|^{2}=\left|1 / \tan \theta_{C}\right|^{2} \sim 1 / 20$

3 Flavour case: CKM Matrix

- Generalisation to 3 generations: CKM (Cabibbo-KobayashiMaskawa) Matrix
- Rotation of mass to weak eigenstates
- 2×2 Cabibbo matrix is merely the upper left part of the full 3×3 CKM matrix

■ $\lambda=\sin \theta_{C}$

Cabibbo

$\left|\begin{array}{cc}V_{u d} & V_{u s} \\ V_{c d} & V_{c s}\end{array}\right|=\left(\begin{array}{cc}\cos \theta_{C} & \sin \theta_{C} \\ -\sin \theta_{C} & \cos \theta_{C}\end{array}\right)$

- Note: small size of
- $V_{u b}, V_{c b}, V_{t d}$

CKM (magnitudes only)

$$
\left|\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right| \approx\left(\begin{array}{ccc}
1 & \lambda & \lambda^{3} \\
\lambda & 1 & \lambda^{2} \\
\lambda^{3} & \lambda^{2} & 1
\end{array}\right)
$$

$$
\left|\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right| \approx\left(\begin{array}{ccc}
0.974 & 0.225 & 0.003 \\
& 0.225 & 0.973 \\
0.041 \\
0.008 & 0.040 & 0.999
\end{array}\right)
$$

- Observations?? Impact on lifetimes of b, c decays?

Strange Particle Production

- Properties of SI, WI important in production/decay of strange and heavier quarks
- Production requires strong (or EM) to give large cross-section. Requires ss production to conserve strangeness
- Strange hadrons created in pairs - so-called "associated production"
- Examples of production (on board): $\mathrm{p}\left(\pi^{+}, \pi^{-}, \mathrm{K}^{-}\right)$
- SI decays 13 orders magnitude faster than WI, so WI decays only observed when SI/EM forbidden by (e.g.) flavour conservation rules.
- Heavy strange hadrons (i.e. excited states) decay to lighter strange hadrons by SI
- Examples of SI decays (on board): $\mathrm{p}\left(\pi^{+}, \pi^{-}, \mathrm{K}^{-}\right)$
- Conserves flavour and other quantum numbers
- Typical lifetime of strong decays $\sim 10^{-22}-10^{-23}$ s, called resonances
- Process continues until arrive at lightest strange hadrons (kaons), which are stable under SI because of strangeness conservation
- WI decays only observed when SI and EM forbidden by, e.g. flavour conservation.

Light Strange Particle Decays

- Lightest strange particles
- Mesons
$K^{4}=4 s, K^{0}=d s, K^{0}=d s, K^{-}=4 s$

$$
\Rightarrow S= \pm 1
$$

- Baryons
- $1^{0}=u d s$

$$
\Rightarrow S=-1
$$

- $\Sigma^{+}=u 4 s, \quad \Sigma^{-}=d d s$,

$$
\Rightarrow S=-1
$$

$\Rightarrow\left[\right.$ not $\Sigma^{0}=u d s$-not lightest uds: $m_{\Sigma}{ }^{0}-m_{\Lambda}=(76.959 \pm 0.023) \mathrm{MeV}$

- ${ }^{0}=u s s, \quad \bar{I}^{-}=d s s$
$\Rightarrow \mathrm{S}=-2$
- $\Omega^{-}=5 s 5$
$\Rightarrow S=-3$
- Feynman diagrams on board
- These can only decay with change in strangeness, so must be weak decays.
■ Typical lifetimes $\sim 10^{-8}-10^{-11}$ s

Heavy Quark (c, b, t) Decays

- Same pattern as in strange hadrons
- SI, EM and weak neutral current $\left(Z^{0}\right)$ also conserve flavour for C, B, T
- Each flavour number can change by 1 unit in a single W mediated reaction
- Heavy particles decay to lighter by SI, conserving flavours
- e.g
$\tau \sim 10^{-23}$ s, Feynman diagram on board

$$
\begin{gathered}
D^{*+} \rightarrow D^{0} \pi^{0} \\
(c \bar{d}) \rightarrow(c \bar{u})(u \bar{d})
\end{gathered}
$$

- Lightest particle of each flavour decays by WI, changing flavour
> e.g $D^{0} \rightarrow K^{-} \pi^{+} \quad \tau \sim 4.1 \times 10^{-13} s$, diagram on board

$$
(c \bar{u}) \rightarrow(s \bar{u})(u \bar{d})
$$

be.g. $\quad B^{+} \rightarrow \bar{D}^{0} \pi^{+} \quad \tau \sim 1.6 \times 10^{-12}$ s, diagram on board $(u \bar{b}) \rightarrow(u \bar{c})(u \bar{d})$

