Year 2 Particles and Nuclei - Lectures 9 & 10

Nuclear Masses and Stability

A nucleus is a bound state of protons and neutrons. Its composition may be characterised by the
number of protons (Z) and the total number of protons+neutrons (A). How strongly it is bound

can be expressed in terms of the mass deficit:
AM(Z, A) = M(Z, A) - Z(Mp + me) + NM,

where M(Z,A) is the mass of the atom, and My, M,, and m. are the masses of the proton, neutron
and electron respectively (the electrons are included because it is generally the mass of the
neutral atom which is measured), and N = A - Z is the number of neutrons. For a bound state this

quantity must be negative.

When multiplied by -c? this difference gives us the net binding energy of the nucleus, B = -AMc?2.
When discussing stability, a particularly useful quantity is the binding energy per nucleon, B/A.
This is the average binding energy of the nucleons in a particular nucleus, which is not
necessarily the energy needed to remove an individual nucleon (proton or neutron) from the

nucleus.

Whether a nucleus of a given Z and A is stable or not depends on whether it can split into 2 or
more nuclei with a larger total binding energy. If it can, the final state products have a lower total
mass than the initial nucleus, and so the decay is energetically possible (which generally means
that sooner or later it will happen). However, the nucleus is a complex object: many particles
interacting via a strong, relatively poorly-modelled short-range force. So whereas it’s possible to
predict the energy levels of electrons in atoms very precisely, for the nucleus we do not have a
similar ability. But if we are to understand nuclear stability, nuclear reactions and decays, we

need some way of describing this. One way this is done is via the semi-empirical mass formula.

Liguid drop model and the semi-empirical mass formula

Although there are exceptions, most nuclei can be fairly well described as homogeneous spheres

of matter, with a radius R ~1.21A"” fm. This means the volume is simply proportional to A, and
hence implies an approximately equal density for all nuclei. This is known as the “liquid drop”

model, since it is what we would expect for droplets of a homogeneous fluid.

This forms the theoretical basis for the semi-empirical mass formula. The formula is “semi-
empirical” because while it contains many constants which cannot be predicted and need to be
measured, it is inspired by a theoretical model of nuclear structure. It parameterises the mass of

the atom as the sum of 6 terms:



M(Z,A) = E f(Z,A)

where:

* fo(Z, A) =Z(Mp + me) + (A-Z)M, is the mass of the constituents of the atom.

*  fi(Z, A) = - a1A is the “volume correction”, which accounts for the binding energy due to

the nuclear force.

The idea is that since the nuclear force has a short range, each nucleon only interacts with
its immediate neighbours. As all nuclei have (in this model) the same density, the number
of neighbours is the same in all nuclei, and so the net binding energy is just proportional

to the number of nucleons (A).
*  f2(Z, A) = a2A?%/3 is the “surface correction”.

Nucleons near the surface of the nucleus have fewer neighbours than those deeper in, so
the volume term over-estimates the binding energy of these. Since the number of surface
nucleons is proportional to the surface area, if the volume is proportional to A then this

should be proportional to A2/3,

_ZZ-1) z . “ o,
* fi(Z,A)=a, AT ~a, NG is the “Coulomb correction”.

This corrects for the mutual repulsion of the protons. As an EM potential it is proportional
to 1/R, i.e. to A'1/3, and each of the Z protons is being repelled by its (Z-1) companions. For

heavy nuclei the approximation of using Z2 instead of Z(Z-1) is adequate.
2
* fi(ZA)=aqa, % is the “asymmetry correction”.

Imagine that there is a set of discrete energy states for nucleons bound in the nucleus (in
QM this is true for any bound particle, though how those states are spaced depends on
how the particle is confined). Due to the Pauli principle we cannot have 2 identical
particles (protons or neutrons) in the same state. So if a nucleus has Z = A/2, the Z lowest-
energy states will be occupied by both protons and neutrons. If we keep the same A
replace some of the protons with neutrons (so Z < A/2), the extra neutrons will have to

occupy higher-energy states. This is what this term describes.



fi(Z,A)= - f(A) : Z=evenand N = even
=0 :Zeven + N odd or Z odd + N even ¢ is the "pairing correction"

=+f(A) :Z=oddand N =odd

f(A) = aSA’]/ ® is a common empirical parameterisation of this term

It is observed that nuclei with even numbers of protons or neutrons are more stable. This
is understood to be due to nucleons “pairing up”, with 2 protons or 2 neutrons in the
same state but with opposite spins. These pairs have a greater overlap of their
wavefunctions in space so feel a stronger than average mutual attraction. This term then
reduces the estimated binding energy for nuclei where both protons and neutrons are all

paired (“even-even” nuclei), and increases it where there is one unpaired nucleon of each

type (“odd-odd”).

Values of these 5 parameters (ai) are obtained from fits to the measured masses of nuclei. One

set of valuesis a1 = 15.56, a2 =17.23, a3 = 0.697, as = 93.14, as = 12 (all MeV//c?).

The parameters are sometimes referred to as av, as, ac, a4 and ap, for “Volume”, “Surface”,

“Coulomb”, “Asymmetry” and “Pairing” respectively.

This formula does not give a good description for light nuclei (few nucleons, liquid drop not a

good approximation), but for A > 20 it works pretty well.

If we look at the average binding energy per nucleon, we can understand its main features in

terms of the SEMF.
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From the definition above, the binding energy equals minus the sum of the 5 “correction” terms

x C2,

2
Z=a-aAd’-a z -a (Z—A/2) _HZA)
1 2 3A4/3 4 A2 A

For light nuclei, the volume term dominates, i.e. the trend is for the binding energy/nucleon to
increase as the number of nucleons does, because the volume increases faster than the surface
area. However, as Z increases, the Coulomb correction becomes more significant. This can be
offset by increasing the number of neutrons (increasing the volume term without increasing the
Coulomb one), but that requires neutrons to be added to higher-energy, less tightly-bound states
(described by the asymmetry correction). This slows the rise in average binding energy, and for
nuclei above iron the average binding energy per nucleon in stable nuclei gradually decreases.
Eventually it decreases to the point where no stable nucleus of a given Z exists: even with the
number of neutrons which maximises the binding energy/nucleon for that element (i.e. the most

stable isotope of that element) it is energetically favourable for the nucleus to disintegrate.

Nuclear Decays

All nuclear decays (and indeed particle decays discussed earlier) follow the radioactive decay

law:
N(t)= Ny

where tis the decay constant, which is also equal to the mean lifetime of the state. This is related

to the half life, the time for half of the initial nuclei to decay, by tl/2 = rln(2) .

This decay law follows from the fact that the probability for a radioactive nucleus to decay per

unit time is a constant, independent of how long since it was created in that state.



Beta decay

In beta decay a nucleon changes type, emitting an electron and a neutrino. Such decays change

the Z of the nucleus but not A.

There are two types of beta decay:

* B-in—pe v, Z-7+1

* B+:p—ne v, IL-1-1
It is the mass difference between nuclei of the same A but different Z which determines whether
these reactions are possible. From the above reactions we can see that the condition is that the
mass of the decaying nucleus must exceed that of the one it is decaying to by an amount > the

mass of the electron (since the mass of the neutrino is negligible). When expressed in terms of

atomic masses, this becomes:
e p-:M(Z,A)>M(Z+1,A)
since the mass of the atom with Z+1 includes the extra electron already, and
* B+:M(Z,A)>M(Z-1,A) +2m.
since M(Z-1, A) includes 1 fewer electrons than M(Z, A) , in addition to which the mass of the
positron must be added.

There is also the related process of electron capture:
* EC: pte—>n+v, Z-7-1

Here the energy barrier is lower, since we do not have to create an electron. Due to the short-
range nature of the weak force it is usually only electrons from the innermost shell which are
captured (K shell in spectrographic notation), which in high-Z atoms can have a significant

binding energy. Thus in terms of atomic masses, the condition for this reaction to be possible is:
e EC:M(Z A)>M(Z-1,A) +¢

where ¢ is the excitation energy of the atomic shell of the captured electron in the daughter
nucleus. This is because although the daughter atom already has the correct number of
electrons, one will be in a highly excited shell and there will be a vacancy in the innermost shell,
so the energy of the atom will be higher than its ground state. Electron capture decays are

followed by a sequence of photon emissions as the electrons de-excite.

We can use the SEMF to predict stability against beta decay. To do this, let’s look at how the

masses of nuclei with the same A (isobars) vary with Z:



If we group terms in the formula as powers of Z, we obtain:

M(Z,A)=aA-BZ+yZ’ 2
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0=a, (+/-or 0, depending on whether Z & A odd or even).

Some of these parameters are functions of A, but that’s OK since we are keeping A constant.

So for any given A we have a quadratic in Z. However, the pairing correction has different effects

when A is odd or even.

If A is odd, then for any Z either Z or N must be odd. Thus 8 = 0 for all values of Z.

So for odd-A nuclei we obtain a single parabola, which will look something like:

AM

Nuclei on the high-Z side of the minimum may decay via S+ emission or electron capture, while

nuclei on the low-Z side decay via - emission.



If A is even, different Z values will give either even-even or odd-odd nuclei.

Since odd-odd nuclei have a lower binding energy than even-even, we get 2 parabolas for mass

Vs Z.
The sketch below shows a fairly typical situation:

* The stable isobar is even-even rather than odd-odd. Apart from a few low-mass nuclei, all
odd-odd nuclei have one or more more stable even-even isobars.

* There are actually two stable isobars: in this case Z and Z+2. Although the Z+2 isobar is
not the most stable one, it is more stable than its immediate neighbours, so cannot decay

via either a beta- or a beta+ emission.

odd-odd
AM

even-even

Z-3 7-2 Z-1 Z Z+1 7Z+2 7+3

In the latter case it may still be possible for the heavier of the 2 stable isobars to decay through
the process known as double beta decay. This extremely rare process is exactly what it sounds
like: 2 neutrons or 2 protons must both decay together, emitting two electrons/positrons and

two antineutrinos/neutrinos.

Alpha decay

An alpha particle is a *He nucleus emitted in the decay of a heavy nucleus. He is unusually stable
for a very light nucleus, with a binding energy of ~7 MeV /nucleon. The decay is therefore
energetically possible is the binding energy of the alpha particle exceeds the difference in

binding energies of the initial and final nuclei:

B(2,4) > B(Z, A) - B(Z-2, A-4)



Because B/A decreases gradually for large A, for sufficiently large A all nuclei are unstable to
alpha decay. The heaviest stable element is lead (bismuth was thought to be stable until 2003,

but is now known to decay via alpha emission with a lifetime of 1.9x101° years).

Alpha decays are known to have a very wide range of lifetimes - from 10ns to 101° years. The
lifetime is related to the energy of the emitted alpha by the Geiger-Nuttall relation:
VA
log,, L,=a +bT

Although this was originally an empirical formula, it is now understood in terms of quantum

tunnelling. The theory goes approximately like this:

* Nucleons within a nucleus spontaneously cluster to form an alpha particle

* Within the range of the nuclear force, the alpha can be thought of as existing inside a
potential well.

* Qutside that range, the electrostatic potential of the nucleus forms a potential barrier. If
the alpha particle is incident upon the barrier, there is some probability of it “tunnelling”
through the barrier.
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* Combining the probability of transmission per “attempt” with the rate of attempts (rate
at which the alpha strikes the barrier) and the probability of the alpha forming in the first

place yields a relation similar to the Geiger-Nuttall formula.

We would now interpret the constant a in the Geiger-Nuttall formula as being related to the
probability of finding an alpha in the nucleus, and the second term to the barrier penetration

probability and attempt frequency.



Gamma decay

In general, when a nucleus decays through alpha or beta emission, the daughter nucleus is not in
its ground state (i.e. the nucleons after the decay are not in their lowest energy states). Therefore
it is normal for these decays to be followed by the emission of one or more gamma rays -
energetic photons emitted when nucleons change state within the nucleus. The typical lifetime

for gamma emission is of the order of 10-12s.

The process is analogous to photon emission due to transitions of atomic electrons between
levels. As the spacing between nuclear energy levels is typically larger than between electron
shells, nuclear gamma rays are usually more energetic than atomic X-rays, though the energy

ranges overlap. Gamma energies are typically of the order of hundreds of keV to a few MeV.

As well as conserving energy in decays, angular momentum must also be conserved. Thus any
difference in the spins (angular momenta) of the initial and final nuclei must be carried by the
photon. As you have not yet studied the quantum theory of angular momentum I will not discuss
the consequences of this here. I will however note that since the photon is a spin 1 particle, one
process which is strictly forbidden is the decay of one spin 0 nuclear state into another via

gamma radiation. A N
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Nuclear Fission

Because B/A declines slowly at high A, it can be energetically favourable for a massive nucleus to
split of “fission” into 2 smaller nuclei of approximately equal mass. The maximum energy release
should occur when fission is into 2 identical mass fragments, but in practice it is more common

for there to be an asymmetry between the masses of the 2 daughter nuclei.
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most stable shape for a nucleus is a sphere, since it minimises the surface area for a given
volume. Let us imagine that the nucleus is perturbed and becomes elongated. When this happens
the “surface energy” is increased (larger surface area/volume, so more nucleons without a full
set of neighbours and so less tightly bound) and the Coulomb energy decreased (average
distance between protons increases). If the second effect is larger than the first then it will be
energetically favourable for the elongation to increase until the nucleus fissions into two smaller,

spherical nuclei.

O-@-e0-00

For extremely heavy nuclei this can be the case, in which case any distortion of the shape of the

nucleus can lead to fission. More commonly though the initial effect is an increase in potential
energy, and only for relatively large distortions does it become energetically favourable for the
process to continue (i.e. for the reduction in Coulomb potential to dominate over the reduced
nuclear binding). Therefore there is an energy barrier to fission occurring, which must be

overcome if fission is to occur.



The difference between the energy

of the ground state (spherical)
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nucleus and the maximum value as it
elongates is known as the activation
energy. This is typically ~6 MeV for
a heavy nucleus. In principle the

nucleus could tunnel through this

energy barrier, but the tunnelling

probability for such massive Separation
fragments is very low. However,
fission can be triggered if sufficient energy is added to the nucleus, in a process known as

induced fission.

One way in which fission may be induced is by the capture of a neutron. Because neutrons are
not repelled by the charge of the nucleus, they can approach closely enough to be captured by
the nuclear force. If this happens the nucleus gains the kinetic energy of the captured neutron,
plus a release of binding energy. In addition, if the nucleus has an odd number of neutrons there

will be a larger energy release from the pairing energy.

To see the effects, let's compare two neutron capture reactions:

236

o U+n—"JU (even-odd — even-even)

Uranium-236 has an activation energy of ~5 MeV. The binding energy of the last neutron (c?

236
92

x mass difference between 29325U +nand U ) is ~6.5 MeV. Hence the binding energy released

in the neutron capture is sufficient to overcome the energy barrier and induce fission in
236
U

239

,,U (even-even — even-odd)

238
[ ]
92U+n —

Uranium-239 has an activation energy of ~6.5 MeV. The binding energy of the last neutron is
~4.8 MeV - lower than the last neutron in Uranium-236 since it is unpaired. Here the

binding energy released in the neutron capture is not in itself sufficient to induce fission.

Therefore fission of uranium 235 can be triggered even by the capture of a slow (thermal)
neutron. However an energetic neutron is required to provide the energy needed to induce

fission in uranium 238.

Although we have described fission as the splitting of a single nucleus into two daughters, it is

common for one or more neutrons to be released in the reaction as well. It is this which makes



the possibility of a nuclear chain reaction possible, where neutrons from one fission event induce
fission in one or more other nuclei. This is used in nuclear power stations and in nuclear

weapons.

The energy released in a fission reaction can be estimated by looking at the diagram of average
binding energy/nucleon above. The difference in B/A between a nucleus with A ~ 240 and one
with A ~ 120 is approximately 1 MeV/nucleon. Hence the potential energy release in a single
nuclear fission could be up to 240 MeV. Normally this is lower, due to the fission into asymmetric
fragments (the higher-mass fragment having a smaller difference in B/A than the lower-mass
one, as well as a higher A), but is still typically in the range 150-200 MeV. This energy is shared

between the kinetic energies of the daughter nuclei and any neutrons released.

For any particular reaction the energy released in the reaction, Q, can be calculated from the
difference in masses. So if a nucleus (Z, A) fissions into two daughters, (Z1, A1) and (Z2, A2) plus

N neutrons:
Q=(M(Z, A) - M(Z1, A1) - M(Z2, A2) - NxM;)c?
You can also express this as the difference in binding energies:
Q=B(Z, A)-B(Z1,A1) - B(Z2, A2)
This same principle also applies to the other reactions we have considered previously.

Finally, since higher mass stable nuclei contain proportionately more neutrons than lighter
nuclei, the fission of a heavy nucleus will typically produce daughters that are neutron-rich, and

hence unstable against - decay.

Nuclear Fusion

While B/A decreases gradually with increasing A for heavy nuclei, it grows very rapidly for light
nuclei. Hence if two light nuclei can be fused to form a single heavy nucleus the energy released
can be very large: fusing two deuterons (B/A = ~1 MeV) to form a 3He nucleus (B/A = ~2.5 MeV)
and a neutron releases ~3.5 MeV. While much less than the release in a uranium fission event,
the energy released per unit mass is much larger (and this is by no means the most energetic

reaction available).

However, for this to happen the two nuclei must overcome their mutual Coulomb repulsion. For

any pair of nuclei this can be calculated as:
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where Z1, Z> are the charges of the two nuclei and rs is the separation between their centroids.
If for simplicity we assume fusion occurs when rsep = r1 + r2 (the sum of the nuclear radii) we can
estimate the potential barrier which has to be overcome. If we treat the two deuterons of the
example above a having radii of ~1fm we would estimate that the Coulomb barrier to deuterium

fusion is ~1.4 MeV.

By the standards of nuclear and particle physics this sounds modest - even with heavier nuclei,
where the barrier is a few times larger, it would easily be overcome by an accelerator. However,
that assumes a true head-on collision — most collisions between pairs of nuclei at those energies
would result in elastic scattering rather than fusion. So to produce a high rate of fusion reactions
necessary for energy production, whether in a reactor or a stellar interior, requires a dense, hot

gas.

Indeed, if we compare that energy barrier to the typical thermal kinetic energy of 1.5*kT we find
that temperatures of the order of 1010 K are needed to achieve this. This is in fact considerably
higher than the temperature of a stellar interior (typically 108 K). Fusion in stars only occurs
because (a) there is a spread in particle energies at a given temperature, with some being much
more energetic than the average, and (b) quantum tunnelling allows fusion to occur without the
barrier being fully overcome. To discuss these in detail would be beyond the scope of this

module.

[t's interesting to note that the chain of fusion reactions in the Sun relies on the weak force!

Fusing protons (hydrogen) to helium in fact proceeds through three steps:

\H+ H—'H+e" +v, +0.42 MeV
\H+H— ’He+y+5.49 MeV
JHe+ JHe— He+2(H)+12.86 MeV

In each step the energy is released as the kinetic energy of the reaction products. Since the first
step is a weak reaction, it proceeds slowly, and this is responsible for the long lifetimes of stars

like our Sun.






