Today (lecture 4)

- (Finish) Electroweak Unification
- Higgs mechanism

Running Coupling Constants

- Coupling "constants" are said to "run" (change their strength) with energy
- For electromagnetism, the coupling "constant", α_{EM} , increased with energy
- For weak force the coupling constant decreases with energy
 - ► E.M. and weak merge at ~100 GeV: "electroweak unification"
- For strong force coupling, α_s , decreases with energy

Strong Coupling "constant", α_s

- lacksquare as the fundamental, universal QCD parameter
- Standard Model predicts "momentum scale", Q ($\sim \sqrt{s}$) evolution, but not absolute value
 - Perturbative effects, varying as ~ 1/lnQ
 - Non-perturbative effects, varying as ~ 1/Q
- Test: measure different processes, energies
- Intuitive techniques in e⁺e⁻

■ Precision low, O(%) cf. electroweak $O(10^{-5})$

Global α_s measurements, various e⁺e⁻ observables

Data: strong coupling constant, α_s

- lacktriangledown $lpha_{s}$ is strong force coupling constant
- Ratio of rate of 3-jet vs. 4-jet events
 - \blacktriangleright Directly related to α_s
 - Analogous to "R", many factors cancel
- Momentum scale-dependent value
 - Centre-of-mass energy in e⁺e⁻ collisions

e⁺e⁻ → 3 jets in OPAL detector at LEP (1989-2001)

"parton level" pictures

4-jet event

3-jet event

as Summary

Figure 9.1: Summary of the value of $\alpha_s(M_Z)$ from various processes. The values shown indicate the process and the measured value of α_s extrapolated to $\mu=M_Z$. The error shown is the *total* error including theoretical uncertainties. The average quoted in this report which comes from these measurements is also shown. See text for discussion of errors.

Figure 9.2: Summary of the values of $\alpha_s(\mu)$ at the values of μ where they are measured. The lines show the central values and the $\pm 1\sigma$ limits of our average. The figure clearly shows the decrease in $\alpha_s(\mu)$ with increasing μ . The data are, in increasing order of μ , τ width, Υ decays, deep inelastic scattering, e^+e^- event shapes at 22 GeV from the JADE data, shapes at TRISTAN at 58 GeV, Z width, and e^+e^- event shapes at 135 and 189 GeV.

<u>C. Amsler et al.</u>, Physics Letters **B667**, 1 (2008) [http://pdg.lbl.gov/2008/reviews/rpp2008-rev-qcd.pdf]