Introduction to Particle Physics and Cosmology

Dr. N.K. Watson (HEP)

Prof. A. Vecchio (ASR)

Contact details

West Physics 215, Nigel.Watson@cern.ch

West Physics, av@star.sr.bham.ac.uk

11 Lecture Course, module 03 17484

Course material (linked from the **WebCT** page) https://www.ep.ph.bham.ac.uk/twiki/bin/view/General/Y1IntroToPpc "Office hours" - 1300-1500 same day as lectures.

Cosmology, AV: linked from above page

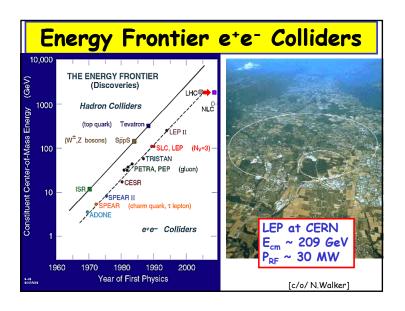
Learning / Assessment

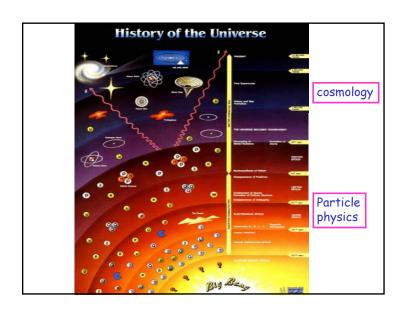
Recommend

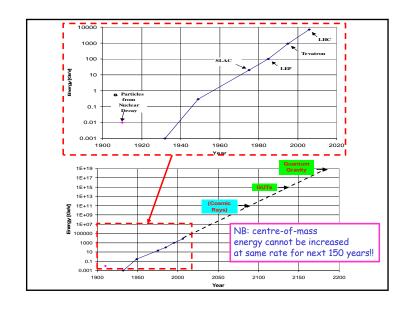
- Attending the Lectures (important!)
- Going through the unassessed problem sheets
 - ▶ See web pages separate for PP and Cosmology
- Using references, mainly to help with problem sheets
- "Reading around" the subject for background information
 - It is really interesting (really)
 - ▶ If you find questions related to PP, bring them in!

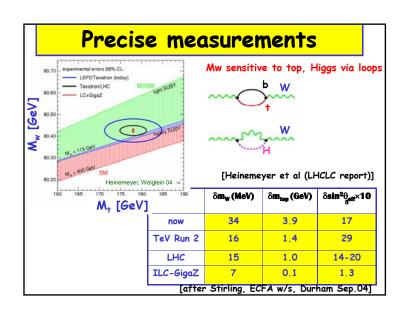
Assessment will be through a single, 1 hour exam

Course Aims

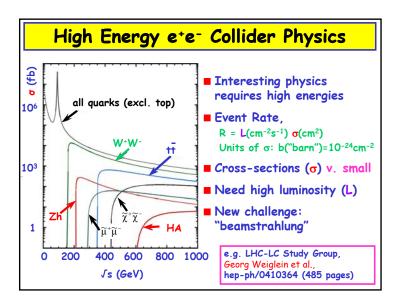

- Provide a broad overview of current topics in Particle Physics and Cosmology
- Put emphasis on the questions or problems rather than on the solutions
- "Whet your appetite" so you can choose the most interesting area to you
- This course is not meant to
 - Confuse you
 - ▶ Answer any of the questions in any detail ©

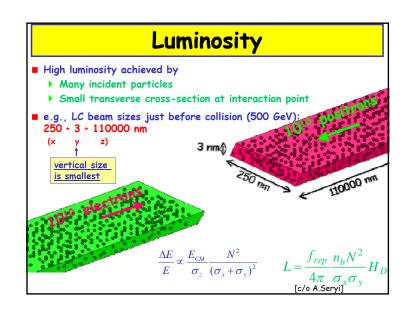

References

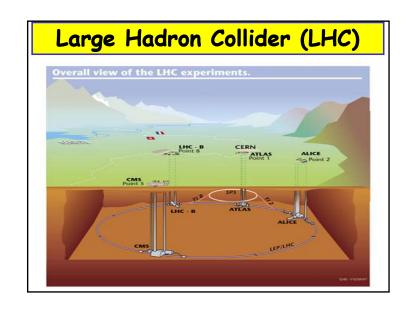

- Particle Physics
 - Particle Physics, Martin and Shaw,
 - ▶ High Energy Physics, D.H. Perkins (2nd-4th editions OK)
 - Feynman Lectures, R.P. Feynman
 - ▶ (Friedman and Young also useful in places)
- Cosmology
 - An Introduction to Modern Cosmology, A. Liddle
 - ▶ Universe, W.J. Kaufmann and R.A. Freedman


For this course you are not expected to read them all

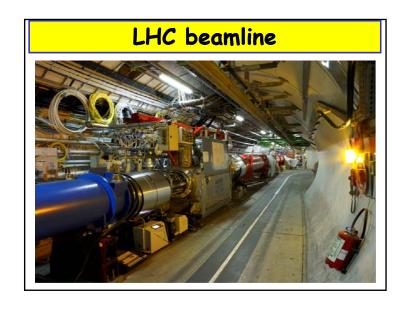
Course Overview L1: Introduction to the course Particle Physics L2: Particles and Interactions L3: Symmetries in PP L4: Physics/Unification of Forces / Higgs L5: Status of Standard Model and extensions Cosmology L6: Review of Big Bang Cosmology L7: The Friedmann Equation L8: Cosmic Microwave Background L9: Puzzles in Cosmology L10: Cosmology or Particle Physics L11: Review/Revision Lecture - early in summer term

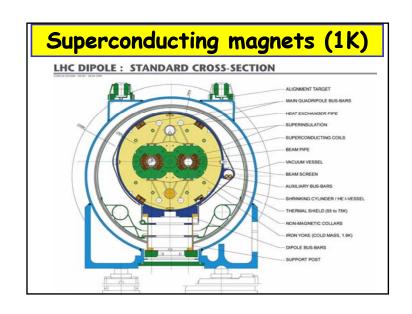






E _{cm}	GeV		Super-LEP	Hyper-	
	GeV	400		LEP	
L		180	500	2000	
	km	27	200	3200	
ΔΕ	GeV	1.5	12	240	
\$ _{tot}	10 ⁹ CHF	2	15	240	
RF power	: & tunnel: lir	near, prop	ron radiation los portional to ρ	s es : ΔΕ α Ε ⁴ /ρ	rm⁴
Optimal when these are comparable ⇒ Cost scales as E² 2/0/ N.Walker]			ρ is ra	ho is radius of synchrotrom is particle mass	




Event rate=luminosity: storage ring vs. LC Event rate=luminosity × reaction cross-section "Cross-section" from PP theory: [area] (1 "barn"=10-24cm²) "Luminosity" (L) from accelerator design: 1/[area][time] LEP f_{rep} = 44 kHz LC f_{rep} = few-100 Hz (power limited) \Rightarrow factor ~400 in $\mathcal L$ already lost Solution: very small beam cross-section at "IP" (interaction point) LEP: $\sigma_x \sigma_y \approx 130 \times 6 \ \mu\text{m}^2$ LC: $\sigma_x \sigma_y \approx (200-500) \times (3-5) \ \text{nm}^2$ Factor of 10^6 gain! Needed to obtain high luminosity of a few 10^{34} cm- 2 s- 1

