Progress since last update

- Problem sheets for Relativistic Quantum Mechanics are up to date and my first two problem sheets has been handed in.
- Awaiting Peter's suggestions for which chapters to read on "Quark-Gluon Plasma" to begin our tutorials.
- Attended Graduate school Induction day and plan to attend a handful of courses including project management, presentation skills and viva preparation.
- Working on distinguishing between tracks that are reconstructed and all possible reconstruct-able tracks in my practice code.
- Preparing for my first visit to CERN, a copy of my passport needs to be faxed. I will be leaving on 14th Nov for ALICE week.

Primary track selection in MC

Using IsPhyscialPrimary() which tests if a particle is a physical primary i.e. particles produced in the collision including products of strong and electromagnetic decay and excluding feed-down from weak decays of strange particles.

This way final state long-lived particles coming from the interaction vertex can be selected and remove everything else.

Cuts

Cuts in the example I am using use the classes –

- AliCFTrackkinecuts which cuts on particle's kinematic quantities.
- fQualitycuts which cut on track quantities.

Still a little un-sure about what makes a "good" particle kinematic quantity or track.

Primary track selection in MC comparison to all reconstruct-able MC

P_t comparison between un-cut and cut generated particles.

P_t comparison between un-cut and cut reconstructed tracks.

Plans for this week

- Complete Particle problem sheets for this week as always
- Finish paperwork in preparation for CERN visit.
- Work on calculating efficiency for my example.
- Lectures scheduled as normal. Note that this week will be the last lectures for introduction into particle physics and relativistic quantum mechanics. Next week I will begin lectures on Group theory and QED.
- C++ courses will also start new week and be on every Monday for the whole day, thus I
 am not sure how this will effect weekly meetings.

Thank you

Any questions?

