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ABSTRACT

Flavour Changing Neutral Currents are transitions between different quarks with
the same charge such as b → s processes. These are forbidden at tree level in the
Standard Model (SM) but can happen through loop diagrams, which causes the
branching ratio of this type of decays to be small, typically ∼ 10−6 or less. Particles
beyond the SM can contribute in the loops enhancing the branching fractions of these
decays, which are therefore very sensitive new physics. In this work two analysis
of semileptonic b → s`+`− decays are presented. In the first, Λ0

b → Λµ+µ− decays
are analysed to measure their branching fraction as a function of the square of the
dimuon invariant mass, q2. An angular analysis of these decays is also performed
for the first time. Secondly, B0 → K∗0`+`− decays are analysed measuring the RK∗0

ratio between the muon, B0 → K∗0µ+µ−, and electron, B0 → K∗0e+e−, channels,
which is interesting as it is largely free from uncertainties due to the knowledge of
the hadronic matrix elements.
This thesis is organised in the following way. Chapter 1 introduces the Standard
Model and the concept of flavour and explains how rare decays can help us in the
quest to find physics beyond the SM. Chapter 2 describes the LHCb detector, which
was used to collect the data analysed in this thesis. This chapter also includes studies
performed to validate the hadronic physics in LHCb simulation software. Chapter 3
presents the measurement of the differential branching fraction of the Λ0

b → Λµ+µ−

decay, while Chapter 4 describes its angular analysis. Finally, Chapter 5 reports the
measurement of the RK∗0 ratio. Concluding remarks are given in Chapter 6.
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CHAPTER 1

Introduction

The Standard Model of particle physics (SM) is a Quantum Field Theory (QFT)

describing strong and electroweak (EW) interactions. It was formulated in its cur-

rent form in the mid-70s and has been an extremely successful predictive theory

since then. Almost all known phenomena from 1 eV up to several hundred GeV are

described well by the SM and experiments at the Large Hadron Collider (LHC) are

now probing the SM up to and above the TeV scale. As an example of the level

of accuracy of the SM, Tab. 1.1 reports the predicted and measured values of the

widths of the Z and W bosons [2]. Finally, in 2012 the Higgs boson, which is one

of the fundamental building blocks of the theory, was observed [3, 4]. This is a

critical ingredient of the SM as it introduces a mechanism that gives particles finite

masses [5, 6, 7, 8]. Despite its success, experimentally well-established effects, such

as neutrino oscillations and the presence of dark matter, remain outside the reach of

the SM. Furthermore, the model does not include the description of gravity, which

can be neglected at the EW energy scale. This motivates the search for new physics.

1
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Table 1.1: Predicted and measured values of the decay widths of the Z0 and W
bosons [2].

Quantity Predicted Measured
ΓZ0 2.4960± 0.0002 GeV 2.4952± 0.0023 GeV
ΓW 2.0915± 0.0005 GeV 2.085± 0.042 GeV

The SM is based on the symmetry groups of strong, SU(3)C , and electroweak,

SU(2)W ×U(1)Y , interactions. The subscripts C, W and Y stand for colour charge,

weak isospin and hyper-charge respectively. The Lagrangian describing the SM

derives from the application of the principle of invariance of the wave function under

the unitary group transformations given by the product SU(3)C⊗SU(2)W ⊗U(1)Y ,

and leads to conservation laws such as the conservation of electric and strong charge.

The model has then 26 free parameters, which have to be experimentally measured.

Particles included in the SM can be grouped into a few categories depending on their

properties and ability to interact with each other. The first distinction is between

fermions, half-integer spin particles, and bosons, integer spin particles. Fermions

constitute the basic building blocks of matter, while bosons are the mediators of

the interactions. Since the concept of bosonic mediators of interactions arises be-

cause of local gauge symmetry [9], they are called “gauge bosons”. The list of the

known interactions with their force carrier and properties is reported in Tab. 1.2.

The matter of which we are made of is mainly composed of electrons and protons,

which have spin 1/2; protons are in turn composed of u and d quarks, which again

Table 1.2: Fundamental forces of nature together with their gauge bosons, ranges
and relative strengths, as they act on a pair of protons in an atomic nucleus [2].
Gravity is not included in the SM and the graviton is hypothetical at the current
time.

Interaction Mediator Strength Range (m) Mediator mass
Strong g 1 ∞ 0

EM γ 10−3 ∞ 0
Weak Z0, W± 10−16 10−18 W± = 80.399 GeV/c2

Z0 = 91.188 GeV/c2

Gravity g0 (graviton?) 10−41 ∞ 0



3 CHAPTER 1. INTRODUCTION

have spin 1/2. Among fermions one can then consider two smaller groups: quarks

and leptons. Quarks carry colour charge and therefore can interact through the

so-called strong interaction, while leptons, which do not carry colour charge, are

insensitive to it. For each particle a corresponding antiparticle exists with opposite

quantum numbers. Finally, fermions are divided into three families having similar

properties but different masses. This last classification embedded in the SM is also

called “flavour structure” and it will be the main tool used in this thesis; a more

detailed description of it is given in the following sections. A schematic view of the

fundamental particles in the SM is shown in Fig. 1.1.

Figure 1.1: A scheme of the fundamental particles in the SM with their proper-
ties [10].

Due to the asymptotic freedom of the strong interaction quarks cannot be observed

in isolation and are always combined with other quarks to form colour singlets [11].

Non-fundamental particles composed of quarks are called hadrons and are classified

into two groups: mesons, where the colour singlet is achieved by the combination

of a quark and an antiquark (q q), and baryons formed from three quarks (q q q)

of different colours. Recently, in 2014 and 2015 evidence for new states, formed by

four and five quarks, was found [12, 13].
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1.1 The electroweak interaction

The electromagnetic interaction is responsible for binding electrons and nuclei to-

gether to form atoms and its mediator is the photon. The weak interaction is

responsible for the β decay of nuclei and is mediated by the exchange of W± and

Z0 bosons. Unlike the electromagnetic force, that affects only charged particles, all

known fermions interact through the weak interaction. The weak interaction is also

the only one that violates the parity symmetry, which states that interactions are

invariant under an inversion of spatial coordinates. This symmetry breaking arises

from the fact that only left-handed fermions interact through the weak interaction

as discovered by Wu in 1957 [14]. Similarly, the weak interaction is the only one that

also breaks the CP symmetry, which combines parity transformations and charge

conjugation. This is particularly interesting because all interactions are believed to

be invariant under the CPT transformation, which combines the CP transformation

and time reversal. Hence, breaking CP the weak interaction implies that the process

is also not invariant under time reversal transformations.

In 1968 Salam, Glashow and Weinberg unified the weak and electromagnetic forces

into a single theory, where the coupling constants of the electromagnetic, e, and

weak, g, interactions are related through the weak mixing angle, θW by the relation

g sin θW = e [2]. The electroweak symmetry is spontaneously broken by the Higgs

mechanism and this causes the W± and Z bosons to become massive (see Tab. 1.2)

and consequently the weak force has a very short range. In fact, using Heisenberg’s

Principle, ∆E∆t > ~, together with Einstein’s formula ∆E = mc2, which relates

mass and energy, and knowing that the maximum space that a particle can cover

in a time ∆t is r ∼ c∆t, qualitatively r ∼ ~/mc. In this picture the carriers of the

weak force can travel r ∼ 2 · 10−3 fm. In contrast, the photon must be massless in

the theory, which accounts for the long range of the electromagnetic force. The EW

interactions are divided into Charged Currents (CC) and Neutral Currents (NC). In

the first group, quarks and leptons interact with the W± bosons, producing decays

such as µ+(µ−) → e+νeνµ(e−νeνµ) and n(n) → pe−νe(pe
+νe). The study of these
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processes confirmed that only the left-handed (right-handed) component of fermions

(anti-fermions) takes part in weak processes. The CC interactions have a peculiarity:

they are the only interactions in the SM that violate flavour conservation at tree

level, while any other interaction not conserving flavour has to proceed through

higher order processes. The second group of EW interactions, NC, corresponds to

diagrams mediated by a photon or a Z boson interacting with a fermion and its

anti-fermion.

1.2 Flavour and the CKM matrix

“Flavour” in particle physics refers to the quark/lepton composition of a particle.

The introduction of flavour quantum numbers was motivated in order to explain why

some decays, although kinematically allowed, had never been observed. All leptons

are assigned a quantum number L` = 1 (where ` = e, µ, τ), which in the SM is

conserved by all interactions. This conservation is experimentally well established;

for example decays like µ− → e−γ have never been observed. In the hadronic sector

particles carry flavour numbers described as:

• Isospin: I3 = 1/2 for the up quark and I3 = −1/2 for the down quark;

• Strangeness : S = −(ns− n̄s), where ns and n̄s are the numbers of strange and

anti-strange quarks respectively;

• charmness, bottomness, topness : in analogy to strangeness they are respec-

tively defined as C = −(nc − n̄c), B = −(nb − n̄b), T = −(nt − n̄t).

As mentioned previously, in the SM the only interaction violating flavour conserva-

tion is the weak interaction when mediated by W± bosons.

Measuring branching fractions of weak decays such as π → µνµ and K → µνµ,

corresponding respectively to ud → µνµ and us → µνµ processes, suggested the

existence of more than one coupling constant for different quarks. Nicola Cabibbo, in
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order to preserve the universality of weak interactions, suggested that the differences

could arise from the fact that the doublets participating in the weak interactions are

an admixture of the mass eigenstates [2, 15]. He therefore introduced the Cabibbo

angle, θc, proposing that mass eigenstates participating in the weak interaction are

rotated with respect to the flavour eigenstates dW

sW

 =

 cos θc sin θc

− sin θc cos θc

 d

s

 =

 cos θc · d+ sin θc · s
cos θc · s− sin θc · d

 . (1.1)

In a six quark system one angle is not sufficient to describe a rotation but the mixing

can be generalised using a 3 × 3 unitary matrix, called the CKM matrix, from the

names of Cabibbo, Kobayashi and Maskawa [15, 16]. The unitarity of the matrix

is required to preserve the universality of the weak interaction. Theoretically, a

N × N complex matrix depends on 2 · N2 real parameters. Requiring unitarity

(AA† = A(A∗)T = I), the number of independent parameters left is

(N − 1)2 =
1

2
N(N − 1)︸ ︷︷ ︸

Number of mixing angles

+
1

2
(N − 1)(N − 2)︸ ︷︷ ︸

Number of complex phases

. (1.2)

Therefore a 3×3 matrix depends then on 4 real parameters: three real constants and

one imaginary phase. The imaginary phase generates the CP-violation which was

observed in weak interactions. Figure 1.2 displays examples of CC processes together

with the CKM elements associated with their vertices. Equation 1.3 reports the most

W+

u

d

Vud
W+

u

s

Vus

Figure 1.2: Feynman diagrams with CKM weights on weak interaction vertices as
defined in Eq. 1.3.
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recent measured values of its elements [2] together with the widely used Wolfenstein

parameterisation which highlights the hierarchical structure of the matrix. In fact,

elements on the diagonal, corresponding to transitions between quarks of the same

generation, are approximately 1 and become smaller and smaller going farther from

the diagonal. In the formula ρ, A, and λ are the real constants and η the imaginary

part and Eq. 1.4 shows how they are related to the three mixing angles; terms further

from the diagonal are proportional to higher powers of λ

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


0.9743± 0.0002 0.2253± 0.0007 0.0035+0.0002

−0.001

0.2252± 0.0007 0.9734± 0.0002 0.00412+0.0011
−0.0005

0.0087± 0.0003 0.0404+0.0011
−0.0005 0.99915+0.00002

−0.00004



=


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) Aλ2 1

+O(λ4) (1.3)

λ = sin(θ12) = sin(θc)

Aλ2 = sin(θ23)

Aλ3(ρ− iη) = sin(θ13)eiδ.

(1.4)

The unitarity of the CKM matrix imposes constraints to its elements of the form:

∑
i

|Vik|2 = 1 and
∑
k

VikV
∗
jk = 0. (1.5)

The latter correspond to constraints on three complex numbers, which can be viewed

as the sides of triangles in the (ρ, η) plane; these are called “unitarity triangles”.

The most commonly used unitarity triangle arises from VudV
∗
ub +VcdV

∗
cb +VtdV

∗
tb = 0.

Figure 1.3 shows a representation of such triangle together with a plot summarising

the most up-to-date experimental constraints to its parameters [17]. Due to these

unitarity constraints flavour-changing neutral currents are forbidden at tree level in

the SM.

The precise measurement of the parameters of the CKM matrix is a powerful sta-
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bility test of the SM and sets a solid basis for new physics searches in the flavour

sector. One of the main goals of the LHCb experiment is to measure precisely the

angle γ, which is currently the least constrained by measurements.

γ

γ

α

α

d
m∆

K
ε

K
ε

sm∆ & 
d

m∆

SL
ubV

ν τubV

βsin 2

(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

e
xclu

d
e
d
 a

t C
L
 >

 0
.9

5

α

βγ

ρ

­1.0 ­0.5 0.0 0.5 1.0 1.5 2.0

η

­1.5

­1.0

­0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

Summer 14

CKM
f i t t e r

Figure 1.3: (top) A representation of the unitarity triangle and its parameters.
(bottom) A summary of the most up-to-date measurements of the unitarity triangle
parameters [17].
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1.3 The puzzles of the SM

Despite the experimental confirmation of many predictions of the SM, the theory has

several limitations and is unable to account for some well-established experimental

facts:

• Dark matter : experimental evidence tells us that the content of visible matter

in the universe is not sufficient to account for the observed rotation of galax-

ies [18]. The most natural way to solve the problem is the hypothesis of a form

of matter that interacts with the gravitational field but not with the other SM

interactions.

• Matter-antimatter asymmetry : a large asymmetry is observed between the

quantity of matter and antimatter in the universe, O(10−9). Assuming that

both were equally created in the initial state of the universe, a condition such

as the violation of the CP symmetry is necessary to account for the observed

imbalance. However, the magnitude of CP violation predicted by the SM,

O(10−20), is not sufficient to account for the observed asymmetry [19].

• Gravity : even though the gravitational force was the first to be discovered this

is not included in the SM. When introducing gravity into the framework of

QFT the theory diverges. On the other hand gravity becomes irrelevant for

the small masses of particles and can be neglected to a good approximation at

the EW energy scale. Many attempts have been made but there is not yet a

consistent theoretical framework through which gravity can be introduced in

the SM [20].

• Neutrino oscillation: measurements of solar and atmospheric neutrinos, as

well as neutrinos from nuclear reactors, have established that neutrinos can

change flavour while propagating in space. This is not predicted in the SM, in

fact in the SM neutrinos are massless, while an oscillation requires a non-zero

mass [21, 22, 23, 24].
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• The hierarchy problem: the mass of a scalar (spin 0) particle, such as the

Higgs boson, suffers from quantum corrections due to the physics at high

energy scales. As new physics can appear anywhere up to the Planck scale,

∼ 1019 GeV, at which gravity cannot be neglected any more, these corrections

can be very large and it would require a high level of fine-tuning for them to

cancel out and give such a small value as the one measured for the Higgs Mass,

∼ 126 GeV/c2 [25, 3].

In conclusion, even though the SM has been very successful in describing the prop-

erties of the observed particles and their interactions so far, because of its many

puzzles, it is believed only to be part of a more general theory or only to be valid

up to a certain energy scale.

1.3.1 The flavour problem

Flavour Changing Charged Currents (FCCC) that are mediated by the W± bosons

are the only sources of flavour changing interactions in the SM and, in particular, of

generation changing interactions, where a quark or a lepton of a family transforms

into one of an other family. Another class of processes is the Flavour Changing

Neutral Currents (FCNCs), e.g. transitions from a b quark with a charge of -1/3 to

a s or d quark with the same charge. Examples of FCNC transitions in the quark

and lepton sector are shown in Fig. 1.4.

Z0

f

f

Z0

d

s

Z0

e−

µ+

Figure 1.4: Feynman diagrams of a neutral current allowed in the SM (left), where
f represents any fermion, and FCNCs processes forbidden in the SM (centre and
right).



11 CHAPTER 1. INTRODUCTION

FCNCs are experimentally observed to be highly suppressed which derives from the

unitarity of the CKM matrix, however there is no fundamental reason why there

cannot be FCNCs at tree level. In fact the CKM matrix could be part of a larger

matrix involving for example quark-lepton terms. This would introduce new sources

of FCNCs but could also allow for natural explanations of the equality of the proton

and electron charges. Furthermore, the observation of neutrino oscillation proves

that flavour is not always conserved suggesting flavour structures beyond the SM.

Finally, the values of the terms of the CKM matrix and the PMNS matrix [26, 27],

which is the mixing-matrix for the lepton sector, are not explained in the SM but

have to be measured experimentally. These open problems motivate searches for

flavour symmetries and deeper motivations for flavour conservation.

1.4 Beyond the Standard Model

From the previous sections it is evident that, despite the great success of the SM,

there is a need to explore theories Beyond the SM (BSM). Among the most promis-

ing approaches there are those involving Super-Symmetry (SUSY) [28] and extra-

dimensions [29]. In SUSY new degrees of freedom are introduced to suppress the

diverging terms of the Higgs mass. This theory assumes that for each fermion there

is a corresponding boson and, since bosons and fermions contribute with opposite

sign to the mass term, these would naturally cancel out. Super-Symmetry also pro-

vides a candidate for dark matter. In fact the lightest Super-Symmetric particle, the

neutralino, which in R-parity [30] conserving variants of the theory must be stable,

is a weakly interacting and potentially massive particle. The idea to introduce extra-

dimensions was triggered by the fact that gravity is not relevant in particle physics

but it would be natural if all forces had similar strength. By adding extra dimen-

sions to the normal three spatial dimensions, one can restore the strength of gravity,

as this could be dispersed by the wider space available. In all these approaches, con-

straints to masses and couplings must be imposed to maintain compatibility with

the SM at the electroweak scale and the existing experimental observations.
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1.4.1 Flavour and BSM theories

Most BSM theories predict processes violating flavour conservation. Therefore, the

observation or non-observation of these processes can give important information

about new physics. BSM theories can be classified according to the amount of

flavour violation they introduce. The first class of models to consider is that with

Minimal Flavour Violation (MFV). These are models in which the only sources of

flavour changing transitions are governed by the CKM matrix and the CKM phase

is the only source of CP violation. This definition is driven by the fact that usually

a solution of the hierarchy problem is expected at the TeV scale, while the very

small amount of flavour violation observed in measurements seems to indicate that

the SM would remain valid up to much higher energy scales. It is therefore assumed

that new physics must respect flavour symmetry principles, which also makes these

types of models naturally compatible with the SM. Examples of such models include

the MSSM with minimal flavour violation and the SM with one extra-dimension.

Reviews of MFV models are presented in Refs. [31, 32]. A powerful test of MFV

is provided by the study of ratios between b → d and b → s transitions, because

their Hamiltonians share the same structure. One particularly important example

is the ratio between the decay rates of B0 and B0
s into dimuons [33], as this is a

purely leptonic decay free from hadronic uncertainties. In the SM such ratios are

approximately equal to |Vtd/Vtd| ∼ 1/25, only modified by phase space and hadronic

matrix elements, while they can take very different values in non-MFV models.

In the quest for new physics an important role is also played by simplified models

as an intermediate model building step. Instead of constructing theories valid up

to the GUT scale one can consider simplified models, where the SM is extended by

the addition of new degrees of freedom with a limited number of parameters. Such

models are easier to constrain but can nevertheless point in the right direction to

build more complete theories. The choice of the new sector to add can be driven

by the need to explain existing tensions between measurements and SM predictions

or by theoretical prejudice. Two models especially relevant when studying rare
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decays, which are the main topic of this thesis, are Z ′-penguins and leptoquarks.

A Z ′-penguin is a FCNC process involving a neutral field arising from an extra

U(1) gauge symmetry, for example U(1)B−L, where B and L are the baryon and

lepton numbers. As for the SM penguins, the Z ′ field contributes in loops causing

modifications of the effective couplings with respect to the SM. A survey of Z ′ models

can be found in Ref. [34]. Leptoquarks are bosonic particles that carry both quark

and lepton flavour quantum numbers, which for simplicity are assumed to be scalar.

A tree level exchange of a leptoquark induces processes such as b → (s, d)`+`−,

and therefore can result in an enhancement of their decay rates with respect to the

SM [35]. Leptoquarks would also provide a natural explanation for non-universal

couplings to leptons.

1.5 Rare decays: a tool to search for new physics

In the Standard Model FCNC processes are forbidden at tree level but can occur

through loop diagrams such as penguin or W box diagrams (see Fig. 1.5). The

branching fractions of decays going through these processes are small, typically

∼ 10−6 or lower, and therefore they are called “rare decays”. Additional contri-

butions to the virtual loops are not necessarily suppressed with respect to the SM

component which makes these decays very sensitive to new physics. This approach

to new physics searches is interesting as new particles could be at high mass scales

that are not accessible via direct production at colliders but their effect could be

observed in loops. Radiative and penguin decays are particularly interesting because

they are theoretically well understood, which allows precise comparisons with mea-

surements. Furthermore, they provide a large quantity of observables that can be

affected by new physics, not only decay rates, but also CP asymmetries and angular

observables such as forward-backward asymmetries. The joint analysis of different

observables can help to build a consistent picture and rule out specific models.
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W

b s

ℓ+

ℓ−
Z0/γ

W W

b s

ℓ+ ℓ−

Figure 1.5: Loop Feynmann diagrams allowing b → d FCNC processes: penguin
diagram (left) and W box (right).

1.5.1 Theoretical framework: the effective Hamiltonian

Rare decays of b hadrons are governed by an interplay between weak and strong

interactions. The large masses of the W± and Z0 bosons and top quark compared

to that of the b quark allow the construction of an effective theory that divides the

problem of calculating weak decay amplitudes into two parts: “short-distance” and

“long-distance” effects separated at an energy scale µ. The first part, dealing with

short distance physics, handles perturbative contributions due to energy scales above

the b mass. The second part typically deals with non-perturbative contributions.

A classic example of an effective theory is the Fermi theory of weak interactions

which describes the β decay in terms of a four-fermion interaction, where the short

distance physics is hidden into a point-like vertex as illustrated in Fig. 1.6.

W−

b

c

u

d

b

c

u

d

Figure 1.6: Example of a Fermi theory in which the full theory (left) is divided
into (right) a short distance contribution, hidden in the vertex, and a long distance
contribution.
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The effective Hamiltonian [36] relevant to b → s/dγ and b → s/d`+`− transitions

can be written as:

Heff =
−4GF√

2

[
λtq
∑

Ci(µ,M)Oi(µ) + λuq
∑

Ci(µ,M)(Oi(µ)−Oui (µ))
]
, (1.6)

where GF denotes the Fermi coupling constant and the λ constants are the CKM

factors, λtq = VtbV
∗
tq and λuq = VubV

∗
uq. In b→ s quark transitions, which are the main

topic of this thesis, the doubly Cabibbo-suppressed contributions can be neglected

as λus << λts. To obtain this formula the Operator Product Expansion (OPE) [37]

method is used, which implements a summation over all contributing operators

weighted by corresponding constants called Wilson coefficients. In this Hamiltonian

the long-distance contributions are described by the operators, Oi, while the short-

distance physics is encoded in the Wilson coefficients, Ci. Operators and coefficients

are evaluated at the renormalisation scale µ. Any particle that contributes to the

decay and has a mass greater than the scale µ will affect the value of at least one of

the Wilson coefficients, including SM particles as the top quark.

In order to describe SM processes the effective theory must be matched with the

SM by requiring the equality between each term in effective theory and the full the-

oretical calculation at a matching scale, typically the EW scale (µW ). Then, using

the scale independence of the effective Hamiltonian, one can derive a renormalisa-

tion group equation for the Wilson coefficients [38]. Taking into account only SM

contributions and using µW = mb, the Wilson coefficients have values:

CSM
7 = −0.3, CSM

9 = 4.2, CSM
10 = −4.2 (1.7)

and new physics contributions appear in the Wilson coefficients in the form of ad-

ditive factors:

Ci = CNP
i + CSM

i . (1.8)

The amplitudes of exclusive hadronic decays can be calculated as the expectation

values of the effective Hamiltonian. Given an initial state I and a final state F
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(e.g.: I = B0 and F = K∗0µ+µ−) the decay amplitude can be calculated as

A(I → F ) = 〈F |Heff |I〉 =

= GF√
2

∑
V i
CKM Ci(µ)︸ ︷︷ ︸

Perturbative
Includes new physics

· 〈F |Oi(µ)|I〉︸ ︷︷ ︸
Non-perturbative
Known physics

, (1.9)

where 〈F |Oi(µ)|I〉 are the hadronic matrix elements also called “form factors”.

These can be evaluated using non perturbative methods such as lattice calculations.

However, due to the limitations of these methods, they represent the dominant

source of uncertainty in theoretical calculations.

1.5.2 Operators

Separating the left- and right-handed components the effective Hamiltonian is

Heff =
4GF√

2
VtbV

∗
ts

αe
4π

10∑
i=1

[CiOi + C ′iO′i] . (1.10)

A complete basis is given by a set of 10 operators, where O1,2 are the tree level

W operators; O3−6,8 are penguin diagrams mediated by gluons; and O7,9,10, which

are the operators that are relevant for radiative and leptonic penguin processes are

defined as [33]:

O7 = mb
e

(s̄σµνPRb)Fµν , O′7 = mb
e

(s̄σµνPLb)Fµν ,

O9 = (s̄γµPLb)(¯̀γµ`), O′9 = (s̄γµPRb)(¯̀γµ`),

O10 = (s̄γµPLb)(¯̀γµγ5`), O′10 = (s̄γµPRb)(¯̀γµγ5`),

(1.11)

where PL/R = (1 ∓ γ5)/2 denote the left- and right-handed chiral projections and

Fµν is the electromagnetic field tensor. The O′ operators correspond to right-handed

coupling obtained by swapping PR and PL in the equations. In the SM, as well as

in MFV models where the flavour violation is entirely ruled by the CKM matrix,

the C ′ Wilson coefficients are suppressed by the strange coupling, C ′i ∼ (ms/mb)Ci.
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The operator O7 relates to penguin diagrams that are mediated via a photon. It

represents the dominant contribution to the radiative b → sγ transition and con-

tributes to b → s`+`− processes when the virtual photon decays into a dilepton

pair. The semileptonic O9 and O10 correspond to penguin diagrams mediated by

a Z0 boson and W mediated box diagrams. These are the dominant contributions

in semileptonic b→ s`+`− decays. The vertices corresponding to the radiative and

semileptonic operators are illustrated in Fig. 1.7.

b s

γ

b

s

`−

`+

Figure 1.7: Interaction vertices corresponding to the radiative (left) and semileptonic
(right) operators.

It is also common to express the semileptonic operators in a basis with left and right

projected leptons

OLL = (O9 −O10)/2 OLR = (O9 +O10)/2

ORR = (O′9 −O′10)/2 O′RL = (O′9 +O′10)/2
(1.12)

where the Wilson coefficients are redefined as

CLL = C9 − C10, CLR = C9 + C10,

CRR = C ′9 − C ′10, C ′RL = C ′9 + C10.
(1.13)

This basis is particularly useful in frameworks where BSM physics at a high mass

scale respects the SU(2)W part of the SM gauge symmetry group. Finally, in the

picture presented in this section all operators were considered as universal with

respect to the flavour of the involved leptons. However, BSM models often contain

sources of lepton universality violation leading to a split of the same operators

depending on the lepton considered: Ci → Ce
i , C

µ
i , Cτ

i and Oi → Oei , Oµi , Oτi .
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1.5.3 Phenomenology of b→ s`+`− decays

Semileptonic b hadron decays are characterised by two kinematic regimes which are

treated theoretically in different ways; Table 1.3 shows a scheme of the q2 spec-

trum. The “high q2” is the region of low hadron recoil, q2 > 15 GeV2/c4, and is

characterised by the energy of the hadron being less than the energy scale of QCD in-

teractions within the meson, ΛQCD ∼ 1 GeV. In this region theoretical calculations

of B meson decays can be simplified by working in the heavy quark limit, mb →∞.

In this limit a Heavy Quark Effective Theory (HQET) can be constructed [39] in

which the heavy quark interacts only via ‘soft’ hadronic processes and an OPE in

1/mb is valid. The “low q2” region is where the light spectator quark is energetic

and cannot be neglected. Furthermore, the light quark interacts not only via ‘soft’

hadronic processes, as in HQET, but also via the so-called ‘collinear’ hadronic pro-

cesses. The boundary of this region can be set at ∼ 7 GeV2/c4 which corresponds

to the threshold for cc production, (2mc)
2. In this region the hadronic interactions

are handled by expanding in terms of the energy of the emitted energetic hadron,

1/Eh, forming the so-called Soft-Collinear Effective Theory (SCET) [40]. In both

regions decay rates can be predicted using the different methods and the biggest un-

certainties come from the limited knowledge of hadronic transition matrix elements.

The intermediate region is characterised by the presence of charmonium resonances,

produced though tree level b→ c̄cs transitions and no precise theoretical calculation

is available [41].

As can be seen in Fig. 1.8 the very low q2 region is characterised by a peak due to

the virtual photon contribution, associated with C7. In the region 1−6 GeV2/c4 the

Table 1.3: A scheme of the q2 spectrum.

q2 EK∗0 Regime Valid theory
∼ 0 GeV2/c4 ∼ mB Max. recoil

SCET
< 6 GeV2/c4 >> ΛQCD Large recoil
q2 ∼ m2

J/ψ ,ψ(2S) ∼ 3 GeV cc resonances –

q2 > 15 GeV2/c4 EK∗0 ∼ ΛQCD Low recoil
HQET

q2 = (mB −m∗0K )2 EK∗0 ∼ 0 Zero recoil



19 CHAPTER 1. INTRODUCTION

]4c/2 [GeV2q
0 5 10 15 20

OPEQCDF

resonances
ccbroad 

resonances
ccnarrow 

pole
photon

interference
90 - 70

 [GeV]*KE 012

Figure 1.8: A typical q2 spectrum of b → s`+`− processes characterised by the
photon pole at low q2, charmonium resonances at central q2 and broad resonances
at high q2 [33].

interference between C7 and C9 becomes large, yielding sensitivity to new physics in

C9. The 7− 15 GeV2/c4 interval is dominated by the charmonium resonances, J/ψ

and ψ(2S). Although these decays can be experimentally vetoed, in principle char-

monia affect the entire q2 space. Finally, at high q2 broad charmonium resonances

can contribute, like those observed by LHCb in B+→ K+µ+µ− decays [42].

1.5.4 Observables in b→ s`+`− decays

Rare decays and especially semileptonic b→ s`+`− processes offer a number of ob-

servables which can be used to study BSM models. The most direct effects appear

in decay rates that can be enhanced by new physics but the precision on these

measurements is often limited by uncertainties on the non-perturbative part of the

calculations. Therefore, it is important to also look for different observables. One

important class of observables are angular quantities that can often carry comple-

mentary information with respect to branching ratio measurements. The most basic

of these observable are forward-backward asymmetries that characterise the angular
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distribution of final particles. For the B0 → K∗0µ+µ− decay combinations of ob-

servables have been proposed that are independent of form factor uncertainties at

leading order order [33].

Another way to build safe observables is to construct ratios between similar decays,

in which uncertainties due to the hadronisation process cancel out. These observ-

ables include the RH ratios, between B0 decays into electrons and muons, that are

described in detail in Ch. 5. It is also interesting to compare decays which proceed

via the same fundamental process but where the spectator quark has a different

flavour. This is the case of B+ → K+µ+µ− and B0 → K0
Sµ

+µ− decays, which are

both b→ s transitions where the spectator quark is a u quark in the first case and a

d quark in the second. The normalised difference of the branching fractions of these

decays is called isospin asymmetry.

1.6 Experimental status

To set the background for the analyses described in this thesis, this section gives a

brief review of recent results of new physics searches involving rare decays or lepton

flavour violation. Among these, results recently obtained by the LHCb experiment

show a series of anomalies with respect to the SM that have the potential to yield

to BSM scenarios.

1.6.1 Dimuon decays of b hadrons

Decays of B mesons into a pair of muons are 2-body decays where the two muons

are back to back in the hadron rest frame. The simple signatures of these decays

makes them easy to study and the fact that they are unaffected by hadronic physics

in the final state makes predictions very clean and precise. Therefore these are

essential tests of the SM. The B0→ µ+µ− and B0
s→ µ+µ− decays are FCNCs that

can only happen via loops and furthermore they are CKM-suppressed, which makes
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them particularly rare. In addition, the decay of a pseudo-scalar B meson into two

muons has a significant helicity suppression. The latest SM predictions for these

decay rates are [43]:

B(B0
s→ µ+µ−) = (3.65± 0.23)× 10−9 and (1.14)

B(B0→ µ+µ−) = (1.06± 0.09)× 10−10. (1.15)

The uncertainties on these values are dominated by the knowledge of the decay

constants and CKM-elements. BSM models can produce significant enhancement

to these decay rates and the measurement of their ratio is a stringent test of the

MFV hypothesis. A combination of the LHCb and CMS results gives the values [44]:

B(B0
s→ µ+µ−) = (2.8+0.7

−0.6)× 10−9 and (1.16)

B(B0→ µ+µ−) = (3.9+1.6
−1.4)× 10−10. (1.17)

Neither decay had been previously observed, while now the B0
s decay is observed

with a significance of 6σ and evidence for the B0 decay is found at 3σ significance

level. The measured branching fractions are compatible with SM predictions within

2σ and put strong constraints on the available parameter-space for BSM theories.

Figure 1.9 shows the fit the dimuon invariant mass of B meson candidates where the

peaks of the two decays are visible. Furthermore, the ATLAS experiment recently

measured these branching fractions as well [45].
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Figure 1.9: Dimuon invariant mass of B candidates showing peaks corresponding
B0
s → µ+µ− and B0 → µ+µ− decays [44].
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1.6.2 Semileptonic b→ s`+`− decays of b hadrons

At the LHC it is possible to collect large data samples of semileptonic decays, es-

pecially those with muons in the final state. Many branching fractions of semilep-

tonic B meson decays were recently measured at the LHCb experiment, including

B → Kµ+µ−, B → K∗0µ+µ− and B0
s → φµ+µ− [46, 47, 48] as well as at CMS

and Belle [49, 50]. Baryon decays were also studied at LHCb: including the rare

Λb→ Λµ+µ− decay [1], whose analysis is described in this thesis. In contrast to

purely leptonic decays, SM predictions for semileptonic decays are affected by the

knowledge of hadronic form factors, which results in relatively large uncertainties,

O(30%). As a result measurements are now typically more precise than predictions.

Among the measurements of angular observables that can be affected by new physics,

particular interest was raised by a set of observables in B0→ K∗0µ+µ− decays, free

from form factors uncertainties at leading order [51]. Most of the measurements

are found to be in agreement with SM predictions with the exception of the P ′5

observable, shown in Fig. 1.10, where deviations are observed both by LHCb [52], a

local 3.7σ deviation, and Belle [53]. Attempts to build a consistent picture point to

a new physics contribution to the Wilson Coefficient C9 [54]. An angular analysis

of B+ → K+µ+µ− decays was also performed, where observables are found to be

compatible with SM predictions [55]. Other observables for which the sensitivity
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Figure 1.10: Measurement of the P ′5 observable as a function of q2, showing a tension
with SM predictions in the 2 – 6 GeV2/c4 region [52, 53].
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B0 → K+µ+µ− B0 → K∗0µ+µ−

1.1–6 [ GeV2/c4 ] 15.0–22.0 [ GeV2/c4 ] 1.1–6 [ GeV2/c4 ] 15.0–19.0 [ GeV2/c4 ]

ACP 0.004± 0.028 −0.005± 0.030 0.094± 0.047 −0.074± 0.044

AI −0.10+0.08
−0.09 ± 0.02 −0.09± 0.08± 0.02 0.00+0.12

−0.10 ± 0.02 0.06+0.10
−0.09 ± 0.02

Table 1.4: Measurement of CP and isospin asymmetry in B0 → K∗0µ+µ− decays
from the LHCb experiment [33].

to form factors effects is reduced are the CP asymmetry between B and B̄ decays,

ACP , and the isospin asymmetry between B0 and B+ decays, ACP . Due to the

small size of the corresponding CKM elements, CP asymmetries of B0 → K(∗)µ+µ−

decays are tiny in the SM, O(10−3). In BSM models new sources of CP violation can

arise and therefore ACP measurements are a powerful test of the SM. The isospin

asymmetry is not zero in the SM due to isospin breaking effects in the form factors.

This is expected to be ∼ 1% at low q2 and increase to ∼ 10% as q2 tends to zero.

The LHCb experiment, using the full dataset collected in Run I, corresponding to

an integrated luminosity of 3 fb−1 and ∼ 109 B decays, measured both of these

asymmetries to be consistent with zero [46, 56], as reported in Tab. 1.4. Recently,

progress was also made measuring electron channels. The branching fraction of the

B0 → K∗0e+e− decay was measured to be (3.1 ± 1.3) × 10−7 in the dilepton mass

interval 30 – 1000 MeV/c2 [57]. Furthermore, for the first time angular observables

were measured for this decay and found to be consistent with SM predictions [58].

Given the wide set of available measurements, theorists have implemented global

fits including results from rare decays analyses, as well as inputs from B0
s mixing

and Higgs measurements, in order to understand if the existing anomalies could be

caused by a common factor. The results of such global fits agree that there is a

tension with respect to the SM at the level of 3–4 standard deviations, depending

on the set of assumptions made. In particular they favour a shift CNP ∼ −1 to

the C9 Wilson Coefficient, related with the penguin diagram mediated by a Z0

boson [59, 54, 60].
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1.6.3 Lepton Flavour Violation searches

Several Lepton Flavour Violation (LFV) searches are linked to rare decays as they

involve small branching ratios in the SM that can be enhanced by BSM physics. Lep-

ton flavour conservation is experimentally well-established measuring the branching

ratios of decays of muons into electrons and no neutrinos, but has no strong the-

oretical explanation in the context of the SM. In fact it is already observed that

flavour is not conserved in neutrino oscillations. The best-studied decays violating

lepton flavour are rare muon decays including µ+ → e+γ and µ+ → e+e−e+. Since

muons can be abundantly produced and the final states are simple, these decays

provide the best constraints to LFV. The current best upper limits are 1.2× 10−11

for the radiative decay and 1.0 × 10−12 for µ+ → e+e−e+ obtained respectively by

the MEGA [61] and SINDRUM [62] experiments. Several LFV searches in the B

sector have recently been performed at the LHCb experiment including decays such

as B0 → eµ [63] and τ decays such as τ → µ+µ−µ [64], the latter was measured also

at Belle, BaBar and ATLAS [65, 66, 67]. None of these searches has found evidence

of new physics so far and therefore they set limits, constraining the parameter space

available for BSM models. Figure 1.11 shows a summary of the best limits set at

different times on LFV searches [68].

Figure 1.11: Summary of limits set in LFV searches as a function of time [68].



CHAPTER 2

The LHCb detector at the Large Hadron Collider

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [69] is a synchrotron particle accelerator with a

circumference of 27 km located about 100 m underground at CERN in the surround-

ings of Geneva, Switzerland. Two proton beams circulate in opposite directions

around the ring and cross each other at four points, in which particle detectors are

placed. These include two general-purpose detectors, ATLAS and CMS, sitting on

opposites sides of the ring and two smaller detectors, ALICE and LHCb that are

designed to study specific topics (see Fig. 2.1).

Each beam consists of a series of proton bunches, up to a maximum of 2835. Each

bunch consists of about 1011 protons and the bunch spacing is such that the nominal

bunch crossing rate is 40 MHz. The beams are injected into pre-accelerators and

then pass into the LHC through the CERN acceleration system shown in Fig. 2.1.

25
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Figure 2.1: Schematic of CERN accelerators [70].

Protons are produced from hydrogen gas and are initially accelerated to an energy

of 50 MeV in a linear accelerator (LINAC). Then they are injected into the Proton

Synchrotron Booster (PSB), where they are boosted to an energy of 1.4 GeV, into

the Proton Synchrotron (PS) to 25 GeV and into the Super Proton Synchrotron

(SPS) to 450 GeV. Finally, protons enter into the LHC storage ring, where they are

accelerated from injection energy to the final one by radio frequency (RF) cavities.

The beams are steered around the ring by 8 T magnetic fields produced by 15 m

long superconducting niobium-titanium dipole magnets and focussed by quadrupole

magnets. The LHC magnets use a design in which both proton beam pipes are

contained in the same housing, allowing a common liquid helium cooling system to

be used. The LHC began colliding proton beams in “physics mode” in 2009 at a

centre of mass energy of
√
s = 900 GeV and from April 2010 to November 2011

accelerated beams at
√
s = 7 TeV (3.5 TeV per proton beam) with a maximum

instantaneous luminosity of 3 ·1033 cm−2s−1, while in 2012 the energy was increased

to 8 TeV. The LHC maximum design energy is 14 TeV, and its design luminosity is

1034 cm−2s−1. After a long shut down to upgrade and maintain the machine, a new
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run started in June 2015, in which protons are collided at a centre of mass energy

of
√
s = 13 TeV. At this energy the total proton-proton cross-section is expected to

be roughly 100 mb.

2.2 The LHCb detector

The LHCb detector [71] was designed to study decays of B and D mesons, mainly

looking for CP-violating processes. In 2011, running at a centre of mass energy of 7

TeV, the cross-section for bb̄ production was measured to be 284± 53 µb [72], while

it will be ∼ 500 µb at the current LHC energy, 13 TeV. At these high energies,

proton-proton interactions produce highly boosted virtual gluons which produce bb̄

pairs at small angles, close to the beam pipe. For this reason the LHCb detector is

designed to have a very forward angular coverage. The detector is fully instrumented

from 10 mrad to 300 mrad, corresponding to an interval 2 < η < 5, where η is the

“pseudorapidity”, a quantity defined as:

η = − ln(tan(θ/2)), (2.1)

where θ is the angle between a particle’s momentum and the beam direction1.

At LHCb’s collision point the luminosity can be adjusted by displacing the beams

from head on collisions while keeping the same crossing angle. This allows the

experiment to maintain an approximately constant instantaneous luminosity, com-

pensating for the reduction in beam intensity during extended operation periods.

This also means that the average number of interactions per bunch crossing can be

regulated, which is important because the detector efficiency, especially in detect-

ing secondary vertices, decreases for events with a high number of primary vertices

1LHCb’s coordinate system is right-handed and has the z axis in the direction of the beam,
the x axis directed to the centre of the accelerator and y is directed upward. Then we define θ as
the angle with the beam direction and φ as the position around the beam in the xy plane, taking
φ = 0 on the x axis. The origin, (x, y, z) = (0, 0, 0), corresponds to the centre of the interaction
area.
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Figure 2.2: A side view of the LHCb detector [71].

(PV). Reducing the particle occupancy through the detector also keeps radiation

damage to a minimum. Until the end of 2011 the instantaneous luminosity was

3 · 1032 cm−2s−1, corresponding to an average number of 1.5 PVs per bunch crossing

and at the end of 2011 LHCb had collected an integrated luminosity of 1 fb−1. In

2012 the luminosity was increased and a further 2 fb−1 of data were collected.

Experiments like BaBar at the Stanford Linear Accelerator (SLAC), Belle at KEK

at J-PARC (Japan) and the Tevatron experiments at Fermilab have made measure-

ments in heavy flavour physics which have so far been found to be consistent with

the SM predictions. However, some of the deviations from the SM are expected to be

very small. Therefore LHCb was designed to make the most precise measurements

in heavy flavour physics to test the consistency of the SM and look for new physics.

The LHCb detector comprises a high-precision tracking system consisting of a silicon-

strip vertex detector surrounding the pp collision point, and larger silicon-strip and

drift tubes detectors located on both sides of a dipole magnet with a bending power
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of about 4 Tm. Charged hadrons are identified using information form two Ring-

Imaging Cherenkov detectors (RICH) [73]. Photon, electron and hadron candidates

are identified by a calorimeter system and muons by a system composed of alter-

nating layers of iron and multi-wire proportional chambers [74]. A schematic view

of the detector is shown in Fig. 2.2 and more details on each sub-detector are given

in the following sections.

2.3 The magnet

Charged particle trajectories are deflected horizontally in the magnetic field so that

their momentum can be measured from the radius of curvature. The LHCb dipole

magnet is composed of two coils supported by an iron yoke and is shaped to fit

the LHCb angular acceptance. Unlike the other LHC experiments, LHCb uses a

warm magnet which can be easily ramped allowing the field polarity to be inverted

periodically. When the polarity is flipped, particles of a given sign are bent in

the opposite direction. This method is used to limit systematic uncertainties that

arise due to performance variations in different areas of the detector, which average

out using data taken in both polarities. A current of 5.85 kA flows in the magnet

generating an integrated magnetic field of 4 Tm for 10 m long tracks. In order to

achieve the required momentum precision the magnetic field must be mapped with

a 10−4 precision. For this reason a grid of 60 sensors is positioned inside the magnet

and provides real time magnetic field maps.

2.4 Tracking system

B mesons have lifetimes of approximately 1.5 ps. At the LHC energies, this means

that they travel about 1 cm before decaying to form a displaced vertex. To study

specific decays, it is therefore important to be able to separate the particles pro-

duced at the primary pp vertex and at the B decay secondary vertex (SV). The
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tracking system consists of the Vertex Locator (VeLo), and four tracking stations:

the Tracker Turicensis (TT), which are located before the magnet and the T1, T2

and T3 stations, located after the magnet. The latter three stations are in turn

formed by two subsystems: the Inner Tracker (IT) close to the beam-line, where

the particle density is greatest, and the Outer Tracker (OT) covering the rest of the

acceptance.

Figure 2.3: On the left VeLo sensors mounted in line and on the right a schematic
view of one sensor [71].

The VeLo accurately measures positions of tracks close to the interaction point

which is essential to reconstruct production and decay vertices of bottom and charm

hadrons. The VeLo is composed of 21 silicon modules that surround the beam axis

and are positioned from z = −18 cm to +80 cm. The sensitive region of the VeLo

starts at an inner diameter of only 8 mm from the beam axis and it is able to detect

particles within a pseudorapidity range 1.6 < η < 4.9. The VeLo is housed in its own

vacuum vessel of thin aluminium foil, which protects the vacuum of the beam pipe

from any outgassing. The silicon layers composing the VeLo consist of two modules

each including two types of sensors: the φ-sensor, which measures the azimuthal

position around the beam, and the R-sensor, which measures the radial distance

from the beam axis. A sketch of the VeLo sensors is shown in Fig. 2.3 together with

a picture of the modules layout. The sensors are 300 µm thick and to ensure that
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they cover the full azimuthal angle the right-side module is placed 1.5 cm behind

the left-side module on the z-axis and they overlap. There are two modules which

cover the backward direction and are used as a veto for multiple interactions; this

is called the pileup system.

Figure 2.4: A sketch of the straw tubes which constitute the OT layers [71].

The IT and TT both use silicon strips and together constitute the silicon Tracker

(ST). Straw tubes are instead used in the OT, of which a sketch is shown in Fig. 2.4.

The IT requires a higher inner granularity because of the greater flux of particles

close to the beam pipe. In fact, it covers only 1.3% of the total area of IT plus

OT but it contains about 20% of the tracks. Each ST station has four detection

layers: the first and last are vertical, measuring the track position in x, while the

second and third layers are rotated by an angle of +5 and -5 degrees, which allows

the measurement of the y coordinate. The TT is placed upstream of the magnet to

allow the reconstruction of tracks from low-momentum particles, which are bent out

of the downstream acceptance. Overall the tracking system provides a measurement
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of momentum, p, with a relative uncertainty that varies from 0.4% at 5 GeV/c to

1.0% at 200 GeV/c. The impact parameter (IP), namely the minimum distance of a

track to a primary vertex, is measured with a resolution of (15 + 29/pT) µm, where

pT is the component of the momentum transverse to the beam, in GeV/c. The z-axis

position of a PV reconstructed with 35 – 40 tracks can be measured with a precision

of roughly 50 – 60 µm. The decay products of B mesons tend to have high IP values

because the B decay imparts transverse momentum to them. Therefore, accurate

IP and vertex displacement measurements allow LHCb to distinguish effectively

between B meson decays and background processes.

2.5 Calorimeters

In general the main purpose of a calorimeter system is to determine the energy

of particles but in LHCb it is mostly used to help the identification electrons and

hadrons. Sampling calorimeters, as those used in LHCb, are composed of layers

of absorber and active material. Particles interact with the absorber layers and

produce a cascade of secondaries that multiply quickly and are detected by the

active part, which is usually composed of scintillating layers. The light produced

is detected by photo-multipliers (PMTs) and it is approximately proportional to

the energy of the deposited particles. Calibration is then used to translate the

signal into an energy measurement. The LHCb’s calorimeter system consists of

the Scintillator Pad Detector (SPD), the Pre-Shower Detector (PS) as well as the

Electromagnetic Calorimeter (ECAL) and the Hadronic Calorimeter (HCAL). A

sketch of the LHCb calorimeters is shown in Fig. 2.5. The SPD/PS cells are read

out with PMTs located outside the LHCb acceptance, while the ECAL and HCAL

have individual PMTs located on the modules. All four detectors are segmented,

which allows the energy deposits to be associated to the tracks detected by the

tracking system. The segmentation of the cells varies according to the distance from

the beam pipe due to the different track density.
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Figure 2.5: (left) The ratio of the energy deposited in the ECAL and the particle
momentum, which allows the separation between electrons and hadrons [71]. (right)
A schematic of the LHCb’s calorimeter system.

The most difficult identification in LHCb is that of electrons. The rejection of a high

background of charged pions is achieved using a longitudinal segmentation of the

electromagnetic calorimeter which is provided by the PS detector added in front of

the main electromagnetic calorimeter, ECAL. Electrons also have to be distinguished

from high energy π0s and photons. For this purpose the SPD calorimeter, detecting

charged particles, is located in front of the PS and ECAL detectors. Figure 2.5

illustrates how the ratio between the energy detected in the ECAL and a particle’s

momentum allows the separation of electrons and hadrons.

The ECAL is formed by 66 lead layers (2 mm thick) separated by 4 mm thick plastic

scintillator layers. In order to obtain the highest energy resolution the showers

from high energy photons must be fully absorbed. For this reason the ECAL has a

thickness of 25 radiation lengths and its resolution is measured to be σECAL(E)/E =

10%/
√
E(GeV) ⊕ 1% [71], which results in a mass resolution of ∼ 70 MeV/c2 for

B mesons and ∼ 8 MeV/c2 for π0. The HCAL is mainly used for triggering and

it is similar to the ECAL but with 4 mm thick scintillator layers and 16 mm thick

absorber layers. The trigger requirements on the HCAL resolution do not depend

on the containment of the hadron showers as much as for the ECAL, therefore, due

to space limits, its thickness is only 5.6 interaction lengths and its resolution is given

by σHCAL(E)/E = 69%/
√
E(GeV)⊕ 9%.
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2.5.1 Bremsstrahlung recovery for electrons

Bremsstrahlung is an electromagnetic radiation produced by charged particles that

undergo an acceleration. Typically electrons produce bremsstrahlung when deflected

by atomic nuclei. The probability of emitting bremsstrahlung radiation is propor-

tional to the inverse of the squared mass of the particle (1/m2) and therefore it is

most relevant for electrons. At LHC energies, if electrons radiate after the magnet,

Figure 2.6: Schematic view of the bremsstrahlung recovery [71].

the photon will hit the same calorimeter cell as the electron and the energy will be

automatically recovered, as illustrated in Fig. 2.6. However, if the photon is emitted

before the magnet, the electron will be deflected by the magnetic field whereas the

photon will continue on its initial trajectory, with its energy being deposited in a dif-

ferent part of the calorimeter. Missing this energy results in a poorer reconstructed

invariant mass resolution, so it is desirable to recover these bremsstrahlung photons.

A tool for bremsstrahlung recovery is available in the LHCb analysis software. This

tool looks for other clusters in the calorimeter and, reconstructing the trajectory of

the electron, checks if they may be associated with emitted photons. The photon

energy is then added to the electron and its momentum is recalculated. For more

information see Ref. [75].
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2.6 RICH

The two RICH detectors are a special feature of LHCb, as it is the only experiment

at LHC using them. These detectors take advantage of the Cherenkov radiation

produced by particles passing through a medium with speed higher than the speed

of light in the medium. The Cherenkov light, as shown in Fig. 2.7, is produced in

cones with a specific opening angle depending on the velocity of the particle. The

relation between the angle and the particle velocity can be written as

cos θ =
1

βn
, (2.2)

where β = v/c and n is the refraction index of the medium.

Figure 2.7: (left) A sketch of Cherenkov light emission [76]. (right) Measured
Cherenkov angle as a function of particle momentum [71], where one can see that
the study of the Cherenkov angle allows to distinguish particles’ identities.

RICH 1 is located before the magnet in order to cover a larger angular accep-

tance. Its purpose is to ensure particle identification over the momentum range

1 < p < 70 GeV/c. It uses two radiators: C4F10 that covers the momentum range

5 − 70 GeV/c and silica aerogel which covers 1 − 10 GeV/c. RICH 2 is positioned

after the magnet and tracking stations and it identifies higher momentum particles

from approximately 20 GeV/c up to beyond 100 GeV/c using CF4 as a radiator.

The Cherenkov light produced when charged particles travel through the radiators,

is reflected and focussed using mirrors, which are tilted so that a ring image is re-
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flected onto arrays of PMTs. The radius of the ring can be used to measure the

opening angle of the Cherenkov cone because of the known geometry. The photo-

detectors are located outside of the LHCb acceptance in order to reduce the amount

of material that the particles have to traverse. Pattern recognition algorithms are

then used to reconstruct the Cherenkov rings.

2.7 The muon system

It is essential for many of the key physics analyses in LHCb to be able to identify

muons in decay final states. Muons are the most penetrating particles that can be

detected at LHC experiments, so the muon chambers are the farthest sub-detectors

from the interaction point. The muon system consists of five stations (M1 - M5), the

first one being located before the calorimeters in order to improve pT measurements.

The remaining four stations are behind the HCAL and are separated from each other

by 80 cm thick iron blocks, which absorb hadrons, electrons and photons to ensure

that only muons reach the final muon station. A schematic of the muon system is

shown in Fig. 2.8. Only muons with a minimum momentum of 10 GeV/c traverse

all of the five stations and, for positive identification of a muon, the trigger requires

a signal in each of them. Each station has a detection efficiency of at least 95% and

the detectors also provide position measurements. Since there is a larger particle

flux close to the beam pipe, the stations are divided into four concentric rectangular

regions (R1-R4) with increasing cell size, which results in a similar occupancy over

the four regions. All of the muon stations use Multi Wire Proportional Chambers

(MWPC) except for the inner region of M1, where the particle flux is too high.

In this region triple-GEM (Gas Electron Multiplier) detectors are used because of

their better ageing properties as they have to withstand a rate up to 500 kHz cm−2

of charged particles. These detectors consist of three gas electron multiplier foils

sandwiched between an anode and a cathode.
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Figure 2.8: The LHCb muon system [71].

2.8 Particle identification

Particle identification (PID) is another important feature in LHCb and it is per-

formed in various ways. The electromagnetic calorimeters can distinguish between

pions and electron, the muon chambers identify muons and the RICH detectors can

be used to identify more massive charged particles such as protons and kaons.

The RICH assigns an identity (ID) to a track calculating the global likelihood for the

observed distribution of hits being consistent with the expected distribution from

various ID hypotheses. The algorithm iterates through each track and recalculates

the likelihood when the track PID hypothesis is changed to that of an electron,

muon, kaon or proton. For electrons and muons additional information from the

calorimeter and muon systems is also used. The hypothesis which maximises the

likelihood is assigned to the track.

To quantify the quality of the ID the pion hypothesis is used as a reference point

and the probability of a specific ID is given in terms of Log-Likelihood difference

between the given ID hypothesis and the pion one. This variable is called Delta
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Log-Likelihood (DLL) and denoted with “PID”. For example,

PIDK = DLLK−π = log(LK)− log(Lπ) (2.3)

quantifies the probability of a particle being a kaon rather than a pion. Figure 2.9

shows the efficiency for correctly identifying and mis-identifying kaons and protons as

a function of the measured momentum of the particle. For kaons the efficiency drops

at momenta below 10 GeV, where they fall below threshold for the gas radiators.

The DLL cuts enable LHCb physics analyses to distinguish between kinematically

similar decays with different final states. For example, Fig 2.10 illustrates the power

of particle identification, showing how the application of DLL cuts can be used to

isolate B0 → π+π− decays from other 2-body B decays.

Figure 2.9: Particle identification performances for kaons (left) and protons (right)
as a function of the measured momentum of the particles [71].

Figure 2.10: Invariant mass peak of the B0 → π+π− decay before (left) and after
(right) the application of PID requirements [77].
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The identification of muons is particularly important in LHCb and it is quantified

using two variables: the DLLµ and the isMuon variable. The latter is a boolean

variable determined by defining a ‘field of interest’ around a track trajectory extrap-

olated through the muon chambers. The variable is set to true if hits in multiple

muon stations are found in the field of interest.

2.8.1 PID calibration

In order to be able to calculate detection efficiencies, a “data-driven” method is used.

The calibration software is referred to as PIDCalib package [77]. This tool uses

decays where final particles can be identified thanks to their kinematic properties.

For example the K0
S → π+π− decay has a clear signature with a displaced vertex and

can be easily singled out from other decays and used to test pion ID efficiency. The

narrow peaks of the J/ψ → µ+µ− and J/ψ → e+e− decays allow muon and electron

efficiencies to be calibrated. A “tag-and-probe” method is used in this case, where

only one of the two leptonic tracks is reconstructed requiring the correct identity

and the other one is used to probe the PID efficiency. Finally, φ → KK samples

and D∗+ → D(→ K−π+)π+ decays, where the D∗+ is used to tag the decay, are

used to test the kaon efficiency. In all cases the residual background is subtracted

using the sP lot technique [78].

2.9 Trigger and software

The LHCb trigger system [79] consists of a hardware stage, L0, based on information

from the calorimeters and muon system, followed by a software stage, the High-

Level Trigger (HLT), which applies a full reconstruction of the events. To increase

performance, the HLT is further split into two stages, HLT1 and HLT2. The HLT1

phase happens in real time and saves data to local disks while the HLT2 phase uses

the resources available during periods with no beam. The event selected by the
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HLT2 stage are then saved for offline analysis. Figure 2.11 shows a schematic of

the trigger system. The bunch crossing frequency is 40 MHz, which corresponds to

an instantaneous luminosity of 2 · 1032 cm−2s−1 for LHCb. About 15% of the total

number of bb pairs produced will contain at least one B meson with all of its decay

products within the detector acceptance. This rate needs to be reduced to about

2 kHz at which the events can be written to disk.

Figure 2.11: A schematic of the LHCb trigger system [71].

The L0 trigger reduces the rate of visible interactions from 10 MHz to 1 MHz. Due

to their high mass, B mesons often produce particles with high energy and mo-

mentum. Therefore the trigger selects events with large deposits in the calorimeter

or high pT muons. The event is classified as L0Muon if it was triggered due to in-

formation from the muon detector, while the information from the calorimeters is

used to divide the events into five categories: L0Photon, L0Electron, L0LocalPion,

L0GlobalPion, L0Hadron. The PS detector information is converted to a photon

flag (PS && !SPD) or an electron flag (PS && SPD). The “local” label of the L0Pion
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trigger refers to π0 reconstructed though their γγ decay, where the two photons fall

in the same ECAL element, they are labelled “global” otherwise. The first four

calorimeter triggers require energy clusters in the ECAL, while L0Hadron requires

clusters also in the HCAL. The HLT1 uses information from the VELO and trackers

performing a partial reconstruction of the event and reduces the rate to 2 kHz by

adding requirements on the IP and χ2 of tracks. Finally, the HLT2 involves a full

reconstruction of the event and includes many “lines” designed to select specific

decay structures.

LHCb has also developed an extended simulation software framework in order to

reconstruct efficiencies and signal shapes. In the simulation, pp collisions are gen-

erated using Pythia8 [80, 81] with a specific LHCb configuration [82]. Decays of

hadronic particles are described by EvtGen [83], and final state radiation is gen-

erated using Photos [84]. Finally, the interaction of the generated particles with

the detector and its response are implemented using the Geant4 toolkit [85] as

described in Ref. [86]. For this analysis in this thesis, the ROOT framework [87] is

used to analyse data and the RooFit package to perform maximum likelihood fits.

A multivariate analysis is also performed based on the NeuroBayes package [88, 89],

which provides a framework for neural network training.

2.10 Constrained kinematic fits

The resolution of key variables, such as the measured invariant mass of decaying

particles, can be improved by imposing constraints on the measured quantities to

remove redundant degrees of freedom. The four-momentum conservation can be

ensured at each vertex and the origin and decay vertices of a particle are related via

the momentum of the particle. Furthermore, additional constraints can be imposed

due to a particular decay hypothesis such as the known invariant masses of final and

intermediate particles. In order to do this the DecayTreeFitter tool was developed

by the BaBar experiment and later used by LHCb [90]. The algorithm takes a com-
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plete decay chain and parameterises it in terms of vertex positions, decay lengths

and momentum parameters. These parameters are then fit simultaneously, taking

into account the relevant constraints, including the information from photons. Fig-

ure 2.12 illustrates the effect of the application of the kinematical fit on the 4-body

invariant mass of the final daughters of the Λ0
b → J/ψΛ decay. The resolution in this

case improves by over a factor of 2. Furthermore, the χ2 from the kinematic fit can

be used to quantify the compatibility with a specific decay structure, which helps to

separate candidates where random particles from the event have been added to the

decay tree, or where one or more particles is not reconstructed or mis-identified.
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Figure 2.12: Invariant mass of the final daughters of simulated Λ0
b → J/ψΛ decays

calculated with and without constraints using the DecayTreeFitter tool.

2.11 Validation of hadronic processes in the simulation

Particle-antiparticle asymmetries are of major interest for LHCb and detection ef-

ficiencies are usually obtained from simulation. It is therefore important, in order

to limit systematic uncertainties, to have a model that parameterises correctly the

cross-sections of particles and antiparticles or at least their ratio.

The LHCb simulation software propagates particles though the detector using the
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Geant4 toolkit [71]. This offers a variety of models for physics processes over a

wide range of energies for both electromagnetic and strong interactions. Given a

combination of projectile, target and energy there can be several models applicable

with different reliability and computational costs. Geant4 provides a number of

pre-packaged consistent sets of models, Physics Lists, chosen to be appropriate for

a given use case. In LHCb mainly two hadronic Physics Lists are considered:

• LHEP (Low and High Energy parameterisation): based on a parameterised

modelling of all hadronic interactions for all particles. This list combines

the High Energy parameterised model (HEP) and the low energy one (LEP).

There is a sharp switch from the low to the high energy model at 25 GeV.

The modelling of elastic scattering off a nucleus and of nuclear capture also

proceeds via parameterised models.

• FTFP BERT: includes the following models:

– Bertini cascade model (BERT) [91], which simulates the intra-nuclear cas-

cade, followed by pre-equilibrium and evaporation phases of the residual

nucleus, for protons, neutrons, pions and kaons interaction with nuclei

at kinetic energies below 9.9 GeV. The Bertini model produces more

secondary neutrons and protons than the LEP model, yielding a better

agreement with experiment data.

– FTFP model, which implements high energy inelastic scattering of hadrons

by nuclei using the FRITIOF model [92].

The change between the two models happens with a linear shift from BERT

to FTFP that starts at 4 GeV and ends at 5 GeV.

Figure 2.13 summarises the composition of the different models. When two models

overlap in an energy interval the choice of the model for each interaction is made

using a random number: the probability to select each model varies linearly from 0

to 100% over the overlap range. Because of the differences of the two models in the

overlap region, unphysical discontinuities can be produced as a function of energy.
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Figure 2.13: Diagram of LHEP, FTFP BERT and QGSP BERT models’ composi-
tion as a function of energy.

2.11.1 Geometry and interaction probability

The results presented in the following sections are produced using the version v45r0

of the full LHCb framework for simulation, Gauss [86], which is interfaced to

Geant4 v95r2p1. A simple geometry setup is used in order to be able to calculate

in a clean way the interaction cross-sections in a specific material. This consists

of a series of rectangular boxes filled with the most relevant materials for LHCb:

aluminium, silicon and beryllium. For each material three boxes are defined with

different thicknesses (1mm, 10mm, 50mm). These values are chosen to be indicative

of the amount of material present in the LHCb detector.

The simplest quantity available to extract the cross-section is the interaction prob-

ability, Pint, defined as:

Pint =
Nint

Ntot

, (2.4)

where Nint is the number of particles which interacted in the material and Ntot is

the number of generated particles. As Geant4 provides an ID for the end process

of a particle (e.g. 121 for inelastic interaction, 111 for elastic, 201 for decay) it

is possible to distinguish the inelastic and elastic probabilities of interaction and

therefore cross-sections.
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To compare simulation and data the cross-section and Pint are related through the

following formula valid for thin layers:

σint =
A

ρNA∆x
· Pint, (2.5)

where ρ is the density of the material and A is its mass number, ∆x is the thickness

of the considered layer and NA is the Avogadro number.

2.11.2 PDG prediction

In the Review of Particle Physics (PDG) [2] cross-sections of protons and neutrons

are parameterised as:

σabtot = Zab +Bab log2(s/sM) + Y ab
1 (sM/s)

η1 − Y ab
2 (sM/s)

η2 , (2.6)

σābtot = Zab +Bab log2(s/sM) + Y ab
1 (sM/s)

η1 + Y ab
2 (sM/s)

η2 , (2.7)

where sM = (ma + mb + M)2 and Bab = λπ(~c
M

)2. Some of the constants in these

equations are universal and valid for any kind of collision: M = 2.15, η1 = 0.462, η2

= 0.551, λ = 1 (for p, n and γ) and 1.63 (for d). The other ones are characteristic

of each type of collision and are listed in Tab. 2.1. In these formulae the particle-

antiparticle asymmetry arises from the last term which has opposite sign in the

two equations. This term becomes less and less important with increasing energies.

Therefore a net asymmetry is found at low energies, while the cross-sections tend

to a common point at high energy and continue increasing logarithmically.

2.11.3 Validation results

This section reports particle and antiparticle cross-sections and their ratios com-

pared, where available, with predictions and with data from the COMPASS ex-
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periment [93]. Figure 2.14 shows the probability of interaction for protons and

anti-protons in 10 mm of aluminium using the FTFP BERT and LHEP models

compared with COMPASS data and Fig. 2.15 shows the ratios of σtotp̄ /σtotp together

with the PDG prediction. A difference of 40% is found between the two consid-

ered models for 1 GeV incoming anti-protons. This difference becomes negligible

at higher energies. The discrepancies between the two Physics Lists for kaons and

pions are of a few percent (2 – 3%) and usually constant with the energy. From the

comparison with data and PDG predictions it can be qualitatively concluded that

the FTFP BERT model gives a better description of hadronic interactions at low

energies, while both models give good results at high energy, above ∼ 10 GeV.

The tool developed for these studies is not limited to cross-sections but can also

give information on other simulated quantities. As an example, Fig. 2.16 shows a

comparison between the types of particles generated in inelastic collisions of protons

and anti-protons onto aluminium using different models. Physics Lists can give very

different results, for example the LHEP model does not produce photons in inelastic

collisions. However, it is difficult to use these quantities for validation as there are

no data available for a comparison.

Proj / Targ Zab Y ab
1 Y ab

2

p̄,p / p 34.71 12.72 7.35
π± / p 19.02 9.22 1.75
K± / p 16.56 4.02 3.39
K± / n 16.49 3.44 1.82
p̄,p / n 35.00 12.19 6.62

Table 2.1: Values for the constants Zab, Y ab
1 and Y ab

2 [2], which parameterise hadronic
cross-sections for different projectile and target combinations.
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2.12 Material budget studies

It is important for many analysis to quantify the amount of material present in the

detector, for example to estimate the amount of multiple scattering. In Geant4

particles are propagated in steps through the detector and for each step the frame-

work analyses the geometry to understand in what material the particle is and

modifies its trajectory accordingly. A tool was developed where neutrinos are used

as probes to scan the detector summing the radiation length seen at each step up

to a certain point. Neutrinos are used as they do not bend in magnetic field and

do not interact with the detector to any appreciable extent. Thin air planes are

inserted after each sub-detector. When these are traversed by the neutrinos, the

information about the accumulated radiation and interaction length is saved. In

this way it is possible to obtain maps of the detector, such as the one shown in

Fig. 2.17. Using the tool developed for this study it is also possible to obtain the

cumulative interaction length. As an example Fig. 2.18 shows the average radiation

length as a function of the distance from the interaction point. Furthermore, it is

possible to displace the primary vertex from its position, normally set at the origin,

in order to study how this translates into the amount of material traversed.

2.13 Validation and material budget studies conclusions

The studies outlined in the previous two sections are based on tools which are now

part of the standard LHCb simulation framework. These tools were used to validate

the framework when passing from Geant4 version 9.5 to version 9.6. In particular

a patch was provided by the Geant4 team including improved kaon cross-sections

and it was verified these improve the agreement with data. The tool will continue

to be used in the future, in particular to validate the upgrade to Geant4 10, in

2016. Furthermore, the tools can be used by analyses sensitive to the quality of the

simulation of particle and antiparticles cross-sections in order to study systematic

effects and uncertainties.
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CHAPTER 3

Differential branching fraction of Λ0
b → Λµ+µ−

The Λ0
b → Λµ+µ− decay is a FCNC process governed by the b → sµ+µ− quark

level transition which, in the SM, proceeds only through loop diagrams (electroweak

penguin or W box) as discussed in Sec. 1.5, and therefore it is highly sensitive to

new particles entering the loops. Interest in Λ0
b baryon decays arises, first of all,

from the fact that the Λ0
b has non-zero initial spin, which allows the extraction of

information about the helicity structure of the underlying Hamiltonian that cannot

be obtained from meson decays [95, 96]. Secondly, the Λ0
b baryon can be considered

to a first approximation as composed of a heavy quark and a light di-quark, therefore

the hadronic physics differs significantly from B meson decays. This provides the

possibility to better understand and test the hadronic physics in the theory, which

could yield an improved understanding relevant also for the meson case.

With respect toB0 decays going though the same transitions, such asB0→ K∗0µ+µ−,

Λ0
b decays can provide independent confirmations of the results as they involve the

same operators but different hadronic matrix elements. Furthermore, Λ baryons

51
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decay weakly, which results in complementary constraints with respect to B0 de-

cays. Finally, the narrow width approximation, used in theoretical calculations, is

fully applicable in the Λ0
b case, which has ΓΛ0

b
∼ 2.5 · 10−6 eV. This is not the case

for B0→ K∗0µ+µ− decays because the contribution from the non-resonant channel

B0→ Kπµ+µ− is unconstrained.

The theory of Λ0
b → Λµ+µ− decays was widely investigated both in the context

of the SM and in various BSM scenarios [97, 98, 99, 100, 101, 102, 103, 104, 105,

106, 107]. All authors start from the effective Hamiltonian outlined in Sec. 1.5.1.

However, form factors, describing hadronic physics are not as well-developed as

for the meson case because there are fewer experimental constraints, which leads

to a relatively large spread in predicted branching fractions. For these reasons an

interesting quantity to study is the differential branching fraction as a function of

q2. This still suffers from the limited knowledge of form factors but, as different

approaches to form factors calculations are applicable in different q2 regions, it

allows a more meaningful comparison with theory.

Experimentally, the Λ0
b → Λµ+µ− decay was observed for the first time in 2011

by the CDF collaboration [108] and later updated in preliminary form using their

full statistics [109]. The latter measurement yields B(Λ0
b → Λµ+µ−) = [1.95 ±

0.34(stat)±0.61(syst)]×10−6 and the signal was observed only in the q2 region above

the square of the ψ(2S) mass. Recently, the decay was also observed at LHCb [110]

with a yield of 78± 12 signal events using 1 fb−1 of integrated luminosity collected

in 2011. The signal was also found only in the high q2 region, above m2
ψ(2S). The

LHCb result for the branching fraction relative to the J/ψΛ decay, which is used as

a normalisation channel, is

B(Λ0
b → Λµ+µ−)

B(Λ0
b → J/ψΛ)

= [1.54± 0.30 (stat) ± 0.20 (syst) ± 0.02 (norm)]× 10−3

and for the absolute branching fraction,

B(Λ0
b → Λµ+µ−) = [0.96± 0.16 (stat) ± 0.13 (syst) ± 0.21 (norm)]× 10−6.
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This chapter describes the measurement of the differential branching fraction of the

Λ0
b → Λµ+µ− decay using 3 fb−1 of pp collisions collected by the LHCb experiment

in 2011 and 2012 [1].

3.1 Analysis strategy and q2 regions

A typical q2 spectrum of b → s`+`− decays was shown in Fig. 1.8. This is charac-

terised by the presence of the photon pole at low q2 and the narrow peaks of the

J/ψ and ψ(2S) resonances at intermediate values of q2. In the analysis, Λ0
b → J/ψΛ

decays, in which the J/ψ decays into two muons and therefore has the same final

state as the signal, are used as the normalisation channel. The rare and normal-

isation channels are naturally distinguished by the q2 intervals in which they are

reconstructed. The Λ decay mode into a pion and a proton, Λ→ pπ, is always used

to reconstruct the decays. The intervals in which the rare channel is studied are:

• 0.1 < q2 < 8 GeV2/c4, where the signal is unobserved and the selection is opti-

mised to observe it. The upper bound of this interval is chosen to be sufficiently

far from the J/ψ radiative tail at low masses and reduce its contamination into

the rare sample;

• 11 < q2 < 12.5 GeV2/c4, between two charmonium resonances, and

• q2 > 15 GeV2/c4, above ψ(2S).

The first interval, below the J/ψ resonance, is referred to as “low-q2” region, while

the two intervals above the J/ψ resonance (q2 > 11 GeV2/c4) are referred to as

“high-q2” regions. These regions are then sub-divided into smaller intervals, as the

available statistics allows, which results in ∼ 2 GeV2/c4 wide bins. The binning used

is the following:

[0.1, 2.0, 4.0, 6.0, 8.0], J/ψ , [11.0, 12.5], ψ(2S), [15.0, 16.0, 18.0, 20.0]. (3.1)
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In addition the result is also provided in two integrated regions:

• 1.1 – 6.0 GeV2/c4: this interval is theoretically favoured to observe new physics

effects since it is far from the photon pole, which dominates at low q2 values,

reducing the sensitivity to new physics contributions. The lower bound of

this interval it chosen to exclude the possible contribution from from the φ

resonance, which appears at ∼ 1 GeV2/c4. The upper bound of the interval

is chosen to exclude completely a small contribution from the J/ψ resonance

that leaks below 8 GeV2/c4.

• 15.0 – 20.0 GeV2/c4: this interval is the one that is expected to contain most

of the rare decays and it is used as a natural cross check that the analysis is

stable when performed in smaller bins.

3.2 Candidate types

This analysis deals with Λ baryons, which have a lifetime of (2.632± 0.020)× 10−10 s [2].

These are considered long-lived particles in particle physics terms and can travel sev-

eral metres into the detector generating well distinguished secondary vertices. In

LHCb, Λ baryons can be reconstructed from tracks either with or without hits in

the VeLo (see Sec. 2.4) and therefore two candidates types are defined as follows:

• Downstream candidates: built from tracks without hits in the VeLo, “down-

stream tracks”, also denoted as “DD”.

• Long candidates: built from tracks which also have hits in the VeLo, “long

tracks”. These candidates, also denoted as “LL”, are characterised by a better

momentum resolution than the downstream ones thanks to the longer lever

arm available to their tracks.

Figure 3.1 shows the two types of candidates used in the analysis, together with

other possible track types in LHCb, which are not used in this analysis. As the long
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and downstream candidate categories are characterised by different resolutions and

kinematic properties, the analysis is performed separately on the two samples and

the results are then combined.

Figure 3.1: Representation of possible track types in LHCb. Candidates built from
“long” and “downstream” tracks are used in this analysis [71].

3.3 Simulation

Samples of simulated events are needed in order to train a multivariate classifier, cal-

culate the selection efficiency and study possible backgrounds; in particular for this

analysis samples of ∼ 2·106 Λ0
b → J/ψΛ and ∼ 5·106 Λ0

b → Λµ+µ− simulated decays

are used. Samples of simulated B0 → J/ψK0
S , B0 → K0

Sµ
+µ− and B+ → µ+µ−K∗+

decays are also used to study their contribution to the background. The events

are generated using Pythia8; hadronic particles are decayed using EvtGen and

Geant4 is used to simulate the interaction of final state particles with the detector.

Simulated events are then reconstructed by the same reconstruction software that is

used for real data. The L0 hardware trigger is emulated in the simulation, while for

the software stage, HLT, the same code can be used as for data. Events are simulated

using both 2011 and 2012 beam and detector conditions, in the same proportion as

in recorded data. While the simulation gives a generally good description of data,

some discrepancies remain. It is important that the simulation gives an accurate

description of the data, in particular for the extraction of efficiencies. The next
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Figure 3.2: The q2 spectrum of Λ0
b → Λµ+µ− simulated events according to the

phase space of the decay (left) and re-weighted using the decay amplitudes (right).

sections therefore describe corrections applied to the simulation in order to provide

a better description of data. In Appendix A data distributions are compared with

simulated ones for variables relevant to this analysis.

3.3.1 Decay Model

Little is known about the decay structure of Λ0
b decays and therefore the simulation

software generates events according to the phase space given by the available kine-

matics. To obtain a more realistic q2 dependence, the simulation is weighted using

decay amplitudes based on the predictions in Ref. [111]. Equations in this paper are

for the case of unpolarised Λ0
b production and for this analysis they are extended to

include polarisation. Details about the models used are given in Appendix D.1. The

value of the Λ0
b production polarisation, Pb, used in the calculations is Pb = 0.06 as

measured by LHCb [112]. Figure 3.2 shows the phase space q2 distribution and the

one obtained by re-weighting the events. The latter can be qualitatively compared

to the q2 spectrum of a generic b→ s`+`− decay shown in Fig. 1.8. For the normal-

isation mode, the decay model used is described in Appendix D.3, with amplitude

magnitudes and production polarisation taken from the measurements in Ref. [112].

Phases are not yet measured and are therefore set to zero.
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3.3.2 Kinematic re-weighting

Small data-simulation differences are found in the kinematic properties of the mother

particle, Λ0
b , which also affect the final state particles. The simulation is re-weighted

by comparing the momentum and transverse momentum of Λ0
b baryons in real and

simulated Λ0
b → J/ψΛ candidates that satisfy the pre-selection requirements (see

Sec. 3.4). To do this a high purity data sample is obtained by selecting a nar-

row invariant mass interval around the J/ψ and Λ0
b peaks; this contains about

4 · 105 candidates. The Λ0
b invariant mass distribution is then fitted to estimate

the number of background decays under the peak. Finally, the background fraction,

fb = B/(S +B), is used to subtract statistically the background from the kinemat-

ical distributions as described by the equation:

S(p, pT) = T (p, pT)− fb ·B(p, pT), (3.2)

where S(p, pT) is the distribution of pure signal candidates, which we want to obtain,

T (p, pT) is the total distribution of signal plus background, namely the distribution

of all events in the signal interval, 5605 < m(pπµ+µ−) < 5635 MeV/c2, and B(p, pT)

is the pure background distribution obtained using candidates from the upper side-

band, m(pπµ+µ−) > 5800 MeV/c2.

After the signal distributions have been obtained from data, they are compared

with Λ0
b → J/ψΛ simulated events and a weight, w(pΛ0

b
, pTΛ0

b
) is defined by taking

the ratio of the two dimensional (p, pT) distributions. The result is shown in Fig. 3.3,

while Appendix A reports distributions of sideband subtracted data in the signal and

sideband regions together with weighted and unweighted simulated events. In these

plots the momentum and pT distributions of Λ0
b baryons match by construction but

the re-weighting also improves the agreement between the kinematical distributions

of all final particles. Small differences remain due to the finite binning used for the

weights calculation. Quality variables, such as the χ2 of tracks and vertices, show

little dependence on the kinematics and are relatively unaffected by the weighting

procedure.
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Figure 3.3: Weights used for the kinematical re-weighting as a function of the mo-
mentum and transverse momentum of Λ0

b .

3.3.3 Event type

There is not complete agreement on the fraction of Λ baryons reconstructed from

long tracks and downstream tracks in data and simulation. In data, ∼ 70% of the

Λ0
b → J/ψΛ candidates passing the full selection are reconstructed from downstream

tracks, compared with ∼ 75% in the simulation. The fraction of downstream and

long tracks also varies as a function of q2 and the biggest differences are found at

low values of q2. In order to deal with these differences all efficiencies are obtained

separately for downstream and long candidates and the analysis is carried out sep-

arately for the two categories; results are then combined to ensure the best use of

the available information. It is therefore not necessary to correct the simulation to

reproduce the correct fraction of candidates in each category.
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3.4 Selection

This section describes the requirements applied to reconstruct Λ0
b → Λµ+µ− and

Λ0
b → J/ψΛ candidates. The selection procedure is divided into two steps: a

pre-selection, where cuts are applied in order to be able to work with manage-

able datasets and a multivariate analysis (MVA) which combines information from

several variables. As a first step good quality tracks are selected by imposing re-

quirements on their basic kinematic properties, such as the pT of the final particles,

and quality requirements, such as the track χ2. The selection then forms a dimuon

candidate from two oppositely changed muons. In events containing a dimuon can-

didate, two oppositely charged tracks are combined and retained as a Λ candidate

if they form a good quality vertex which is well separated from all primary ver-

tices. Finally, the dimuon and Λ candidates are combined to form Λ0
b baryons with

requirements placed on the properties of this combination.

3.4.1 Pre-selection

The full list of pre-selection cuts is reported in Tab. 3.1. In the table χ2
IP is defined

as the projected distance from a vertex divided by its uncertainty, for example the

χ2
IP(primary) > n requirement on Λ0

b means that the Λ0
b vertex must be at least

√
n standard deviations away from the primary vertex. Another quantity, found

Figure 3.4: Graphical representation of the DIRA (left) and χ2
IP (right) variables.
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Table 3.1: Summary of the pre-selection requirements. Where two values are given,
the main one applies to long candidates and the one in parenthesis to downstream
candidates.

Particle Requirement

Λ0
b

4.6 < m(pπµµ) < 7.0 GeV/c2

DIRA > 0.9999
χ2

IP < 16.0
χ2

FD > 121.0
χ2
vtx/ndf < 8.0

Λ
χ2
vtx/ndf < 30.0(25.0)
Decay time > 2 ps

|m(pπ)−mPDG
Λ | < 35(64) GeV/c

p/π
p > 2 GeV/c

pT > 250 MeV/c
χ2

IP > 9(4)

p (only long cand.)
hasRICH

PIDp > −5

µ

isMuon

χ2
trk/ndf < 5

GhostProb < 0.4
PIDµ > −3
χ2

IP > 9.0

Dimuon
χ2
vtx/ndf < 12.0

|m(µµ)−mPDG
J/ψ | < 100 MeV/c2 (J/ψΛ only)

to be particularly powerful at removing combinatorial background, is a pointing

variable called DIRA defined as the cosine of the angle between the direction of

a particle’s momentum and the flight direction from its mother vertex. Requiring

a DIRA close to unity corresponds to the selection of particles with well-defined

origin vertices. Figure 3.4 shows graphical representations of the χ2
IP and DIRA

variables. A large mass window around the Λ0
b peak is used to allow a fit to the

sideband to be performed and to use sideband candidates to train a multivariate

classifier. Rare candidates are selected by the q2 region requirements described in

Sec. 3.1, while resonant candidates are further constrained to have dimuon invariant

masses in a 100 MeV/c2 interval around the known J/ψ mass [2]. The variable

χ2
FD represents the flight distance of a particle from its origin vertex divided by the

corresponding uncertainty. The χ2
trk/ndf and χ2

vtx/ndf quantities are the χ2 from the

fit to tracks and vertices, which are used to quantify their quality. The GhostProb
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quantity describes the probability of a track being fake. By construction, cutting at

a value of k, removes (1−k)·100% of fake tracks. The hasRich, hasCalo and isMuon

variables are binary indicators that the information from the RICH, calorimeter and

muon detectors is available for the track. Loose PID requirements on the proton are

also applied in the pre-selection. Details about PID quality estimators are given in

Sec. 2.8.

3.4.2 Neural Networks

The final selection is performed using a neural network classifier based on the Neu-

roBayes package [88, 89]. The architecture of the neural network comprises one

hidden layer with Nvar nodes, where Nvar is the number of input variables, and it

uses symmetric sigmoid activation functions1. The input to the network consists

of 14 variables carrying information about the kinematics of the decay, the quality

of tracks and vertices and the PID of the muons. The list of the 10 most signifi-

cant inputs is reported in Tab. 3.2, together with information about the importance

of each input. Appendix A reports the distributions of the variables used in data

and simulation. Variables related to Λ and its daughters are considered as differ-

ent inputs depending on the candidate type (long or downstream). This effectively

corresponds to making a separate training for the two categories.

The neural network is trained using representative samples of signal and background.

A sample of simulated Λ0
b → Λµ+µ− candidates is used as a proxy for the signal,

while for the background a representative sample is given by candidates in the upper

m(pπµµ) invariant mass sideband. Only the upper sideband, m(pπµµ) > 6 GeV/c2,

is used since it contains only combinatorial background, while the lower sideband

may contain partially-reconstructed and misreconstructed candidates. In the q2

spectrum of background samples the J/ψ and ψ(2S) peaks are still present indicating

that charmonium resonances are often combined with other random tracks. These

1The options used to run the package are the following: Bayesian regularisation, entropy loss
function, diagonal shape and 100 training iterations. For details about these options see Ref. [89]
and the NeuroBayes manual [113].
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candidates do not give a good description of purely combinatorial background and,

in order to avoid biases, they are removed from the training sample by rejecting

candidates in a 100 MeV/c2 interval around the nominal J/ψ and ψ(2S) masses [2].

A total of 3 · 104 events is used for the training from each sample. This corresponds

to approximately ' 50% of the available sideband data and ' 20% of the simulated

sample. The full simulated sample is not used in the training as the same sample

will also be used to study efficiencies. For reproducibility the events are sampled

uniformly.

The single most important variable used for downstream candidates is the transverse

momentum of Λ, which allows random combinations of tracks to be rejected as

these have preferentially low pT. In contrast, for long candidates the most powerful

variable is χ2
DTF, the χ2 from a kinematic fit (see Sec. 2.10) that constrains the decay

products of the Λ0
b , the Λ and the dimuon, to originate from their respective vertices.

Other variables that contribute significantly are the χ2
IP of Λ0

b , Λ and muons, the

separation between the Λ0
b and Λ vertices and, finally, the muon PID.

Figure 3.5 shows distributions of neural network output for the signal and back-

ground samples and purity, P = Nsig/Nbkg, as a function of the neural network

output. To check for potential overtraining, the distributions from test samples are

also overlaid. These are found to follow the same slopes giving no significant evi-

dence of overtraining. In general it can be concluded that the neural network is able

to separate signal from background and the training converged properly.

If too much information is given as inputs, the classifier can become able to infer

the 4-body invariant mass of the candidates from its inputs. This can generate

fake peaks and it is therefore important to check for correlations between the 4-

body invariant mass and the neural network output. Figure 3.6 reports the average

neural network output as a function of the 4-body m(pπµµ) invariant mass for data

and simulation. The distributions are flat indicating that no significant correlation

is present.



63 CHAPTER 3. DIFFERENTIAL BRANCHING FRACTION OF Λ0
b → Λµ+µ−

Table 3.2: Summary of the 10 most significant inputs to the neural network in order
of importance. Column “adds” gives the significance added by a given input when it
is added to the list of those ranked above. Column “only this” provides the power of
a given input alone and “loss” shows how much information is lost when removing
only a given input. More details are given in Appendix B.

Input adds only this loss
Λ DD pT 143.11 143.11 29.20
χ2

DTF 77.81 134.00 51.10
min(χ2

IP µ) 61.31 113.62 29.76
χ2

IP Λ0
b 52.94 113.23 40.98

χ2
IP πLL 20.29 60.72 12.82

min(PID µ) 17.91 59.11 13.44
τΛ0

b
16.24 35.36 11.24

Λ0
b DIRA 12.28 73.96 9.98

Λ DD flight distance 9.47 86.75 11.24
χ2

IP Λ DD 10.58 59.84 8.88
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Figure 3.5: (left) Neural network output distribution for training (points) and test
(stripes) samples, for signal (blue) and background (red) candidates. (right) Purity
as a function of neural network output.
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3.4.3 MVA optimisation

In the high-q2 region, where the signal is already observed, the requirement on

the neural network output is chosen to maximise the significance, NS/
√
NS +NB,

where NS and NB are the numbers of expected signal and background candidates

respectively. NS is derived from simulation but, as an arbitrary number of events can

be generated, it needs to be normalised. To do this, the invariant mass distribution

of real Λ0
b → J/ψΛ candidates is fit after pre-selection (including all requirements

except the MVA selection). This is possible as the peak of the resonant channel

is already clearly visible before the MVA requirement. The resonant yield is then

scaled by the ratio of the Λ0
b → Λµ+µ− and Λ0

b → J/ψΛ branching fractions as

measured by LHCb using 2011 data [110],

B(Λ0
b → Λµ+µ−)/B(Λ0

b → J/ψΛ) = 1.54× 10−3, (3.3)

and by the J/ψ → µ+µ− branching fraction, i.e.

NS = NJ/ψ ·
B(Λ0

b → Λµ+µ−)

B(Λ0
b → J/ψΛ) · B(J/ψ → µ+µ−)

. (3.4)

The number of expected background candidates is derived by fitting the data side-

band with an exponential function and extrapolating into the signal region.

In the low-q2 region, where the signal is unobserved, the so called “Punzi figure-

of-merit”, NS/(nσ/2 +
√
NB), is maximised [114]. This figure-of-merit is considered

to be optimal for discovery and the parameter nσ corresponds to the number of

expected standard deviations of significance, in this analysis nσ = 3 is used. More-

over, the Punzi shape does not depend on the relative normalisation between signal

and background, which is important since the signal is still unobserved at low-q2

and the existing predictions vary significantly for this region. The dependence of the

figure-of-merit for both q2 regions is shown in Fig. 3.7, and curves of signal efficiency

versus background rejection are shown in Fig. 3.8.
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Figure 3.7: Dependence of the figure-of-merits on the neural network output require-
ment for the low-q2 (left) and high-q2 (right) regions. The vertical lines correspond
to the chosen cuts.

For the final selection the neural network output is required to be larger than 0.76

for candidates in the high-q2 region and 0.97 for the low-q2 ones. Using these re-

quirements the neural network retains approximately 97% (82%) of long candidates

and 96% (66%) of downstream candidates for the high- (low-) q2 selection, with

respect to the pre-selected samples. After the full selection has been applied ∼ 0.5%

of the events contain multiple candidates. In these cases candidates are rejected

randomly (seeding in a reproducible way) such that only one is retained per event.

To normalise the branching ratio measurement, Λ0
b → J/ψΛ candidates are selected

using both, low- and high-q2, MVA requirements to normalise respectively low and

high-q2 intervals.

3.4.4 Trigger

Specific trigger lines are selected, corresponding to events triggered by the muons

from which the reconstructed candidate is formed. This is denoted as Trigger On

Signal (TOS). The trigger lines used in the analysis are listed in Tab. 3.3. The

logical or of the lines on the same trigger level is required and the logical and of

those on different levels. The L0Muon trigger requires hits in the muon detector and

triggers if a muon with pT > 1.5 GeV/c is identified. The L0Dimuon trigger imposes

the same requirement on the sum of the transverse momenta of two tracks. The
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Figure 3.8: Receiver operating characteristic (ROC) curves for low-q2 (black) and
high-q2 (red). They show the signal efficiency versus the background rejection. The
optimal points on these curves are the closest ones to (1,1).

Hlt1TrackAllL0 trigger performs a partial reconstruction of the events and applies

basic requirements on the values of the IP, χ2 and pT of tracks; it triggers if the

L0 decision is confirmed. The Hlt1TrackMuon trigger applies looser requirements

but in addition requires the isMuon variable (see Sec. 2.8) to be true to limit the

yield. Finally, at the Hlt2 level, a complete reconstruction is done and a multivariate

analysis is used to identify decay structures. One of the main variables used at this

stage is the distance of closest approach, which is required to be less than 0.2 mm

to form a 2-body object.

Table 3.3: Summary of the trigger lines used to select events at various levels. The
trigger is always required to be due to the tracks of the candidate itself.

Trigger Level Lines

L0
L0Muon

L0DiMuon

HLT1
Hlt1TrackAllL0

Hlt1TrackMuon

HLT2

Hlt2Topo[2-4]BodyBBDT

Hlt2TopoMu[2-4]BodyBBDT

Hlt2SingleMuon

Hlt2DiMuonDetached
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3.4.5 Background from specific decays

Candidates from other decays can be incorrectly reconstructed as the decays of

interest if some of their particles escape detection or are mis-identified. A survey

of possible backgrounds concluded that the only physics background that needs to

be taken into account explicitly comes from misreconstructed decays of B0 to K0
S

with two muons in the final state, where the K0
S is incorrectly reconstructed as a Λ

due to a p→ π identity swap. The lack of background from other decays is mainly

due to the distinctive topology of the Λ decay, which is long-lived and decays at a

displaced vertex.

Simulated samples are used to study the effect of misreconstructed B0 → J/ψK0
S and

B0 → K0
Sµ

+µ− decays. In data, the B0 → J/ψK0
S contribution is clearly visible in

the mass distribution of the resonant channel. This background is not suppressed by

the application of specific cuts in this analysis because its mass shape is sufficiently

distinct from the Λ0
b signal and its contribution can be reliably modelled in the mass

fits (see Sec. 3.5.1). An approximate estimate of the K0
S background level for the

rare mode is obtained using the yield in the resonant channel rescaled by the ratio

of the known rare and resonant branching fractions. Details are given in Sec. 3.5.1

and predicted numbers of candidates are reported in Tab. 3.4. This contribution,

although essentially negligible, is considered in the fit. The possible contamination

due to B+ → µ+µ−K∗+ decays, where the K∗+ → K0
Sπ, is also investigated using a

dedicated simulated sample and found to be negligible.

Finally, Λ0
b → J/ψΛ events in which a photon is radiated from one of the muons in

the J/ψ decay, may be reconstructed with the wrong q2 value, avoid the J/ψ veto

and hence be reconstructed in the rare channel sample. By analysing simulated

events it was found that such radiative candidates only contribute in the q2 interval

6 < q2 < 8 GeV2/c4. Of the Λ0
b → J/ψΛ candidates, 1.3% are reconstructed in

this q2 interval but only 0.06% fall into the 4-body invariant mass window used

for the fits. This corresponds to ∼ 6 candidates, 4 of which are in the downstream

category. Given the low yield and that these candidates do not peak under the signal
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Figure 3.9: Invariant mass distributions of simulated B+ → µ+µ−K∗+ (left) and
Λ0
b → J/ψ Λ (right) candidates passing the full Λµµ selection. Only Λ0

b → J/ψ Λ
candidates reconstructed in q2 < 8 GeV2/c4 are selected. Distributions are shown
in the invariant mass range relevant for the analysis (see Sec. 3.5.1).

but show a decaying distribution at the edge of the fit mass window, this background

is considered as part of the combinatorial background. Figure 3.9 shows the 4-body

invariant mass distribution of simulated Λ0
b → J/ψΛ events falling into the rare q2

region and the distribution of simulated B+ → µ+µ−K∗+ events misreconstructed

as Λ0
b → J/ψΛ decays.

3.5 Yield extraction

Extended unbinned maximum likelihood fits are used to extract the yields of the

rare and resonant channels. The likelihood has the form:

L = e−(NS+NC+NB) × 1

N !

N∏
i=1

[NSPS(mi) +NCPC(mi) +NBPB(mi)] (3.5)

where NS, NC and NB are respectively the numbers of signal, combinatorial and K0
S

background candidates and the Pi(mi) are the corresponding probability density

functions (PDF). The fit variable is the 4-body m(pπµµ) invariant mass obtained

from a kinematical fit of the full decay chain in which each particle is constrained

to point to its assigned origin vertex and the invariant mass of the pπ system is

constrained to be equal to the world average of the Λ baryon mass [2]. In the
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resonant case a further constraint is imposed, namely that the dimuon mass is equal

to the known J/ψ mass. This method allows the mass resolution to be improved

giving better defined peaks and therefore a more stable fit. For brevity, in the

following these variables are simply referred to as “invariant mass”.

3.5.1 Fit description

The fit is performed via the following steps:

• simulated distributions are fitted to extract initial parameters values;

• the resonant data sample is fitted;

• the rare sample is fitted with the values of some parameters fixed to those

obtained in the previous cases.

In the first step, simulated Λ0
b → J/ψΛ distributions are fitted using the signal PDF

alone. This is done separately for downstream and long candidates. Figure 3.10

shows distributions of candidates selected in the resonant sample with the fit function

overlaid. The signal is described as the sum of two Crystal Ball functions (CB) with

common mean (m0) and tail slope (n). This is also known as a Double Crystal

Ball (DCB) function. A single Crystal Ball [115] is a probability density function

commonly used to model processes involving energy loss. In particular it is used to

describe resonances that have radiative tails. This function combines a Gaussian

core with a power-law tail of slope n that takes effect beyond some threshold α away

from the peak value. This asymmetric function has the form

C(x;α, n, x̄, σ) = N ·

exp
(
− (x−x̄)2

2σ

)
if (x−x̄)

σ
> α,

A
(
B − (x−x̄)

σ

)−n
if (x−x̄)

σ
< α,

(3.6)
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Figure 3.10: Invariant mass distribution of Λ0
b → J/ψΛ downstream (left) and long

(right) candidates. The points show simulated data and the blue line is the signal
fit function.

where for normalisation and continuity

A =
(

c
|α|

)
)n · exp(−α2

2
) and B = n

|α| − |α|. (3.7)

The full PDF for the resonant signal channel, PS(m), is therefore:

PS(m;m0, α1, α2, f, n) = f · CB(m;m0, σ1, α1, n) + (1− f) · CB(m;m0, σ2, α2, n),

where f is the relative fraction of candidates falling into the first CB function.

In a second step, the fit to the resonant channel data sample is performed. For this

fit the tail slope parameter, n, which is highly correlated with α1 and α2, is fixed

to the value found in the fit to simulated candidates. In this fit two background

components are modelled: the combinatorial background, parameterised with an

exponential and the background from B0 → J/ψK0
S decays. The shape used to

describe the K0
S background is obtained from a B0 → J/ψK0

S simulated sample that

has satisfied the full selection. The invariant mass distribution of these candidates

is fitted with a DCB function, which is then used to model the K0
S background

in the Λ0
b → J/ψΛ fit. The fit to the simulated B0 → J/ψK0

S events is reported

in Fig. 3.11. When the K0
S shape is introduced in the fit to the data, all of its

parameters are fixed. This is particularly important when fitting long candidates,

because the contribution from the K0
S peak is smaller and therefore the values of
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Figure 3.11: Invariant mass distribution of simulated B0 → J/ψK0
S events passing

the full Λµµ selection with the fit function, a Double Crystal Ball, overlaid.

the parameters would not be adequately constrained by data. To take into account

possible differences between simulation and data in the definition of the absolute

mass scale, an offset is introduced by adding a shift to the central value of the

DCB, m0 → m0 + m′, where m′ is left free to vary in the fit. In summary, the free

parameters in the fit to the resonant Λ0
b → J/ψΛ sample are the yields of the signal

and the combinatorial and K0
S backgrounds, the slope of the exponential and the

horizontal shift of the K0
S shape. Note that all the parameters of the PDFs used to

fit the long and downstream samples are independent.

Finally, the fit to the rare Λ0
b → Λµ+µ− data sample is carried out. In this case the

fits to the long and downstream samples are performed simultaneously to obtain a

more stable convergence. For this fit the signal is modelled with the same shape

used in the resonant case as there is no physical reason why they should be different.

This method is also useful to reduce systematic uncertainties as the result will be

given as a ratio between rare and resonant quantities. However, the small candidate

yields expected in the rare samples do not allow many parameters to be reliably

extracted from the fits. Therefore, all parameters of the signal shape are fixed to

the ones derived from the fit to the J/ψΛ channel. However, to account for possible

differences, arising from a different resolution in the various q2 regions, a scale factor

is applied to the widths of the two Gaussian cores of the signal DCB: σ1 → c(q2) ·σ1
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and σ2 → c(q2) · σ2, where the same scale factor, c, is applied to both widths but it

is allowed to vary for each q2 region. These factors are fixed to values obtained by

fitting rare Λ0
b → Λµ+µ− simulated events in each q2 bin and comparing the widths

with those obtained from the fit to the resonant simulated sample, namely

c = σMC
µ+µ−/σ

MC
J/ψ . (3.8)

These values are found to be ∼ 1.9 for downstream candidates and ∼ 2.3 for long

candidates, corresponding to the fact that in the resonant case a further constraint

on the dimuon mass is used, which improves the resolution by a factor of ∼ 2.

The dependence of the scaling factor on q2 is found to be small. For the fits to

the long and downstream samples the parameters are always separately fixed to the

corresponding J/ψΛ fits; in this analysis shape parameters are never shared between

the two candidate categories.

The modelled background components are, also in the rare case, the combinatorial

background, described with an exponential function, and the K0
S background. The

slope of the background is visibly different depending on the q2 interval. This is

partly due to the fact that at high q2 the combinatorial background changes slope

because of a kinematical limit at low 4-body masses imposed by the q2 require-

ments. The exponential slopes are therefore left as independent parameters in each

q2 interval. The background component from B0 → K0
Sµ

+µ− decays is modelled

using the same shapes used for the resonant channel. However, in this case the mass

offset, m′, is fixed to that found for the resonant channel. The expected level of

misreconstructed B0 → K0
Sµ

+µ− candidates is small and does not allow its yield

to be determined reliably. Therefore, this is fixed to the yield of B0 → J/ψK0
S

decays rescaled by the expected ratio of branching fractions between the resonant

and rare channels. The q2 distribution of B0 → K0
Sµ

+µ− simulated events is used

to predict the yield as a function of q2. Table 3.4 reports the number of predicted
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Table 3.4: Predicted numbers ofB0 → K0
Sµ

+µ− events in each considered q2 interval.

q2 [ GeV2/c4] Downstream Long
0.1 – 2.0 0.9 0.1
2.0 – 4.0 0.9 0.1
4.0 – 6.0 0.8 0.1
6.0 – 8.0 1.1 0.1

11.0 – 12.5 1.9 0.2
15.0 – 16.0 1.1 0.1
16.0 – 18.0 2.0 0.2
18.0 – 20.0 1.1 0.1
1.1 – 6.0 2.1 0.1

15.0 – 20.0 4.2 0.5

B0 → K0
Sµ

+µ− candidates in each q2 interval obtained with the following formula:

NK0
Sµ

+µ−(q2) = NJ/ψK0
S

B(B0 → K0
Sµ

+µ−)

B(B0 → K0
SJ/ψ )

· 1

εrel
·B(J/ψ → µ+µ−)

N(q2)MC

N tot
MC

(3.9)

where N(q2)MC is the number of simulated rare candidates falling in a q2 interval af-

ter full selection and N tot
MC is the total number of simulated events and εrel = εµµ/εJ/ψ

is the relative selection efficiency between the two channels.

As the fit to the rare sample is performed simultaneously on long and downstream

candidates, their two yields are not free to vary separately but are parameterised as

a function of the common branching fraction using the following formula:

N(Λµ+µ−)k =

[
dB(Λµ+µ−)/dq2

B(J/ψΛ)

]
·N(J/ψΛ)k · εrel

k ·
∆q2

B(J/ψ → µ+µ−)
, (3.10)

where k =(LL,DD), ∆q2 is the width of the q2 interval and the only free parameter

is the ratio of the branching fraction of the rare decay to that of the J/ψ channel,

Brel. The value of the branching fraction of the J/ψ → µ+µ− decay is taken to

be (5.93± 0.06) · 10−2 [2] and εrel corresponds to the relative efficiencies of the rare

and resonant channels obtained in Sec. 3.6. In this formula the efficiencies and the

normalisation yield appear as constants, namely N(Λµ+µ−)k = Ck · Brel.
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Figure 3.12: Invariant mass distributions of Λ0
b → J/ψΛ downstream (top) and long

(middle) candidates selected with high q2 requirements. Bottom plots are the same
as the upper ones but shown in logarithmic scale. Black points show data. The
blue solid line represents the total fit function, the black dashed line the signal,
the red dashed line the combinatorial background and the green dashed line the
B0 → K0

Sµ
+µ− background.
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Table 3.5: Number of Λ0
b→ J/ψΛ candidates in the downstream and long categories

found using the for low- and high-q2 requirements; uncertainties are statistical only.

Selection Long Downstream
high-q2 4313± 70 11 497± 123
low-q2 3363± 59 7225± 89

3.5.2 Fit results

Figures 3.12 and 3.13 show fitted invariant mass distributions for the normalisation

channel, selected with the high-q2 and low-q2 requirements respectively. Table 3.5

reports the measured yields of Λ0
b → J/ψΛ candidates found using the low- and

high-q2 selections. Values for the signal shape parameters are given in Fig. 3.12.

Fits to the rare Λ0
b → Λµ+µ− samples are shown in Fig. 3.14 for the integrated

15 < q2 < 20 and 1.1 < q2 < 6.0 GeV2/c4 q2 intervals, while fitted invariant mass

distributions for each individual q2 interval considered are given in Figs. 3.15 and 3.16

for downstream and long candidates respectively. The yields of rare candidates

obtained from the fit are listed in Tab. 3.6 together with their significances. Most

candidates are found in the downstream sample, which comprises ∼ 80% of the

total yield. Note that, since the fit is simultaneous to the two candidate categories,

their yields are correlated via the branching ratio. The statistical significance of the

observed signal yields is evaluated as the change in the logarithm of the likelihood

function2,
√

2∆ lnL, when the signal component is excluded from the fit, relative to

the nominal fit in which it is present.

2This is an approximation valid in the limit of high statistics.
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Table 3.6: Signal yields, NS, obtained from the invariant mass fit to Λ0
b→ Λµ+µ−

candidates in each q2 interval together with their statistical significances. The 8 – 11
and 12.5 – 15.0 GeV2/c4 q2 intervals are excluded from the study as they are domi-
nated by resonant decays via charmonium resonances (see Sec. 3.1).

q2 [ GeV2/c4] DD LL Tot. yield Significance
0.1 – 2.0 6.9± 2.2 9.1± 3.0 16.0± 5.3 4.4
2.0 – 4.0 1.8± 1.7 3.0± 2.8 4.8± 4.7 1.2
4.0 – 6.0 0.4± 0.9 0.6± 1.4 0.9± 2.3 0.5
6.0 – 8.0 4.3± 2.0 7.2± 3.3 11.4± 5.3 2.7

11.0 – 12.5 14.6± 2.9 42.8± 8.5 60± 12 6.5
15.0 – 16.0 13.5± 2.2 43.5± 7.2 57± 9 8.7
16.0 – 18.0 28.6± 3.3 88.8± 10.1 118± 13 13
18.0 – 20.0 22.4± 2.6 78.0± 8.9 100± 11 14
1.1 – 6.0 3.6± 2.4 5.7± 3.8 9.4± 6.3 1.7

15.0 – 20.0 64.6± 4.7 209.6± 15.3 276± 20 21
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long (right) candidates selected with low-q2 requirements.



77 CHAPTER 3. DIFFERENTIAL BRANCHING FRACTION OF Λ0
b → Λµ+µ−

]2c) [MeV/µµΛM(
5400 5600 5800 6000

C
an

di
da

te
s 

pe
r 

30
 M

eV
/c

2

5

10

15

20

25

30 LHCb

]2c) [MeV/µµΛM(
5400 5600 5800 6000

C
an

di
da

te
s 

pe
r 

30
 M

eV
/c

2

20

40
60

80
100

120
140
160

180
200

LHCb

Figure 3.14: Invariant mass distributions of Λ0
b → Λµ+µ− candidates in the inte-

grated 0.1− 6.0 (top) and 15− 20 GeV2/c4 (bottom) q2 intervals. Points show data
combining long and downstream candidates together. The blue solid line represents
the total fit function and the dashed red line the combinatorial background.



3.5. YIELD EXTRACTION 78

5800
M(Λµµ) [MeV/c2]

5400 5600 6000
0

2

4

6

8

10

12

14

16

18

5800
M(Λµµ) [MeV/c2]

5400 5600 6000
0

2

4

6

8

10

12

5800
M(Λµµ) [MeV/c2]

5400 5600 6000
0

2

4

6

8

10

12

5800
M(Λµµ) [MeV/c2]

5400 5600 6000
0

2

4

6

8

10

12

14

16

C
an

di
da

te
s /

 ( 
24

 M
eV

/c
2  )

C
an

di
da

te
s /

 ( 
24

 M
eV

/c
2  )

C
an

di
da

te
s /

 ( 
24

 M
eV

/c
2  )

C
an

di
da

te
s /

 ( 
24

 M
eV

/c
2  )

[0,1.1] GeV2/c4 [1.1,2.0] GeV2/c4

[2.0,4.0] GeV2/c4 [4.0,6.0] GeV2/c4

5800
M(Λµµ) [MeV/c2]

5400 5600 6000
0

5

10

15

20

25

30

35

40

5800
M(Λµµ) [MeV/c2]

5400 5600 6000
0

5

10

15

20

25

30

35

5800
M(Λµµ) [MeV/c2]

5400 5600 6000
0

10

20

30

40

50

60

5800
M(Λµµ) [MeV/c2]

5400 5600 6000
0
5

10
15
20
25
30
35
40
45

C
an

di
da

te
s /

 ( 
24

 M
eV

/c
2  )

C
an

di
da

te
s /

 ( 
24

 M
eV

/c
2  )

C
an

di
da

te
s /

 ( 
24

 M
eV

/c
2  )

C
an

di
da

te
s /

 ( 
24

 M
eV

/c
2  )

[11.0,12.5] GeV2/c4 [15.0,16.0] GeV2/c4

[18.0,20.0] GeV2/c4[16.0,18.0] GeV2/c4

Figure 3.15: Invariant mass distributions of rare Λ0
b → Λµ+µ− downstream candi-

dates in the considered q2 intervals.
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Figure 3.16: Invariant mass distributions of rare Λ0
b → Λµ+µ− long candidates in

the considered q2 intervals.
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3.6 Efficiency

The selection efficiency is calculated for each decay according to the formula

εtot = εgeom · εdet|geom · εreco|det · εMVA|reco · εtrig|MVA (3.11)

In this expression the first term represents the geometric efficiency, i.e. the fraction

of events where the muons of the decay candidate are inside the LHCb acceptance.

The second term handles the possibility that the Λ either escapes the detector or

interacts with it and therefore cannot be reconstructed via its decay into pπ; this

term is referred to as “detection” efficiency. The third term carries information about

the reconstruction and pre-selection efficiencies, which are considered together given

that boundaries between them are arbitrary. The fourth part describes the efficiency

of the neural network for candidates that have passed the pre-selection criteria.

Finally, the last term handles the trigger efficiency for candidates which are accepted

by the full selection. Most of the efficiency components are evaluated using the

simulated samples described in Sec. 3.3. The efficiency of the PID requirement for

the proton (see Tab. 3.1) is derived separately using a data-driven method because

the simulation does not provide a good description of PID variables. Although

the analysis itself only depends on the relative efficiency, ε(Λ0
b → Λµ+µ−)/ε(Λ0

b →
J/ψΛ), representative values of the absolute efficiencies for each of the five terms in

Eq. 3.11 are given in the following sections for completeness.

3.6.1 Geometric acceptance

In order to save disk space and time the simulation only includes events in which

the final muons are inside the detector acceptance and therefore can be recon-

structed. This corresponds to a requirement for each of the muons to be in an

interval 10 < θ < 400 mrad, where θ is the angle between the muon momentum and

the beam line. The efficiency of this requirement is obtained by using a separate

simulated sample, where events are generated in the full 4π solid angle. The geo-
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metric efficiency varies between 18% at high-q2 and 20% at low-q2; Fig. 3.17 shows

the dependence of this efficiency as a function of q2.

3.6.2 Reconstruction and neural network efficiencies

The efficiency to reconstruct and select the decays is evaluated from simulated data.

The reconstruction efficiency is subdivided into “Detection” and “Reconstruction

and pre-selection” efficiencies. In fact, since the Λ is a long lived particle, there is

a non-negligible probability for it to interact with the detector or escape from it;

in these cases it cannot be detected as a proton and a pion. The reconstruction

efficiency includes the probability for the tracks to produce observable signatures

and to pass the pre-selection requirements. This component does not include the

efficiency of the PID cut that appears in Tab. 3.1, which is kept separate because

PID variables are not well described by the simulation. The detection efficiency

varies between 88% at low-q2 and 92% at high-q2 while the reconstruction efficiency

is almost flat in q2 at 6.6% for downstream candidates and 2.0% for long candidates.

The MVA selection efficiency is again evaluated from simulated samples and it is

observed to vary between 55% and 88% for downstream candidates and between 74%

and 96% for long candidates. Figure 3.17 shows the dependence of these efficiencies

as a function of q2. The sudden jump in MVA efficiency at ∼ 9 GeV/c2 is due to

the fact that a different figure-of-merit is used to optimise the MVA requirement in

the low- and high-q2 regions, which results in different efficiencies.

3.6.3 Trigger efficiency

The trigger efficiency is also evaluated using a simulated sample. It increases with

q2 and varies from ∼ 57% to ∼ 86% for both downstream and long candidates.

Figure 3.17 shows the dependence of this efficiency as a function of q2. To increase

confidence in these evaluations, the trigger efficiency obtained using the simulation

is validated using data recorded in the high statistics resonant channel. In LHCb
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triggered events can fall into two categories: those triggered by a track that is part

of a signal candidate, Trigger On Signal (TOS), and those triggered by other tracks

in the event that are not part of the signal candidate, Trigger Independent of Signal

(TIS). As the TIS and TOS categories are not exclusive the TIS sample provides a

control sample which can be used to obtain the efficiency for TOS triggers. This

can be calculated with the formula:

εTOS =
TIS and TOS

TIS
. (3.12)

As data contains background the numbers of signal candidates in the “TIS” and

“TIS and TOS” categories are not just determined by counting but from fits to the

4-body invariant mass, m(pπµµ), distributions after applying these requirements.

This procedure is referred to as the TISTOS method. Using this data-driven method

an efficiency of (70± 5)% is obtained. This is consistent with, and hence validates,

the significantly more precise value of (73.33±0.02)% obtained using the simulation.

3.6.4 PID efficiency

For long tracks a PID requirement on protons (PIDp> −5) is applied. The simulation

is known not to describe PID variables well and therefore a data-driven method is

used to obtain this efficiency component. This is done using the PIDCalib package

(see Sec. 2.8.1), which uses samples of decays where particles can be identified due

to their kinematic properties as calibration samples. In the case of protons a sample

of Λ particles is used, where the proton can be identified because it always has

the highest momentum. The package allows the phase space to be divided into

bins of variables relevant for PID performances; in this analysis, momentum and

pseudorapidity are used. Using the calibration sample the efficiency is derived in

each two-dimensional bin. Finally, to take into account the possibility that the

decay channel under study could have different kinematical distributions than the

calibration sample, these efficiency tables are used to re-weight the simulation. The

PID efficiency varies from 97.3% at low-q2 to 98.2% at high-q2.
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Table 3.7: Absolute efficiency values for Λ0
b → J/ψΛ; uncertainties are statistical.

Efficiency Downstream Long
εgeom 0.1818± 0.0003
εdet 0.9017± 0.0003
εreco 0.0724± 0.0004 0.0203± 0.0002
εpid – 97.89± 0.005
εMVA 0.882± 0.002 0.942± 0.002
εtrig 0.697± 0.003 0.734± 0.005
Full Selection 0.0445± 0.0003 0.0140± 0.0002
Total 0.00729± 0.00005 0.00230± 0.00003

3.6.5 Relative efficiencies

In the previous sections absolute efficiency values were given for the rare channel,

which are summarised in Fig. 3.17. This section reports the corresponding relative

efficiencies with respect to the Λ0
b → J/ψΛ channel, which will be used to correct the

yields and obtain the differential branching fraction. Table 3.7 reports the absolute

efficiency values for the J/ψ channel used to derive the relative efficiencies. Rela-

tive geometric, detection and PID efficiencies are listed in Tab. 3.8, while Tabs. 3.9

and 3.10 report relative reconstruction, trigger and MVA efficiencies separately for

downstream and long candidates. Since the latter three components are obtained

from the same simulated sample their statistical uncertainties are correlated. There-

fore, the product of the three is also reported as a single efficiency and labeled “Full

Selection”. Finally, Tab. 3.13 reports the overall relative efficiency, obtained as the

product of all components, which will be then used to correct the raw yields and cal-

culate the differential branching fraction. Uncertainties reflect the statistics of both

rare and resonant samples, while systematic uncertainties are discussed in following

sections.
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Table 3.8: Relative geometric, detection and PID efficiencies between Λ0
b → Λµ+µ−

and Λ0
b → J/ψΛ decays; uncertainties reflect the statistics of both samples.

q2 [ GeV2/c4] Geometric Detection PID
0.1 – 2.0 1.2976± 0.0050 0.9751± 0.0006 0.99418± 0.00013
2.0 – 4.0 1.1541± 0.0043 0.9814± 0.0005 0.99523± 0.00013
4.0 – 6.0 1.1043± 0.0044 0.9872± 0.0006 0.99699± 0.00012
6.0 – 8.0 1.0778± 0.0045 0.9939± 0.0006 0.99805± 0.00011

11.0 – 12.5 1.0431± 0.0058 1.0074± 0.0007 1.00151± 0.00010
15.0 – 16.0 1.0426± 0.0084 1.0188± 0.0010 1.00431± 0.00008
16.0 – 18.0 1.0296± 0.0068 1.0255± 0.0008 1.00215± 0.00008
18.0 – 20.0 1.0288± 0.0087 1.0333± 0.0010 1.00226± 0.00005
1.1 – 6.0 1.1396± 0.0031 0.9835± 0.0004 0.99589± 0.00009

15.0 – 20.0 1.0320± 0.0048 1.0269± 0.0006 1.00281± 0.00006

Table 3.9: Relative efficiencies between Λ0
b → Λµ+µ− and Λ0

b → J/ψΛ decays for
downstream candidates; uncertainties reflect the statistics of both samples.

q2 [ GeV2/c4] Reconstruction MVA Trigger Full Selection
0.1 – 2.0 0.721± 0.009 0.706± 0.010 0.805± 0.011 0.410± 0.009
2.0 – 4.0 0.920± 0.010 0.661± 0.008 0.870± 0.010 0.529± 0.010
4.0 – 6.0 0.997± 0.010 0.662± 0.008 0.895± 0.010 0.590± 0.011
6.0 – 8.0 1.050± 0.011 0.665± 0.008 0.960± 0.010 0.671± 0.012

11.0 – 12.5 1.112± 0.014 1.007± 0.006 1.069± 0.009 1.197± 0.019
15.0 – 16.0 1.019± 0.018 1.000± 0.009 1.175± 0.012 1.197± 0.026
16.0 – 18.0 0.968± 0.014 0.961± 0.008 1.200± 0.010 1.115± 0.020
18.0 – 20.0 0.832± 0.016 0.943± 0.010 1.231± 0.012 0.966± 0.023
1.1 – 6.0 0.950± 0.007 0.663± 0.005 0.876± 0.007 0.551± 0.007

15.0 – 20.0 0.929± 0.010 0.963± 0.005 1.204± 0.007 1.077± 0.014

Table 3.10: Relative efficiencies between Λ0
b → Λµ+µ− and Λ0

b → J/ψΛ decays for
long candidates; uncertainties reflect the statistics of both samples.

q2 [ GeV2/c4] Recoscruction MVA Trigger Full Selection
0.1 – 2.0 0.96± 0.02 0.863± 0.012 0.79± 0.02 0.65± 0.02
2.0 – 4.0 0.97± 0.02 0.803± 0.012 0.89± 0.02 0.69± 0.02
4.0 – 6.0 1.04± 0.02 0.824± 0.012 0.92± 0.02 0.79± 0.02
6.0 – 8.0 1.05± 0.02 0.825± 0.012 0.96± 0.02 0.84± 0.02

11.0 – 12.5 1.10± 0.03 1.002± 0.008 1.01± 0.02 1.10± 0.03
15.0 – 16.0 0.89± 0.03 0.987± 0.013 1.13± 0.02 0.98± 0.04
16.0 – 18.0 0.84± 0.03 0.985± 0.010 1.17± 0.02 0.97± 0.03
18.0 – 20.0 0.67± 0.03 0.944± 0.017 1.18± 0.02 0.75± 0.04
1.1 – 6.0 1.00± 0.02 0.820± 0.008 0.89± 0.01 0.73± 0.02

15.0 – 20.0 0.78± 0.02 0.973± 0.008 1.16± 0.01 0.89± 0.02
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Figure 3.17: Absolute efficiencies as a function of q2: geometric efficiency (a); de-
tection efficiency (b); reconstruction efficiency for DD (c) and LL (d) candidates;
MVA efficiency for DD (e) and LL (f); trigger efficiency for DD (g) and LL (h).
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3.7 Systematic uncertainties

This section describes the main sources of systematic uncertainty considered.

3.7.1 Systematic uncertainty on the yields

The choice of specific PDFs to model the invariant mass distributions could result

in a bias. The first step in assessing the potential systematic effect due to the signal

PDF choice is fitting the Λ0
b → J/ψΛ data sample using a number of models in

order to understand which ones provide a plausible description of data. Table 3.11

reports the χ2 and corresponding p-values obtained using different models including:

the default model (a DCB function), a simple Gaussian function, a single Crystal

Ball function and the sum of two Gaussians (Double Gaussian, DG). The only two

models that give a reasonable p-value are the (default) DCB and the DG functions.

In a second step, simulated pseudo-experiments are generated and fit with the two

chosen models. Events are generated according to a density function given by the

default model with parameters taken from the fit to data, separately for each q2

interval. In this way, for each q2 interval, a specific shape is reproduced including a

data-like background level and slope. Furthermore, a number of events comparable

to that found in data is generated. For each pseudo-experiment a normalised bias

is calculated as

b =

(
NDCB
``

NDCB
J/ψ

− NDG
``

NDG
J/ψ

)
/
NDCB
``

NDCB
J/ψ

, (3.13)

where Nmodel
`` and Nmodel

J/ψ are the numbers of rare and resonant candidates observed

using a specific model. The average bias over 1000 pseudo-experiments is taken

as the systematic uncertainty. Note that in each case the rare and normalisation

channels are fit with the same signal model and, while for the default case the rare

parameters are fixed to those found for the resonant channel, they are left free to

vary in the second model in order to assess a possible systematic effect due to the

constraints on the parameters in the same study.
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Table 3.11: χ2, ndf, p-values and number of signal events obtained fitting Λ0
b → J/ψΛ

data using different models.

Model χ2/ndf ndf p-value Nevts

DCB (default) 1.0 187 0.51 9965.4
Gauss 1.8 193 ∼ 0 9615.7
Double Gauss 1.1 191 0.45 9882.4
CB 1.5 191 ∼ 0 9802.4

For the background PDF systematic, the rare channel is re-fit but the yield of the K0
S

component is allowed to vary freely, in contrast to the default fit where it is fixed to

the yield predicted by the simulation. The same procedure as applied to the signal

PDF case, using pseudo-experiments to evaluate the mean bias due to the choice of

PDF, is also followed here. Results are reported in Tab. 3.12. Finally, a background

component for B+ → K∗+(K0
Sπ

+)µ+µ− decays is added to the fit, modelled using

the distribution of simulated candidates after full selection. No significant bias is

found for this component.

q2 [ GeV2/c4 ] Signal PDF (%) Background PDF (%) Total (%)
0.1 – 2.0 3.2 1.1 3.4
2.0 – 4.0 2.9 2.4 3.8
4.0 – 6.0 4.6 4.8 6.6
6.0 – 8.0 1.2 1.7 2.0

11.0 – 12.5 2.6 1.8 3.2
15.0 – 16.0 1.3 2.5 2.8
16.0 – 18.0 0.6 1.3 1.4
18.0 – 20.0 1.7 1.8 2.5
1.1 – 6.0 0.1 4.2 4.2

15.0 – 20.0 1.0 0.2 1.1

Table 3.12: Values of systematic uncertainties due to the choice of signal and back-
ground shapes in bins of q2.
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3.7.2 Systematic uncertainties on the efficiency determination

Systematic uncertainties on the efficiency determination are due to the limited

knowledge of the decay properties. The systematic uncertainties are directly eval-

uated on the relative efficiencies as these are the ones that are actually used in

the analysis. It should be noted that not all sources contribute to each part of

the efficiency. For brevity, this section only reports estimates of the systematic

uncertainties obtained, while the full information is contained in Appendix C.

3.7.2.1 Simulation statistics

The limited statistics of the simulated samples used to determine the efficiencies is

considered as a source of systematic uncertainty. While it is not the dominant source,

its size is not completely negligible, therefore, when reporting efficiency values, the

statistical uncertainty due to the rare and resonant channels is always considered.

3.7.2.2 Production polarisation and decay structure

One of the main unknowns that affects the determination of the efficiencies, is the

angular structure of the decays and the related production polarisation, which is a

parameter of the model. To assess the systematic uncertainty due to the knowledge

of the production polarisation for Λ0
b → Λµ+µ− decays the polarisation parameter

in the model is varied by one standard deviation from the central value of the most

recent LHCb measurement, Pb = 0.06 ± 0.09 [112]. The full observed difference is

taken as systematic uncertainty. To assess the systematic uncertainty due to the

decay structure, an alternative set of form factors is used based on lattice QCD

calculations [116]. The two models are compared and the full difference is taken

as systematic uncertainty. In total this results in an uncertainty of ∼ 1.3% for

long candidates and ∼ 0.6% for downstream candidates, mostly coming from the

knowledge of the production polarisation.
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3.7.2.3 Λ0
b lifetime

The Λ0
b lifetime is known with limited precision. For the evaluation of efficiencies the

world average value, 1.482±0.030 ps−1 [117], is used. This is varied by one standard

deviation from the measured value to assess the systematic uncertainty. Only the

case where both signal and normalisation channels are varied in the same direction

are considered. The largest difference from the default lifetime case is taken as the

systematic uncertainty, which is found to vary from ∼ 0.4% at low-q2 to ∼ 0.1% at

high-q2.

3.7.2.4 Downstream candidates reconstruction efficiency

Other analysis in LHCb using particles reconstructed from downstream tracks showed

that the efficiency for these candidates is not perfectly simulated. For example,

Fig. 3.18 shows the ratio between the reconstruction efficiency for downstream can-

didates in data and simulation found analysing K0
S events [118]. This effect is not

yet fully understood and is currently under study. It seems to be mainly due to a

poor simulation of the vertexing efficiency for downstream tracks. However, as the

analysis is performed separately for downstream and long candidates and efficien-

cies are calculated separately, the effect of this mis-modelling, present in both the

rare and resonant channels, largely cancels in their ratio. Nevertheless, a system-

atic uncertainty is assessed by re-weighting simulated candidates by the efficiency

ratio between data and simulation found for K0
S as a function of its momentum (see

Fig. 3.18). The efficiencies obtained using the weighted and unweighted simulation

are compared and the full difference is taken as the systematic uncertainty. As the

discrepancy shows little dependence on momentum, dependencies due to the differ-

ent momentum distributions of Λ and K0
S are assumed to be negligible. This results

in a systematic uncertainty for downstream candidates of ∼ 0.4% at low-q2 and

∼ 1.2% at high-q2.
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Figure 3.18: Ratio of reconstruction efficiency in data and simulation found using
K0

S events [118].

3.7.2.5 Data-simulation discrepancies

The simulation used to calculate the efficiencies is weighted to improve its descrip-

tion of data as described in Sec. 3.3.2. The influence of this procedure on the

efficiency determination is checked by comparing values obtained with and without

re-weighting. The effect is negligible with respect to other systematics considered.

3.8 Differential branching fraction extraction

In this section the differential branching fraction of the Λ0
b → Λµ+µ− decay is

calculated relative to the Λ0
b → J/ψΛ channel as a function of q2. The values are

directly obtained from the fit to the rare sample by parameterising the downstream

and long yields with the following formula:

N(Λµ+µ−)k =

[
dB(Λµ+µ−)/dq2

B(J/ψΛ)

]
·N(J/ψΛ)k · εrel

k ·
∆q2

B(J/ψ → µ+µ−)
, (3.14)

where k =(LL,DD), ∆q2 is the width of the q2 interval, B(J/ψ → µ+µ−) = (5.93±
0.06) · 10−2 [2] and the only free parameter is the relative branching fraction ratio.
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Table 3.13: Absolute values of the total relative efficiency of Λ0
b → Λµµ with respect

to Λ0
b → J/ψΛ and the absolute value of the uncorrelated uncertainty (σkuncorr), to-

gether with percent values of the correlated uncertainty (σcorr), where k =(LL,DD).

q2 [ GeV2/c4 ] Eff. (DD) σDD
uncorr Eff. (LL) σLL

uncorr σcorr

0.1 – 2.0 0.694 0.058 1.136 0.066 1.0%
2.0 – 4.0 0.693 0.027 0.907 0.047 2.7%
4.0 – 6.0 0.699 0.018 0.964 0.044 2.7%
6.0 – 8.0 0.733 0.020 0.953 0.048 2.7%

11.0 – 12.5 1.254 0.032 1.140 0.057 3.4%
15.0 – 16.0 1.260 0.035 1.035 0.060 3.0%
16.0 – 18.0 1.163 0.029 0.997 0.048 1.7%
18.0 – 20.0 1.023 0.027 0.782 0.040 2.7%
1.1 – 6.0 0.696 0.032 0.950 0.058 1.0%

15.0 – 20.0 1.132 0.014 0.927 0.031 1.4%

Table 3.13 summarises the total relative efficiencies, εrel, for downstream and long

candidates together with their correlated and uncorrelated uncertainties, where the

correlation is intended between the downstream and long samples. In the table

the uncorrelated uncertainty corresponds to the total systematic uncertainty on the

efficiency determination. The correlated uncertainty is given as a percentage since

it can be applied to either downstream or long candidates, or their combination.

This includes the PDF systematic described in Sec. 3.7.1 and the systematic due to

the uncertainty on the J/ψ → µ+µ− branching fraction.

Figure 3.19 shows the differential branching fraction obtained by fitting the down-

stream and long samples independently, while the combined result, obtained fitting

both samples simultaneously, is shown in Fig. 3.20. Measured values are also listed

in Tab. 3.14, where the statistical uncertainty on the rare channel and the total

systematic uncertainty are shown separately. The statistical uncertainty is calcu-

lated using the MINOS application of the MINUIT package [119], which provides an

asymmetric interval. The normalisation and systematic uncertainties are evaluated

by adjusting the efficiencies and normalisation yields up and down by one standard

deviation and repeating the fit. The different efficiencies used translate into a differ-

ent branching fraction and the full difference with respect to the default fit is taken

as systematic uncertainty in each direction.
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Table 3.14: Measured differential branching fraction of the Λ0
b→ Λµ+µ− decay rela-

tive to Λ0
b→ J/ψΛ decays; uncertainties are statistical and systematic respectively.

q2 [ GeV2/c4 ]
dB(Λ0

b→Λµ+µ−)/dq2

B(Λ0
b→J/ψΛ)

· 10−3[( GeV2/c4)−1]

0.1 – 2.0 0.56 +0.20
−0.17

+0.03
−0.03

2.0 – 4.0 0.18 +0.18
−0.15

+0.01
−0.01

4.0 – 6.0 0.04 +0.14
−0.04

+0.01
−0.01

6.0 – 8.0 0.40 +0.20
−0.17

+0.01
−0.02

11.0 – 12.5 1.19 +0.24
−0.23

+0.04
−0.07

15.0 – 16.0 1.78 +0.31
−0.28

+0.08
−0.08

16.0 – 18.0 1.94 +0.23
−0.22

+0.04
−0.09

18.0 – 20.0 1.97 +0.23
−0.22

+0.10
−0.07

1.1 – 6.0 0.14 +0.10
−0.09

+0.01
−0.01

15.0 – 20.0 1.90 +0.14
−0.14

+0.04
−0.06

Finally, values for the absolute branching fraction of the Λ0
b → Λµ+µ− decay are

obtained by multiplying the relative values listed in Tab. 3.14 by the branching

fraction of the normalisation channel, B(Λ0
b → J/ψΛ) = (6.3 ± 1.3) × 10−4 [2].

Values are shown in Fig. 3.21 and summarised in Tab. 3.15, where the uncertainty

due to the knowledge of the normalisation channel, which is correlated across q2

intervals, is shown separately.

Evidence for the signal is found for the first time in the interval 0.1 – 2.0 GeV2/c4,

where an enhanced yield is expected due to the proximity of the photon pole and in

the region between the two charmonium resonances. The signal is not yet observed

in the 1 – 6 GeV2/c4 range, which is the most interesting for new physics searches.

The uncertainty on the relative branching fraction is dominated by the size of the

available data sample, while the uncertainty on the absolute values is dominated

by the precision with which the branching fraction of the normalisation channel is

known.

The measurement is consistent with the theoretical predictions in the high-q2 region

but lies below the predictions in the low-q2 region. New SM calculations were pro-

duced after the publication of these results and are reported in Appendix E. These

calculations include an improved determination of the form factor which reduces
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Figure 3.21: Measured Λ0
b→ Λµ+µ− branching fraction as a function of q2 with SM

predictions [116] superimposed. The inner error bars represent the total uncertainty
on the relative branching fraction (statistical and systematic), while the outer error
bar also includes the uncertainties due to the knowledge of the branching fraction
of the normalisation mode.

the uncertainty significantly. The predictions are now compatible at low q2 and lie

above the theoretical values at high q2, which could be due to the presence of broad

cc resonances as this q2 region is above the charm production threshold.

3.8.1 Effect of new physics on the decay model

New physics could affect the decay model used to simulate events by adding contri-

butions to the C7 and C9 Wilson coefficients. This would result in a modification of

the simulated q2 spectra and therefore of the efficiency obtained from simulation. To

assess this systematic the Wilson coefficients are modified by adding a new physics

component (Ci → Ci + CNP
i ). Figure 3.22 shows q2 spectra obtained by weighting

the simulation for a model embedding the default and three modified sets of Wilson

coefficients. The values used, reported on the plot legend, are inspired to maintain

compatibility with the recent LHCb measurement of the P ′5 observable [54]. The

biggest effect is observed in the very low q2 region, below 2 GeV2/c4, where the effi-
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Table 3.15: Measured differential branching fraction of the Λ0
b → Λµ+µ− decay,

where the uncertainties are statistical, systematic and due to the knowledge of the
normalisation mode, Λ0

b→ J/ψΛ, respectively.

q2 interval [ GeV2/c4 ] dB(Λ0
b→ Λµ+µ−)/dq2 · 10−7[( GeV2/c4)−1]

0.1 – 2.0 0.36 + 0.12
− 0.11

+ 0.02
− 0.02 ± 0.07

2.0 – 4.0 0.11 + 0.12
− 0.09

+ 0.01
− 0.01 ± 0.02

4.0 – 6.0 0.02 + 0.09
− 0.00

+ 0.01
− 0.01 ± 0.01

6.0 – 8.0 0.25 + 0.12
− 0.11

+ 0.01
− 0.01 ± 0.05

11.0 – 12.5 0.75 + 0.15
− 0.14

+ 0.03
− 0.05 ± 0.15

15.0 – 16.0 1.12 + 0.19
− 0.18

+ 0.05
− 0.05 ± 0.23

16.0 – 18.0 1.22 + 0.14
− 0.14

+ 0.03
− 0.06 ± 0.25

18.0 – 20.0 1.24 + 0.14
− 0.14

+ 0.06
− 0.05 ± 0.26

1.1 – 6.0 0.09 + 0.06
− 0.05

+ 0.01
− 0.01 ± 0.02

15.0 – 20.0 1.20 + 0.09
− 0.09

+ 0.02
− 0.04 ± 0.25

ciency can change by up to 7%, while it changes 3 – 4% between 3 and 4 GeV2/c4 and

2 – 3% in the rest of the spectrum. As this analysis is performed under the hypothe-

sis that the decays are described by the SM, these values are given for completeness

but are not added as systematic uncertainties.
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Figure 3.22: The q2 spectrum of Λ0
b → Λµ+µ− simulated events weighted with

models embedding different sets of Wilson coefficients. The black distribution cor-
responds to the weights used to calculate nominal efficiencies.



CHAPTER 4

Angular analysis of Λ0
b → Λµ+µ− decays

The angular distribution of Λ0
b → Λµ+µ− decays can be described as a function of

three angles and q2 when neglecting the production polarisation of the Λ0
b . The two

angles that are relevant for the analysis in this chapter and are defined in Fig. 4.1:

θ` is the angle between the positive (negative) muon direction in the dimuon rest

frame and the dimuon system direction in the Λ0
b (Λ

0

b) rest frame; similarly, θh is

defined as the angle between the proton and the Λ baryon directions, in the Λ and

Λ0
b rest frames. The third angle is the angle between the dimuon and Λ decay planes,

which is integrated over in this analysis. This chapter describes a measurement of

two forward-backward asymmetries, namely those in the leptonic (A`FB) and in the

hadronic (AhFB) systems. These forward-backward asymmetries are defined as

AiFB(q2) =

∫ 1

0
d2Γ

dq2 dcos θi
dcos θi −

∫ 0

−1
d2Γ

dq2 dcos θi
dcos θi

dΓ/dq2
, (4.1)

96
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where i=h or `, d2Γ/dq2 dcos θi is the two-dimensional differential rate and dΓ/dq2

is rate integrated over the angles.

Figure 4.1: Graphical representation of the angles for the Λ0
b→ Λµ+µ− decay.

The A`FB observable was previously measured by LHCb also for B0 → K∗0µ+µ−

decays which proceed through the same quark level transition as Λ0
b → Λµ+µ−

decays. In contrast, the hadronic asymmetry, AhFB, is interesting only in the Λ0
b case

as it is zero by definition in the B0 case, due to the strong decay of the K∗0.

4.1 One-dimensional angular distributions

This section describes the derivation of the functional form of the differential distri-

butions as a function of cos θ` and cos θh, which are used to measure the observables.

The content of this section is based on the calculations in Ref. [111].

For unpolarised Λ0
b production, integrating over the three angles, the differential

branching fraction is given in Eq. 11 of Ref. [111] as

dΓ(Λb → Λ `+`−)

dq2
=
v2

2
·
(
UV+A + LV+A

)
+

2m2
`

q2
· 3

2
·
(
UV + LV + SA

)
, (4.2)

and the lepton helicity angle differential distribution, given in Eq. 15, has the form

dΓ(Λb → Λ `+`−)

dq2 dcos θ`
= v2 ·

[
3

8
(1 + cos2 θ`) ·

1

2
UV+A +

3

4
sin2 θ` ·

1

2
LV+A

]
− v · 3

4
cos θ` · P V A +

2m2
`

q2
· 3

4
·
[
UV + LV + SA

]
. (4.3)
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In these expressions m` is the mass of the lepton and v =
√

1− 4m2
`/q

2; U denotes

the unpolarised-transverse contributions, L the longitudinal contributions and S

the scalar contribution. The superscripts V and A represent respectively vector

and axial-vector currents, with XV+A = XV + XA. The authors of Ref. [111]

subsequently define the lepton-side forward-backward asymmetry as

A`FB = −3

2

v · P V A

v2 ·
(
UV+A + LV+A

)
+

2m2
`

q2 · 3 ·
(
UV + LV + SA

) . (4.4)

For this analysis the massless leptons limit, m` → 0, is used, which is a good

approximation except at very low q2. Combining the previous equations and working

in the massless limit the differential rates simplify to

dΓ

dq2
=
v2

2
·
(
UV+A + LV+A

)
(4.5)

and

dΓ

dq2 dcos θ`
=
v2

2

[
3

8

(
1 + cos2 θ`

)
UV+A + A`FB cos θ`(U

V+A + LV+A) +
3

4
sin2 θ`

(
LV+A

)]
.

(4.6)

Equations 4.5 and 4.6 can be then combined to achieve the form

dΓ

dq2 dcos θ`
=

dΓ

dq2

[
3

8

(
1 + cos2 θ`

) UV+A

UV+A + LV+A
+ A`FB cos θ` +

3

4
sin2 θ`

LV+A

UV+A + LV+A

]
. (4.7)

The amplitude combination in the last term can be viewed as the ratio between the

longitudinal and the sum of longitudinal and unpolarised contributions and therefore

one can define the longitudinal fraction

fL =
LV+A

UV+A + LV+A
, (4.8)
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which leads to the functional form used in the analysis:

dΓ

dq2 dcos θ`
=

dΓ

dq2

[
3

8

(
1 + cos2 θ`

)
(1− fL) + A`FB cos θ` +

3

4
sin2 θ`fL

]
. (4.9)

Using the same steps the proton helicity distribution is given in Ref. [111] as

dΓ(Λb → Λ(→ pπ−)`+`−)

dq2 dcos θh
= Br(Λ→ pπ−)

dΓ(Λb → Λ `+`−)

dq2

(1

2
+ AhFB cos θh

)
,

(4.10)

and AhFB is defined as

AhFB =
1

2
αΛP

Λ
z (q2), (4.11)

where PΛ
z (q2) is the polarisation of the daughter baryon, Λ, and αΛ = 0.642±0.013 [2]

is the Λ decay asymmetry parameter.

The above expressions assume that Λ0
b is produced unpolarised, which is supported

by the recent LHCb measurement in Ref. [120]. Possible effects due to a non-zero

production polarisation are investigated as systematic uncertainties (see Sec. 4.5.5).

4.2 Multi-dimensional angular distributions

The equations were modified to take into account the effects of the production po-

larisation. In the modified version, an angle θ is defined as the angle between the Λ

direction in the Λ0
b rest frame and the vector n̂ = p̂inc × p̂Λ0

b
, where p̂inc represents

the direction of the incoming proton; this angle is sensitive to the production po-

larisation. Integrating over all the angles except θ` results in the same distribution

as in the unpolarised case (Eq. 4.3). Therefore, in the case of uniform efficiency,

the lepton side forward-backward asymmetry, A`FB, is unaffected by the production

polarisation. To be able to estimate the effect of the production polarisation in the

case of non-uniform efficiency, the differential distribution in θ and θ` is derived,
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which in the massless leptons limit becomes (up to a constant multiplicative factor)

dΓ(Λb → Λ `+`−)

dq2 dcos θ dcos θ`
=

dΓ

dq2

{
3

8

(
1 + cos2 θ`

)
(1− fL) + A`FB cos θ` +

3

4
sin2 θ` fL+

Pb cos θ

[
−3

4
sin θ2

` OLp +
3

8

(
1 + cos θ2

`

)
OP

−3

8
cos θ`OUV A

]}
, (4.12)

where three more observables are defined:

OLp =
LVP + LAP

UV+A + LV+A
,

OP =
P V + PA

UV+A + LV+A
,

OUV A =
UV A

UV+A + LV+A
.

In the massless leptons approximation two of these quantities are related to the

hadron side forward-backward asymmetry as

1

2
αΛ (OP +OLp) = AhFB . (4.13)

Following the same steps as for the lepton case, after integrating over all the angles

except θh one finds that the hadron side asymmetry, AhFB, is also unaffected by

the production polarisation in the case of uniform efficiency and the differential

distribution in θ and θh has the form

dΓ(Λb → Λ `+`−)

dq2 dcos θ dcos θh
=

dΓ

dq2

[
1 + 2AhFB cos θh + Pb (OP −OLp) cos θ

+αΛPb (1− 2fL) cos θ cos θh] . (4.14)

In order to use these distributions, expectations for the three additional observables,

which do not enter one-dimensional distributions, are needed. Expectations are

calculated using form factors and numerical inputs from Ref. [111] and are listed in

Appendix D.1.
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For completeness, the differential distribution in cos θ` and cos θh has the form

dΓ(Λb → Λ `+`−)

dq2 dcos θh dcos θ`
=

3

8
+

6

16
cos2 θ` (1− fL)− 3

16
cos2 θ` fL + A`FB cos θ`+(

3

2
AhFB −

3

8
αΛOP

)
cos θh −

3

2
AhFB cos2 θ` cos θh −

3

16
fL+

9

16
fL sin2 θ` +

9

8
αΛ cos2 θ` cos θhOP−

3

2
αΛ cos θ` cos θhOUV A. (4.15)

4.3 Angular resolution

This section describes a study of the angular resolution performed in order to achieve

a better understanding of detector and reconstruction effects. This is then used to

study systematic uncertainties (see Sec. 4.5.5). The study is performed by analysing

simulated events and comparing generated and reconstructed quantities. Figures 4.2

and 4.3 show the difference between true and measured angular observables, cos θ`

and cos θh, as a function of the observables themselves. These distributions are cen-

tred at zero indicating no bias in the measurement. The spread of these distributions

around the central value can be interpeted as an estimate of the angular resolution.

Taking vertical slices of the plots in Figs. 4.2 and 4.3 one obtains approximately

Gaussian distributions centred at zero. These are fit with a single Gaussian and

its width is interpreted as the angular resolution. Table 4.1 reports the average

resolutions for the two angular observables separately for long and downstream can-

didates. Candidates built from long tracks are characterised by a better angular

resolution due to a better momentum and vertex position resolutions.

Table 4.1: Average angular resolutions for downstream and long candidates.

Observable Downstream Long
cos θ` 0.015 0.010
cos θh 0.066 0.014
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Figure 4.2: Difference between generated and reconstructed angular observables as
a function of the observables themselves for long candidates: for cos θ` (top) and
cos θh (bottom). The spread of these distributions can be interpreted as the angular
resolution.
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Figure 4.3: Difference between generated and reconstructed angular observables as
a function of the observables themselves for downstream candidates: for cos θ` (top)
and cos θh (bottom). The spread of these distributions can be interpreted as the
angular resolution.
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4.4 Fit strategy

There are physical boundaries to the values of the parameters of interests: AhFB is

limited to the [−0.5, 0.5] interval and for the fL and A`FB parameters the physical

region, given by |A`FB| < 3/4 · (fL − 1), is the triangle shown in Fig. 4.4. If the

measured value is close to the boundary of the physical region the fit does not always

converge. Therefore a “brute force” fitting technique is applied. For this purpose fit

parameters are divided into two categories: parameters of interest (PoIs), A`FB, AhFB

and fL and all other parameters, which are referred to as “nuisances”. The value

of the Log-Likelihood (logL) of the fit model with respect to data is evaluated in a

grid of points in the allowed area of the PoIs to find its minimum. A first coarse scan

finds a candidate minimum and then the procedure is reiterated two more times in

finer intervals around it. For each point all the nuisances are fitted using a maximum

likelihood fit. Using this method the best fit point is therefore constrained inside

the physical region. If the minimum of the log-likelihood is found to be outside the

physical region, the closest point on the boundary is chosen as the best fit.

AFB
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f L
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1

Figure 4.4: The physical (A`FB,fL) parameter space. The shaded region corresponds
to points where the PDF is positive in the whole [−1, 1] cos θ` interval.
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4.4.1 Feldman-cousins plug-in method

When a measured value is close to the physical boundary of the parameter space, the

uncertainties may be incorrectly estimated. To deal with this effect, the likelihood-

ratio ordering method [121] is used to estimate uncertainties and nuisance param-

eters are accounted for using the plug-in method [122]. This is a unified method

to calculate confidence intervals and upper/lower limits, based on simulated exper-

iments and has the advantage of having a well defined frequentist coverage.

The method consists of the following steps:

1. fit real data distributions with all parameters free;

2. fit real data fixing the PoIs to a given value while keeping nuisance parameters

free;

3. generate simulated samples following the distribution given by the fit model,

where all nuisance parameters are taken from the fit in step 2 and PoIs are

fixed to the same value used in step 2;

4. repeat the two fits made on data (steps 1 and 2) for each simulated sample:

fit with all parameters free and with fixed PoIs;

5. calculate the minimum values of the Log-Likelihoods for all cases;

6. calculate the percentage of pseudo-experiments in which the fixed-to-free like-

lihood ratio is larger than in data:

logLfixed/ logLfree > (logLfixed/ logLfree)data ;

7. repeat the procedure for many values of the PoIs scanning around the best fit

point.

The confidence interval at k% is given by the points where the fixed-to-free likelihood

ratio in data is smaller than in (100−k)% of the pseudo-experiments. As an example,
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Fig. 4.5 shows the p-values obtained with the plug-in method for AhFB and fL. A two-

dimensional region can also be scanned giving a grid of p-values, which translates

into two-dimensional confidence regions.
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Figure 4.5: Dependence of the p-value on the values of the angular observables fL

(left) and AhFB (right) in simulated experiments. The red lines mark the points at
p-value 32% corresponding to a 68% CL.

4.4.2 Modelling the angular distributions

The observables are obtained from fits to one-dimensional angular distributions.

The PDFs used to model the data are defined as

P k(cos θ`/h) = [(1− fb) · PS(cos θ`/h) + fb · P k
B(cos θ`/h)]× εk(cos θ`/h), (4.16)

where k = (LL,DD). The first term represents the signal which is modelled by

the theoretical shapes, PS, given by Eqs. 4.9 and 4.10, respectively for the lep-

ton and hadron cases, while the second term represents the background, which is

parameterised using a linear function: P k
B(cos θ`/h) = (c · cos θ`/h + q). Both terms

are multiplied by an acceptance function ε(cos θ`/h) described in Sec. 4.4.3. Af-

ter imposing the PDF normalisation, the background model is left with one free

parameter which is fixed by fitting candidates in the Λ0
b invariant mass sideband,

m(pπµµ) > 5700 MeV/c2, which contains only background. Finally, fb is the back-

ground fraction: fb = B/(S + B). To limit systematic effects due to the back-

ground parameterisation the fit is performed in a restricted invariant mass region
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around the Λ0
b mass peak that is dominated by the signal: 5580 < m(pπµµ) <

5660 MeV/c2 (“signal region”). The background fraction, fb, is obtained by looking

at the 4-body m(pπµµ) invariant mass distribution in a wider interval and fitting it

to extract the fraction of background in the signal region. In the fit to the angular

distributions this is then Gaussian constrained to the obtained value. Figure 4.6

shows the angular distributions of sideband candidates for the high-q2 integrated in-

terval with the background function overlaid. Note that a different acceptance shape

is used for the downstream and long samples and for each q2 interval. In summary

the only free fit parameter in each of the final fits to data is the forward-backward

asymmetry (and fL in the leptonic case).
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Figure 4.6: Background distributions as a function of cos θ` (top) and cos θh (bottom)
for downstream (left) and long (right) candidates in the 15 – 20 GeV2/c4 q2 interval.

4.4.3 Angular acceptance

Selection requirements on the minimum momentum of the muons can distort the

cos θ` distribution by removing candidates with extreme values of the angle. Simi-
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larly, the impact parameter requirements affect cos θh because very forward hadrons

tend to have smaller impact parameter values. As described in Sec. 4.4.2, to take

these effects into account the efficiency function is incorporated in the fit model. The

angular efficiency is parameterised using a second-order polynomial, whose parame-

ters are determined separately for long and downstream candidates by fitting simu-

lated events. An independent set of parameters is obtained also for each q2 interval.

These parameters are then fixed when fitting the data. Using polynomial functions

allows the normalisation of the PDF to be calculated analytically. Figure 4.7 shows

the acceptance as a function of cos θh and cos θ` for the 15 – 20 GeV2/c4 q2 inter-

val obtained using a Λ0
b → Λµ+µ− simulated sample. For the lepton side, even

though the efficiency is symmetric by construction, all parameters are left free to

vary, namely it is not constrained to be symmetric.
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Figure 4.7: Efficiency as a function of cos θ` (top) and cos θh (bottom) for down-
stream (left) and long (right) candidates in the 15 – 20 GeV2/c4 q2 interval.
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4.4.4 Evaluation of a three-dimensional fit approach

An alternative way of extracting the angular observables would be to fit both angles

and the invariant mass distribution at the same time in order to have a better han-

dle on the level of background and to make a more effective use of the information

available. However, there are disadvantages with this approach, namely that it is

necessary to use a larger mass window including more background and this method

introduces more parameters to fit. In fact, in the 3D case in addition to the A`FB,

fL and AhFB parameters, there are two background fractions and the two exponen-

tial slopes for the invariant mass background. Furthermore, to take into account

correlations three further observables enter the fit (see Eq. 4.12).

As a large number of free parameters is difficult to constrain with the very limited

statistics available, pseudo-experiments are used to check which method gives the

best sensitivity. Events are generated in a 3D (cos θ`,cos θh,mpπµµ) space. The

generated values of the observables are A`FB = 0, fL = 0.7 and AhFB = −0.37,

which are data-like values inspired from a preliminary measurement in the highest

statistics q2 interval. Similarly, the overall sample size and the fraction of background

candidates in the mass window are generated to be data-like using information from

the preliminary fit to data. Each pseudo-experiment is fitted with both the 1D and

3D methods. As an example, Fig. 4.8 reports distributions of A`FB obtained from

the fit in the 1D and 3D cases. The RMS of these distributions can be taken as a

measure of the sensitivity of each method. Table 4.2 lists the RMS values obtained

from both methods; for all parameters of interest the 1D fit method gives a smaller

RMS, hence a better sensitivity.

Table 4.2: RMS values for pseudo-experiments on the extraction of the three pa-
rameters of interests with the 1D and 3D fitting methods.

q2 [ GeV2/c4 ] Fit type Ah
FB A`

FB fL

15.0 – 20.0
1D 0.070 0.055 0.099
3D 0.092 0.095 0.153

11.0 – 12.5
1D 0.142 0.128 0.198
3D 0.249 0.254 0.303
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Figure 4.8: Values of the A`FB parameter observed in pseudo-experiments with input
A`FB = 0 using the 1D (left) and 3D (right) fit methods. Events are generated
with parameters and sample sizes corresponding to those observed in the highest
statistics interval (top), 15 – 20 GeV2/c4, and in the lowest statistics one (bottom),
11 – 12.5 GeV2/c4.

4.5 Systematics uncertainties on angular observables

The following section describes the five main sources of systematic uncertainty that

are considered for the measurement of the angular observables. Results are derived

only for q2 intervals where the signal significance, shown in Tab. 3.6, is above 3

standard deviations. This includes all q2 intervals above the J/ψ resonance and the

lowest q2 interval, where there is an increased yield due to the presence of the photon

pole.

4.5.1 Angular correlations

The angular acceptance is non-uniform as a function of cos θ` and cos θh. There-

fore, while integrating the full angular distribution, terms that cancel with perfect
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efficiency may remain and generate a bias in the final result. In order to quan-

tify this effect simulated events are generated in a two-dimensional (cos θ`,cos θh)

space according to the theoretical distribution described by Eq. 4.15 multiplied

by a two-dimensional efficiency function obtained from simulation. Then, one-

dimensional projections are taken and fitted using the default one-dimensional effi-

ciency functions. The distributions of observed deviations from the generated value,

∆x = xtrue − xmeasured, are approximately Gaussian and their mean is non-zero by

more then 3σ. Therefore, the mean biases are taken as systematic uncertainties,

which correspond to the absolute uncertainties ∆A`FB = 0.032, ∆fL = 0.028 and

∆AhFB = 0.013, independent of q2.

4.5.2 Resolution

The finite angular resolution could bias the measurement of the observables by gen-

erating an asymmetric migration of candidates. This is especially important in the

cos θh case, due to its poorer resolution and considerably asymmetric distribution.

Simulated experiments are used to assess this systematic. Events are generated

according to the measured distributions including their efficiencies. The generated

events are then smeared by the angular resolution (Gaussian smearing). To be con-

servative the case with largest angular resolution, downstream candidates, is always

used. Finally, the smeared and nominal distributions are fit with the same PDF.

The average deviation from the default values are reported in Tab. 4.3 as a function

of q2 and assigned as systematic uncertainties.

Table 4.3: Values of simulated cos θ` and cos θh resolutions (σ` and σh) and system-
atic uncertainties on angular observables due to the resolution, in bins of q2.

q2 [ GeV2/c4 ] σ` σh ∆A`
FB ∆fL ∆Ah

FB

0.1 – 2.0 0.0051 0.061 0.0011 -0.0022 -0.007
11.0 – 12.5 0.0055 0.067 0.0016 -0.0051 -0.013
15.0 – 16.0 0.0059 0.070 0.0006 -0.0054 -0.010
16.0 – 18.0 0.0064 0.070 0.0014 -0.0077 -0.010
18.0 – 20.0 0.0081 0.074 0.0014 -0.0062 -0.010
15.0 – 20.0 0.0066 0.072 0.0013 -0.0076 -0.011



4.5. SYSTEMATICS UNCERTAINTIES ON ANGULAR OBSERVABLES 112

4.5.3 Efficiency description

An incorrect determination of the reconstruction and selection efficiency can intro-

duce an extra oddity and therefore bias the measurement. To assess this effect the

kinematic re-weighting described in Sec. 3.3.2 is removed from the simulation and

the efficiency is determined again. Simulated events are then fit using the same the-

oretical PDF and multiplied by the efficiency functions obtained with and without

kinematical weights. As in the previous cases the average bias is taken as systematic

uncertainty; results are shown in Tab. 4.4. The effect of the limited statistics of the

simulated samples, shown in Tab. 4.5, is also taken into account and added to the

systematic uncertainty.

Table 4.4: Systematic uncertainties on the three angular observables due to the
limited knowledge of the efficiency function, in bins of q2.

q2 [ GeV2/c4 ] A`
FB fL Ah

FB

0.1 – 2.0 0.0020 0.0440 0.0093
11.0 – 12.5 0.0069 0.0027 0.0069
15.0 – 16.0 0.0018 0.0046 0.0109
16.0 – 18.0 0.0012 0.0043 0.0159
18.0 – 20.0 0.0030 0.0017 0.0148
15.0 – 20.0 0.0002 0.0046 0.0138

Table 4.5: Systematic uncertainties on the three angular observables due to the
statistics of the simulated samples, in bins of q2.

q2 [ GeV2/c4 ] A`
FB fL Ah

FB

0.1 – 2.0 0.00151 0.00170 0.00213
11.0 – 12.5 0.00121 0.00154 0.00196
15.0 – 16.0 0.00004 0.00017 0.00103
16.0 – 18.0 0.00065 0.00246 0.00417
18.0 – 20.0 0.00023 0.00372 0.00162
15.0 – 20.0 0.00039 0.00091 0.00137

4.5.4 Background parameterisation

There is a certain degree of arbitrariness in the choice of a parameterisation for the

background, especially for q2 intervals with low statistics. To assess possible biases
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due to the choice of a specific PDF, simulated experiments are generated using the

shapes obtained from fits to data and the same statistics as observed in data for

each q2 interval. Each pseudo-experiment is fit with two models: the default one, a

“line times efficiency” function, and the efficiency function alone, corresponding to

the assumption that background distributions are originally flat and only modified

by the interaction with the detector. The average bias with respect to the default

model is taken as systematic uncertainty; results are reported in Tab. 4.6.

Table 4.6: Systematic uncertainties on the three angular observables due to the
choice of background parameterisation, in bins of q2.

q2 [ GeV2/c4 ] A`
FB fL Ah

FB

0.1 – 2.0 0.003 0.049 0.053
11.0 – 12.5 0.045 0.034 0.035
15.0 – 16.0 0.010 0.038 0.026
16.0 – 18.0 0.026 0.036 0.022
18.0 – 20.0 0.011 0.031 0.025
15.0 – 20.0 0.007 0.014 0.017

4.5.5 Polarisation

To study the effect of a non-zero Λ0
b production polarisation, simulated events are

generated using the distributions given by Eqs. 4.12 and 4.14 as a function of the

angle under study (cos θ` or cos θh) and cos θ, defined in Sec. 4.2, which is sensitive

to the polarisation. Following a similar procedure to that used for the branching

ratio measurement, events are generated varying the value of the polarisation by one

standard deviation from the LHCb measurement [112]. As the theoretical functions

are always odd in cos θ, this always drops out when integrating over θ in the case

of perfect efficiency, yielding no bias by construction. Therefore, the generated

distributions are also multiplied by the two-dimensional efficiency function. No

significant bias is found.
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4.6 J/ψ cross-check

The fitting procedure is applied to the high statistics Λ0
b → J/ψΛ sample to test

its validity. For this purpose events are selected with an additional requirement on

the proton PID, PIDp> 10. This is needed to reduce the B0 → K0
SJ/ψ background,

which is particularly important for the hadronic side fit, since the K0
S candidates

are not distributed uniformly in the cos θh variable. Figure 4.9 shows the invariant

mass distributions after this requirement is applied, which can be compared with

the ones in Fig. 3.12. After the additional PID requirement the downstream sample

contains ∼ 0.2% of K0
S candidates and their fraction is compatible with zero in the

long sample. The signal model used for the angular fit to Λ0
b → J/ψΛ candidates is

defined in the same way as for the rare case and described in Sec. 4.4.2. However, as

the sample size is much larger than for the rare decay case, it is possible to allow a

greater number of free parameters in the fit. Therefore, a second-order Chebyschev

polynomial is used, where the two parameters are free to vary. As for the rare case

the background fractions are Gaussian-constrained to those found from the invariant

mass fit. Figures 4.10 and 4.11 show fitted angular distributions for the J/ψ channel.

The measured values of the observables are A`FB = −0.002+0.011
−0.011, AhFB = −0.402+0.010

−0.009

and fL = 0.485+0.019
−0.020, where the uncertainties are 68% Feldman-Cousins confidence

intervals. The models provide an adequate description of data and the lepton side

asymmetry is measured to be zero as expected for a tree level b→ ccs process.
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Figure 4.9: Invariant mass distributions of Λ0
b → J/ψΛ downstream (left) and long

(right) candidates with an additional PID requirement to remove K0
S background.
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Figure 4.10: Fitted cos θ` angular distribution for Λ0
b → J/ψΛ candidates recon-

structed using downstream (left) and long (right) tracks.
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Figure 4.11: Fitted cos θh angular distribution for Λ0
b → J/ψΛ candidates recon-

structed using downstream (left) and long (right) tracks.

4.7 Results

Figures 4.12 and 4.13 show fits to the angular distributions for the 15 – 20 GeV2/c4 q2

interval and Tab. 4.7 reports measured values of A`FB, AhFB and fL for all intervals.

The asymmetries are also shown in Fig. 4.14 together with SM predictions obtained

from Ref. [116]. The statistical uncertainties in these tables are obtained using the

likelihood-ratio ordering method described in Sec. 4.4.1, where only one of the two

observables is treated as the PoI at a time. The statistical uncertainties on A`FB and

fL are also reported in Fig. 4.15 as two-dimensional 68% confidence level regions,

where the likelihood-ratio ordering method is applied by varying both observables

at the same time and therefore taking correlations into account. Total systematic

uncertainties correspond to the sum in quadrature of the single considered sources.
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Figure 4.12: Fitted cos θ` angular distributions for downstream (left) and long (right)
candidates in the 15 – 20 GeV2/c4 q2 interval.
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Figure 4.13: Fitted cos θh angular distributions for downstream (left) and long
(right) candidates in the 15 – 20 GeV2/c4 q2 interval.

Table 4.7: Measured values of leptonic and hadronic angular observables; uncertain-
ties are statistical and systematic.

q2 [ GeV2/c4 ] A`
FB fL Ah

FB

0.1 – 2.0 0.37 + 0.37
− 0.48 ± 0.03 0.56 + 0.23

− 0.56 ± 0.08 − 0.12 + 0.31
− 0.28 ± 0.15

11.0 – 12.5 0.01 + 0.19
− 0.18 ± 0.06 0.40 + 0.37

− 0.36 ± 0.06 − 0.50 + 0.10
− 0.00 ± 0.04

15.0 – 16.0 − 0.10 + 0.18
− 0.16 ± 0.03 0.49 + 0.30

− 0.30 ± 0.05 − 0.19 + 0.14
− 0.16 ± 0.03

16.0 – 18.0 − 0.07 + 0.13
− 0.12 ± 0.04 0.68 + 0.15

− 0.21 ± 0.05 − 0.44 + 0.10
− 0.05 ± 0.03

18.0 – 20.0 0.01 + 0.15
− 0.14 ± 0.04 0.62 + 0.24

− 0.27 ± 0.04 − 0.13 + 0.09
− 0.12 ± 0.03

15.0 – 20.0 − 0.05 + 0.09
− 0.09 ± 0.03 0.61 + 0.11

− 0.14 ± 0.03 − 0.29 + 0.07
− 0.07 ± 0.03
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Figure 4.14: Measured values of the leptonic (top) and the hadronic (bottom)
forward-backward asymmetries. Data points are only shown for q2 intervals where
the signal yield is found to be statistically significant, see text for details. The
(red) triangle represents the values for the 15 – 20 GeV2/c4 integrated q2 interval.
Standard Model predictions are obtained from Ref. [123].
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CHAPTER 5

Testing lepton flavour universality with RK∗0

Lepton Flavour Universality (LFU) is the equality of the weak coupling constants

for all leptons. FCNC processes, which are forbidden in the SM at tree level and

proceed only via loop diagrams, are ideal to study LFU as new physics contributing

in the loops could break the flavour symmetry.

In this work b → sµ+µ−(e+e−) decays are studied to test LFU between electrons

and muons. In particular, the B0 meson semileptonic decays B0 → K∗0`+`− are

considered. Figure 5.1 shows the possible Feynman diagrams producing such decays

while Fig. 5.2 illustrates how these Feynman diagrams may include new particles.

A series of recent LHCb measurements [33] points to a tension with SM predictions,

which makes these processes particularly interesting as they can provide independent

verifications of the existing discrepancy.

In order to exploit the sensitivity of loop diagrams, in 2004 Hiller and Kruger pro-

119
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Figure 5.1: Loop diagrams producing B0 → K∗0`+`− decays.

posed the measurement of the RH ratios [124], defined as

RH =

∫ q2
max

q2
min

dB(B0→Hµ+µ−)
dq2 dq2∫ q2

max

q2
min

dB(B0→He+e−)
dq2 dq2

, (5.1)

whereH can be an inclusive state containing an s quark (Xs) or an s-quark resonance

such as K or K∗0. In this quantity the differential branching fraction is integrated

over the dilepton invariant mass squared, q2, from q2
min = 4m2

µ, which is the threshold

for the µµ process, up to q2
max = (mB0 −mH)2.

The advantage of using ratios of branching fractions as observables is that, in the

theoretical prediction, hadronic uncertainties cancel out. Furthermore, some of the

experimental systematic uncertainties also approximately cancel in the ratios, im-

proving the precision of the the measurement. For example, the measured quantities

are the number of µµ and ee decays recorded in a certain period of time. The lu-

minosity, L, is then used to obtain a cross-section, σ, using R = Lσ, where R is

the rate at which the decays occur. However, the luminosity measurement, usually

a source of systematic uncertainty, appears on both sides of the ratio and therefore

cancels out.
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Figure 5.2: Example of penguin diagrams, on the left involving SM particles and on
the right involving new possible particles.

Since the SM assumes lepton flavour universality, the predicted value of the ratio is

RH = 1, when the leptons are massless. Taking into account effects of order m2
µ/m

2
b

Hiller and Kruger calculate that in the SM and in the full q2 range [124]:

RXs = 0.987± 0.006,

RK = 1.0000± 0.0001,

RK∗0 = 0.991± 0.002;

under the assumptions that:

• right-handed currents are negligible;

• (pseudo-)scalar couplings are proportional to the lepton mass;

• there are no CP-violating phases beyond the SM.

Theories that affect these ratios include the Z ′ and leptoquarks models outlined

in Sec. 1.4.1. The measurement of the RH ratios is of particular interest after

the recent measurement of the branching fraction of the B0
s → µ+µ− decay [44],

where no evidence of new physics was found. In fact the quantities (RH − 1) and

B(B0
s → µ+µ−) remain proportional to each other with

RH − 1

B(B0
s → µ+µ−)

∼ 2 · 10−5. (5.2)
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A joint measurement of these two quantities can give much information and constrain

MFV models. If RH = 1 and B(B0
s → µ+µ−) is close to the SM prediction as it is

measured to be at present, this will allow strong constraints to be established on

extensions of the SM. If instead RH > 1 and Eq. 5.2 is not verified, this would mean

that one of the assumptions listed above are not verified.

5.1 Combining ratios

The full power of the RH ratios in understanding new physics scenarios comes from

their combinations. In Ref. [125] Hiller and Schmaltz propose the measurement of

the double ratios, XH = RH/RK , which not only can test LFU but also allow to

disentangle the nature of the new physics that lies behind it. These ratios are in fact

sensitive to FCNCs of right-handed currents. Furthermore, in Ref. [125] the study

is extended to B0
s decays such as B0

s → φ`+`− and B0
s → η`+`−.

Parity and Lorentz invariance require that the Wilson coefficients with left-handed

chirality (C) and their right-handed counterparts (C ′) appear in the decay amplitude

of exclusive decays in specific combinations, e.g.:

C + C ′ : K,K∗0⊥ , ...

C − C ′ : K0(1430), K∗0‖ , ...

where the labels for the K∗0 meson represent its longitudinal (0), parallel (‖) and

perpendicular (⊥) transversity components. The C contributions are universal for

all decays and therefore the XH double ratios are sensitive to right-handed currents.

In fact the RH ratios can be expressed in terms of their deviations from unity as

RK ' 1 + ∆+,

RK0(1430) ' 1 + ∆−,

RK∗0 ' 1 + p(∆− −∆+) + ∆+,

where the ∆± quantities are combinations of Wilson coefficients described in Eq. 10
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of Ref. [125] and the parameter p is the polarisation of K∗0 that in Ref. [125] is

determined to be close to 1, simplifying the formula to RK∗0 ' 1+∆−. In particular

one can make the following observations:

• RK < 1, as it is measured to be, and XK∗0 > 1 points to dominant BSM

contributions into CLR (see definition in Sec. 1.5.2);

• a SM-like RK ∼ 1 together with XK∗0 6= 1 requires BSM with CLL +CRL ' 0;

• RK 6= 1 and XK∗0 ' 1 corresponds to new physics in CLL.

5.2 Experimental status

The RK and RK∗0 ratios have been measured at the B factories [126, 50], while the

recent measurement from LHCb [127] represents the most precise determination of

RK to date; measured values are summarised in Tab. 5.1. The LHCb measurement

manifests a 2.6 σ deviation from the SM prediction. This is particularly interesting

as this discrepancy can be explained with a new physics contribution in C9 which

also explains other existing tensions [59, 54, 60]. It is also worth mentioning the

measurement of the B(B̄0 → D∗+τ−ν̄τ )/B(B̄0 → D∗+µ−ν̄µ) ratio, which also probes

LFU [128, 129, 130]. The combination of the measurements from LHCb, Belle and

BaBar yields a ∼ 4 σ tension with respect to the assumption of lepton universality

in the SM. By profiting from the large dataset collected during Run-I, the LHCb

experiment is expected to reduce the uncertainty on RK∗0 by at least a factor of 2

with respect to the B factories.

Table 5.1: Experimental status of the RK(∗) measurements.

Ratio Belle BaBar LHCb

RK 1.03± 0.19± 0.06 1.00+0.31
−0.25 ± 0.07 0.745+0.090

−0.074 ± 0.036

RK∗0 0.83± 0.17± 0.08 1.13+0.34
−0.26 ± 0.10 —
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5.3 Analysis strategy

The aim of the analysis in this chapter is to measure the RK∗0 ratio using pp collision

data collected by the LHCb detector in 2011 and 2012, corresponding to 3 fb−1 of

integrated luminosity. The B0 → K∗0µ+µ− and B0 → K∗0e+e−, “rare channels”,

are reconstructed via the K∗0 decay into a kaon and a pion with opposite charges.

The analysis has to separate signal candidates from background candidates which

have similar observed properties. The selection presented in Sec. 5.6 aims to max-

imise the yield while minimising the background contamination. Two types of back-

grounds are identified: “peaking background” and “combinatorial background”. The

first comes from misreconstructed or partially-reconstructed decays. Due to its spe-

cific kinematic properties, this type of background usually peaks in some variable

such as the invariant mass of all final particles and, therefore, these candidates can be

removed using specific cuts. In contrast, the combinatorial background arises from

the random combination of particles and can be reduced by selecting candidates

with good-quality tracks and vertices.

To further reduce the systematic uncertainties the measurement is performed as the

double ratio

RK∗0 =
NB0→K∗0µ+µ−

NB0→K∗0J/ψ→µ+µ−
· NB0→K∗0J/ψ→e+e−

NB0→K∗0e+e−
· εB0→K∗0J/ψ→µ+µ−

εB0→K∗0µ+µ−
· εB0→K∗0e+e−

εB0→K∗0J/ψ→e+e−
,

(5.3)

where decays reaching the same final states as the rare channels via a J/ψ resonance,

B0 → K∗0(J/ψ → `+`−), also referred to as “charmonium” or “resonant” channels,

are used as control samples. These decays are distinguished from the rare channel

using the invariant mass of the dilepton pair. As new physics is not expected to

affect tree level b → ccs processes, the ratio between the J/ψ channels, rJ/ψ , is 1

and therefore R
′

K∗0 = RK∗0 · rJ/ψ = RK∗0 . On the other hand, using the relative

efficiencies between the rare and resonant channels causes many systematic effects

to cancel resulting in a better control of systematic uncertainties.
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For brevity, the rare channels will also be denoted as “``”, or specifically “ee” and

“µµ”, and the resonant channels as “J/ψ (``)”, or “J/ψ (ee)” and “J/ψ (µµ)”.

5.4 Dilepton invariant mass intervals

Three q2 intervals are considered in this work:

• the “low-q2” region, [0.0004,1.1] GeV2/c4, where the b → s`+`− process is

dominated by the photon pole;

• the “central-q2” region, [1.1,6.0] GeV2/c4;

• the “high-q2”region, above 15 GeV2/c4.

The central-q2 region is the most interesting place to look for new physics. In fact,

at low q2 values, below 1 GeV2/c4 the photon pole dominates leaving little prospect

for new physics to be found. The choice of the lower limit of the low-q2 interval is

driven by the need to reject the background due to the B0 → K∗0γ decay where

the photon converts into electrons in the material of the detector. The lower bound

of the central interval is set at 1.1 GeV2/c4, to exclude a possible contribution from

φ → `+`− decays, which can dilute new physics effects, while the upper bound is

chosen to be sufficiently far away from the J/ψ radiative tail where predictions are

less cleanly defined. The 6 – 15 GeV2/c4 region is characterised by the presence of

the narrow peaks of the J/ψ and ψ(2S) resonances. The lower bound of the high-

q2 region, where the signal in the electron channel is still unobserved, is chosen to

be sufficiently far from the ψ(2S) resonance. Rare and normalisation channels are

selected according to the q2 interval they fall into (for details see Sec. 5.6).
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5.4.1 Control channels

Beyond the normalisation channels, J/ψ (ee) and J/ψ (µµ), additional control chan-

nels are used to perform cross-checks and better constrain some of the background

components in the electron fit; in particular, B0 → K∗0(γ → e+e−), also denoted as

“γ(ee)”, where the photon converts into an e+e−pair in the detector material and

B0 → K∗0(ψ(2S) → e+e−), also denoted as “ψ(2S)(ee)”. All of the normalisation

and control channels are distinguished by the q2 interval they fall into.

5.5 Data samples and simulation

Simulated samples are used to study the properties of backgrounds, determine effi-

ciencies and to train a multivariate classifier. The hard interactions are generated

with Pythia8, hadronic particles are decayed using EvtGen and, finally, propa-

gated into the detector using Geant4 and reconstructed with the same software

used for data. Samples are generated with both 2011 and 2012, magnet up and

down conditions and are combined in the appropriate proportions, according to the

data integrated luminosities. The next section describes the corrections applied to

the simulation to ensure that it provides a good description of data.

5.5.1 Data-simulation corrections

Since the multivariate classifier training (see Sec. 5.6.6) and the calculation of most

of the efficiency components (see Sec. 5.8) are obtained from the study of simulated

events it is important to verify that the simulation provides a reliable description of

data. Two areas where this agreement is particularly important are the kinematics

of the final particles and the occupancy of the detector. The kinematics of the decays

is characterised by the transverse momentum spectrum of the B0. Discrepancies in

this distribution also cause the spectra of the final particles to differ from data and
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hence affect the efficiency determination as its value often depends on the momentum

of the final particles. The occupancy of the detector is relevant as it is correlated to

the invariant mass shape of the signal due to the addition of energy clusters in the

electromagnetic calorimeter, which affects the momenta of the electrons especially

when bremsstrahlung photons are emitted before the magnet. The hit multiplicity

in the SPD detector is used as a proxy for the detector occupancy.

Since it is important that these quantities are well modelled, the simulation is re-

weighted so that their distributions in data and simulation match. The weight is

calculated using resonant B0 → K∗0(J/ψ → `+`−) candidates, for which the sig-

nal peak is already visible in data after pre-selection (see Sec. 5.6). However, the

data still includes a high level of background and distributions cannot be directly

compared. The sP lot technique [78] is used to subtract statistically the background

from data and obtain pure signal distributions using the invariant mass as the con-

trol variable. Figure 5.3 shows fits to the 4-body invariant mass of candidates after

pre-selection. Data and simulation are then compared and the ratio between the

two distributions is used to re-weight the simulation. The discrepancy in the SPD

multiplicity is solved as a first step and then the B0 transverse momentum distri-

butions are compared in data and simulation re-weighted to account for the SPD

multiplicity.

Distributions of B0 transverse momentum and SPD multiplicity are reported in

Fig. 5.4 and ratios of these distributions, which are used to re-weight the simula-

tion, are reported in Fig. 5.5. The weights for the SPD multiplicity are calculated

separately for 2011 and 2012 events, because distributions are significantly differ-

ent in the two years. The binnings are chosen to have approximately the same

number of events in each bin to limit fluctuations. Further corrections are made

by re-weighting the simulation for PID efficiency using the PIDCalib package as

described in Sec. 5.8.3 and, finally, ee samples are also re-weighted for L0 trigger

efficiency as described in Sec. 5.8.4. Weights are always applied throughout unless

specified.
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5.6 Selection

The selection process, described in this section, is divided into several steps:

• candidates have to fall into the detector acceptance, produce hits and be se-

lected on the basis of quality variables, such as χ2 of tracks and vertices and

basic kinematic cuts. Furthermore, it is required that the events are triggered

by specific trigger lines and cuts are applied to remove backgrounds from spe-

cific decays. All these requirements are referred to as “pre-selection”;

• secondly, PID requirements are applied to reduce the background from misre-

constructed candidates and clear the way for the last step;

• finally, a neural network is used to reduce the combinatorial background. Fur-

thermore, for the electron channels, which are more challenging, the kinematic

structure of the decays is also used to improve the purity of the samples.

To identify the J/ψ (µµ) candidates a dimuon invariant mass interval of 100 MeV/c2

around the nominal J/ψ peak [2] is selected. On the other hand, it is not possible

to use a narrow interval around the J/ψ (ee) mass peak as the invariant mass distri-

bution is characterised by a long radiative tail at low masses due to bremsstrahlung

radiation. Furthermore, a requirement on m(ee) would distort the 4-body m(Kπee)

mass distribution. This is not advisable as it is important to be able to fit a wide

mass range to constrain the backgrounds. For these reasons the interval used to

select J/ψ (ee) candidates extends as low as possible in q2 without overlapping with

the rare channel interval. Candidates are therefore identified as J/ψ (ee) if they

fall in the q2 interval 6 < q2 < 11 GeV2/c4. Similarly, candidates are identified

as ψ(2S)(ee) if they fall into 11 < q2 < 15 GeV2/c4 and γ(ee) if they fall into

q2 < 0.0004 GeV2/c4.

Table 5.2 summarises the requirements used to distinguish samples corresponding to

different decay channels. Figure 5.6 shows two-dimensional distributions of q2 versus

the 4-body invariant mass for candidates passing the full selection. Horizontal bands
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Table 5.2: Summary of the channel categories.

Type Sample q2

µµ

B0→ K∗0µ+µ− (low) 0.0004 < q2 < 1.1 GeV2/c4

B0→ K∗0µ+µ− (central) 1.1 < q2 < 6 GeV2/c4

B0→ K∗0µ+µ− (high) q2 > 15 GeV2/c4

B0 → K∗0(J/ψ → µ+µ−) |mµµ −mPDG
J/ψ | < 100 MeV/c2

ee

B0 → K∗0e+e− (low) 0.0004 < q2 < 1.1 GeV2/c4

B0 → K∗0e+e− (central) 1.1 < q2 < 6 GeV2/c4

B0 → K∗0e+e− (high) q2 > 15 GeV2/c4

B0 → K∗0(J/ψ → e+e−) 6 < q2 < 11 GeV2/c4

Control samples

B0 → K∗0(γ → e+e−) q2 < 0.0004 GeV2/c4

B0 → K∗0(ψ(2S)→ e+e−) 11 < q2 < 15 GeV2/c4

can be clearly seen at q2 values corresponding to the J/ψ and ψ(2S) resonances. On

the plot for muons a vertical band which corresponds to the rare decay is also

evident.

5.6.1 Trigger and pre-selection

Events are triggered for the µµ and the ee channels by the trigger lines reported

in Tab. 5.3, where the logical and of L0, HLT1 and HLT2 lines is required and

the logical or of the lines on the same level. The candidates are required to be

triggered-on-signal (TOS) for most of the stages, namely it is required that the par-

ticle responsible for the trigger decision is one of the particles used to build the signal

candidates. Only for L0Global, used in the electron case, a trigger-independent-of-

signal (TIS) is required. The L0Muon trigger requires hits in the muon detector, while

L0Electron and L0Hadron use information from the calorimeters; HLT1TrackAllL0

adds information from the trackers and triggers if the L0 decision is confirmed; fi-

nally, HLT2Topo[2,3]BodyBBDT uses a full reconstruction of the event and a neural

network trained on candidates with a specific topology in order to detect specific

decay structures.
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Figure 5.6: Two-dimensional q2 versus m(Kπ``) distributions for fully selected elec-
tron (top) and muon (bottom) candidates in 2012 data. Requirements on q2 to
separate the various decay channels are not applied.
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Table 5.3: Summary of the trigger lines used to select the µµ and the ee channels.
Where not explicitly indicated, the lines are required to be TOS.

Trigger level µµ candidates ee candidates

L0 L0Muon
L0Electron
L0Hadron

L0Global (TIS)

HLT1
Hlt1TrackAllL0

Hlt1TrackAllL0
Hlt1TrackMuon

HLT2
Hlt2Topo[2,4]BodyBBDT Hlt2Topo[2,4]BodyBBDT

Hlt2TopoMu[2,4]BodyBBDT Hlt2TopoE[2,4]BodyBBDT
Hlt2DiMuonDetachedDecision

For the electron channels the L0 lines have different properties, therefore the analysis

is performed separately for three categories of events, depending on the L0 trigger

that accepted them. These categories are defined to be exclusive as:

• L0E: events triggered by at least one of the electrons in the signal candidate:

(L0Electron_TOS);

• L0H: events triggered by at least one of the hadrons in the signal candidate

and not in the L0E category:

(L0Hadron_TOS && !L0Electron_TOS);

• L0I: events triggered by particles independent of any signal candidate and not

included in the previous categories:

(L0Global_TIS && !(L0Electron_TOS || L0Hadron_TOS)).

The majority of the selected events falls into the L0E category, while the L0H

category is more efficient at low q2 were the K∗0 has higher momentum. Because

L0I is defined to be independent of the signal candidate, the corresponding signal

efficiency is the same in both the rare and resonant cases and therefore cancels in

their ratio.

Candidates are then required to pass the kinematic and quality cuts summarised

in Tab. 5.4, where the meaning of the variables was already explained in Sec. 3.4.
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Table 5.4: Summary of pre-selection requirements. Variables are defined in Sec. 3.4.

Particle Requirements
π χ2

IP(primary) > 9

K
PIDK > −5

χ2
IP(primary) > 9

hasRICH

K∗0

pT > 500 MeV/c
|mKπ −mPDG

K∗0 | < 300 MeV/c2

χ2
IP(primary) > 9
χ2
vtx/ndf < 25

µ
pT > 300 MeV/c
χ2

IP(primary) > 9
isMuon

e

pT > 300 MeV/c
χ2

IP(primary) > 9
hasCalo

PIDe > 0

``

m`` < 5500 MeV/c2

χ2
vtx/ndf < 9
χ2

FD > 16

B0

DIRA > 0.9995
χ2
vtx/ndf < 9

χ2
IP(primary) < 25
χ2

FD > 100

Loose PID requirements are applied in the pre-selection to limit the size of the

samples, while tighter cuts are applied in a second stage. A wide mass window is

kept around the B0 peak so that the sideband can be used to train the multivariate

classifier and to better constrain the backgrounds in the fit. Track and vertex quality

cuts are also applied using the χ2
trk, GhostProb, and χ2

vtx variables. The GhostProb

quantity describes the probability of a track being fake. By construction, cutting at

0.4 removes (1− 0.4) · 100 = 60% of fake tracks. For details about the definition of

the variables used see Ref. [131].
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5.6.2 PID

After pre-selection there still are high levels of background. In particular, as the

identification (ID) hypotheses for kaons and pions are not constrained, the samples

still contain multiple ID combinations for most candidates, therefore, tighter PID

requirements are applied. In LHCb the particle identification probability can be

quantified using the “ProbNN” variables [132]. A separate ProbNNx variable is defined

for each ID hypothesis, x: p, K, π, e or µ. These variables are the outputs of neural

networks which use information from the calorimeters, the RICH detectors the muon

system and the tracking system. Unlike the DLL variables (see Sec. 2.8) the ProbNN

are bound from 0 to 1 and can be directly interpreted as probabilities; e.g. ProbNNk

corresponds to the probability for a reconstructed particle to be a kaon.

Figure 5.7 shows probability distributions, ProbNNe and ProbNNmu, for the electrons

and muons in the decay candidates, while Fig. 5.8 shows the probabilities of correct

identification and mis-identification of kaons and pions in a two-dimensional plane.

These plots are characterised by clear peaks at maximal ID probability and minimal

mis-ID probability, corresponding to particles to which a well defined identification

can be assigned.

In order to maximise the power of the PID requirements, the probabilities for correct
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Figure 5.7: ProbNNmu (left) and ProbNNe (right) distributions for muons and elec-
trons in 2012 data candidates. These variables correspond to the probabilities of
giving the correct ID to the considered particles. The red lines indicate the chosen
requirements.
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Figure 5.8: ProbNNpi versus ProbNNk distributions for the particle labelled as kaons
(left) and the pions (right) before the application of PID requirements. The quan-
tities on the vertical axes correspond to mis-identification probabilities.

identification and mis-identification are combined and requirements imposed as:

π → ProbNNpi× (1− ProbNNk)× (1− ProbNNp) > 0.1

K → ProbNNk× (1− ProbNNp) > 0.05

µ → min( ProbNNmu(µ1), ProbNNmu(µ2) ) > 0.2

e → min( ProbNNe(e1), ProbNNe(e2) ) > 0.2

In the first formula, for example, ProbNNpi is the probability of correctly identifying

the pion as a pion, while ProbNNk is the probability of mistaking it for a kaon. There-

fore by maximising the quantity “ProbNNpi × (1 - ProbNNk)”, one can maximise

the correct ID probability and minimise at the same time the mis-ID probability. In

this example, the probability for mistaking the pion as a proton is also used.

5.6.3 Peaking backgrounds

Backgrounds due to specific decays usually peak in some variable because of their

distinctive kinematic properties and therefore they can be removed without signifi-

cant efficiency loss for the signal. The following sections describe the main sources of

peaking background. The same requirements are applied to the muon and electron

channels, unless stated otherwise.
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5.6.3.1 Charmonium vetoes

Charmonium resonances such as J/ψ and ψ(2S) peak in q2. The choice of q2 bin-

ning described in Sec. 5.4 constitutes a natural veto for these decays. Simulated

events are used to check if resonant candidates leak inside the q2 intervals chosen

for the rare channel analysis. For the muon channels the leakage is negligible as the

peaks are sharper due to the better momentum resolution and because muons emit

fewer bremsstrahlung photons, resulting in shorter radiative tails. In contrast, the

electron channels are characterised by a poorer energy resolution and an increased

radiation of bremsstrahlung photons, yielding long tails at low q2. Analysing sim-

ulated events it was found that 1.3 – 2% (depending on the trigger category) of

B0 → K∗0(J/ψ → e+e−) candidates leak into the 1.1 < q2 < 6 GeV2/c4 interval

and 1.8% of ψ(2S) candidates leak above 15 GeV2/c4. The contribution from these

candidates is modelled in the fit.

5.6.3.2 φ veto

A kaon from the decay B0
s → φ`+`−, where the φ decays in two kaons, can be mis-

identified as a pion and therefore cause the φ to be reconstructed as a K∗0. This

results in a candidate with a value of m(Kπ) that is less than the nominal K∗0 mass

but still high enough to pass the selection requirements. Figure 5.9 (left) shows

a plot of m(Kπ) versus m(Kπµµ), where the kaon mass hypothesis is assigned to

the pion. A peak can clearly be seen around the (B0
s ,φ) mass. To remove this

background only candidates with m(K(π → K)) > 1040 MeV/c2 are selected. This

results in a ∼ 98% background rejection while keeping a ∼ 99% signal efficiency. B0
s

decays such as Bs → φK∗0 could also constitute a background when the φ decays

into two leptons but the branching fraction of this decay is small compared to the

previous case. Furthermore, this contribution is already taken into account by the

choice of the q2 intervals (see Sec. 5.4).
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Figure 5.9: (left) Distribution of data candidates as a function of the variables
m(K(π → K)) and m(K(π → K)µµ), where π → K means that the kaon mass
hypothesis is assigned to the pion. (right) The invariant mass distribution of the
3-body system (Kµµ), where the peak due to the B+ → K+µ+µ− decay is visible.

5.6.3.3 B+ → K+`+`− plus a random pion

B+ → K+`+`− decays can contaminate the upper B0 mass sideband if they are

combined with a soft pion from elsewhere in the event and therefore reconstructed

as a B0 decay. Similarly, a kaon can be mis-identified as a pion and combined with

another kaon in the event. Figure 5.9 (right) shows the invariant mass distribution

of the 3-body (Kµ+µ−) system, m(Kµµ). This is characterised by a narrow peak

at the B+ mass. Since these candidates have m(Kπ``) > 5380 MeV/c2 there is no

contribution under the B0 peak, but they can cause problems when using sidebands

candidates to train the neural network. An effective veto for this decay was found to

be max[m(K``),m((K → π)``)] < 5.1 GeV/c2, which results in a∼ 95% background

rejection while keeping ∼ 99% signal efficiency.

5.6.3.4 Λb decays

Λ0
b → J/ψΛ decays are unlikely to be reconstructed as B0 → K∗0`+`− because

the Λ is long-lived and decays further into the detector with a separate vertex. The

number of candidates falling into the B0 samples was estimated using simulation and

found to be negligible. In contrast, the Λ0
b → J/ψpK decay channel can contribute
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more easily, when the proton is mis-identified as a kaon. In fact, the m(pK) is

above the Λ threshold and therefore they must come from Λ∗ resonances, which are

not long-lived. This background includes eventual contributions from the recently

discovered penta-quark state [13]. These candidates are already removed by the

PID requirements but a non-negligible contribution is still expected, and cannot be

easily removed due to its broad shape. It is therefore modelled in the fit.

5.6.3.5 B0→ (D− → K∗0e−ν)e+ν

The B0→ D−e+ν decay, where the D− in turn decays semileptonically to K∗0e−ν

has the same final particles as the B0 → K∗0e+e− decay plus two neutrinos which are

not reconstructed. This decay has a branching ratio almost four orders of magnitude

larger than B0 → K∗0e+e− and it may pass the selection requirements when the

two neutrinos have low momenta. To reduce the level of this background the angle

θ` is used, which is defined as the angle between the direction of the e+ (e−) in the

dielectron rest frame and the direction of the dielectron in the B0 (B0) rest frame.

Low momentum neutrinos demand the D− and the e+ to be almost back-to-back

in the B0 rest frame giving the e+ a relatively high energy compared to the e−.

As a consequence, the direction of the e+ is close to the direction of the dielectron

pair, thus the θ` angle is close to zero. In fact the distribution of background

candidates, obtained imposing the invariant mass cut m(Kπee) < 4800 MeV/c2,

is asymmetric towards extreme cos θ` values as it can be seen in Fig. 5.10. The

requirement | cos θ` | < 0.8 is used to reduce this background but it is not applied

in the high-q2 case as the variable loses its discriminating power. In the muon

channels, the background from B0→ (D− → Kµ−ν)µ+ν decays remains outside of

the invariant mass window used for the fits.
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Figure 5.10: Distribution of (left) cos θ` and of (right) the m(Kπe−) invariant mass,
where the B0→ (D− → Ke−ν)e+ν background is selected by requiring m(Kπee) <
4800 MeV/c2. The red distribution highlights candidates with | cos θ` | > 0.8.

5.6.3.6 B0 → K∗0(γ → e+e−)

For the low-q2 region, a potentially dangerous background is due to the B0 → K∗0γ

decay followed by a conversion of the photon in the detector. The branching frac-

tion of B0 → K∗0γ has been measured to be B = (4.33± 0.15)× 10−5 and, when

the photon converts into a e+e− pair, these decays have similar characteristics to

B0→ K∗0e+e−. In LHCb around 40% of photons convert before the calorimeter.

Although only ∼ 10% of these convert in the VeLo and are reconstructed as long

tracks, the resulting B0 mass peaks under that of the signal, making it a dangerous

background. This signal-like background is reduced effectively by the choice of the

lower bound for the low-q2 interval which corresponds to m(ee) = 20 MeV/c2. Fur-

thermore, the e+e− pair from B0 → K∗0(γ → e+e−) has a vertex at the point where

the photon converts, but it may still be reconstructed as originating from the B0

decay if the e+e− vertex position is determined with a large uncertainty. Therefore

a requirement is applied on the uncertainty of the reconstructed z-coordinate of the

e+e− pair: σz(e
+e−) < 30 mm. Simulated events are used to predict the contami-

nation from B0 → K∗0(γ → e+e−) decays in the signal region which is found to be

(3.2± 1.6)%.
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5.6.3.7 Other peaking backgrounds

A potential contamination from B0 → K∗0η and B0 → K∗0π0, where the η and the

pion decay into two photons, was considered and found to be small. Furthermore,

a potentially dangerous background could come from candidates where the identity

of the kaon and the pion are swapped as these candidates peak under the signal.

Although their contribution is found to be small, 0.5%, the effect of their modelling

in the fit is taken into account when evaluating the systematic uncertainties. Fi-

nally, charmonium decays where the identity of the kaon, or the pion, and one of

the muons are swapped are rejected by requiring that the hadron-µ invariant mass

m((h→ µ)µ), where the muon mass hypothesis is assigned to the hadron, is not com-

patible with a J/ψ (ψ(2S)) resonance: |m((h→ µ)µ)−mJ/ψ ,(ψ(2S))| > 60 MeV/c2.

5.6.4 Partially-reconstructed background

Partially-reconstructed candidates are defined as decays where one or more particles

in the final state are not reconstructed, resulting in m(Kπ``) values smaller than the

mass of the B0, but with tails that can still contaminate the signal sample. Sources of

partially-reconstructed background include mainly decays involving higher hadronic

states such as B0→ (Y → KπX)(J/ψ → e+e−), where X represents at least one

particle that is not reconstructed. The Y state can be a K∗ resonance as well as D

mesons that decays semileptonically, as explained in the previous sections. For the

resonant channels, an additional source of partially-reconstructed background comes

from decays of higher cc resonances, B0→ (K∗0 → Kπ)(Y → (J/ψ → e+e−)X).

To reject such backgrounds, the 4-body invariant mass m(Kπ``) is recalculated

using DecayTreeFitter to impose vertex constraints. For the resonant case this

also includes constraining the invariant mass of the dilepton pair to that of the J/ψ ;

in this case the 4-body mass is denoted as m(Kπ``)J/ψ . This constraint pushes

partially-reconstructed candidates towards low m(Kπ``)J/ψ values, resulting in no

contamination above 5150 MeV/c2.
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This requirement is implicitly applied for the muon channels by the definition

of the invariant mass fit-windows. For the electron channels, the requirement

m(Kπ``)J/ψ (ψ(2S)) > 5150 MeV/c2 is explicitly applied to select the J/ψ (ee) and

ψ(2S)(ee) samples. For the electron rare decay channels the vertex constraint

alone is not sufficient to remove all background and, furthermore, to model cor-

rectly the long radiative tails of the mass shapes, a fit region that extends down

to 4500 MeV/c2 is necessary. For these reasons the requirement is not applied for

the electron rare decay channels and, as a consequence, the partially-reconstructed

background is still relevant and needs to be modelled in the fit.

5.6.5 Bremsstrahlung corrected mass

For the electron channels it is particularly difficult to separate partially-reconstructed

and combinatorial background from the long radiative tail of the signal. Additional

information to reduce these backgrounds is provided by the decay kinematics: the

transverse momenta of theK∗0 and dielectron, defined relative to the flight direction1

of the parent B0 meson, should be equal and opposite, as illustrated in Fig. 5.11.

The ratio between the transverse momenta, pT, of the K∗0 and the dielectron

pair, α = pT(K∗0)/pT(e+e−), can be used to check this hypothesis. When α de-

viates from one, some energy is missing in the final state. For signal candidates,

1The flight direction is defined using the primary and the decay vertices.

Figure 5.11: Schematic of the kinematic of a B → YhXe decay, highlighting the
quantities relevant for the definition of the bremsstrahlung correction factor, α.
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the missing energy is most likely carried away by bremsstrahlung photons emitted

by the electrons. Therefore, one can use α to correct the electron momentum as

pcorr(e
+e−) = α ·p(e+e−). Since bremsstrahlung photons are predominantly emitted

in the direction of the electron, the same α correction can be also applied to the lon-

gitudinal component of the dielectron momentum. In contrast, the missing particles

in partially-reconstructed background candidates are not necessarily emitted in the

direction of the electrons, and therefore this correction does not work properly. A

similar argument applies to the combinatorial background.

The corrected momenta can be used to re-calculate the invariant mass of the B0

candidate, which in the following will be called Bremsstrahlung Corrected Mass,

mBCM. The resolution of mBCM depends on the quality of the vertex reconstruction

and on the B0 lifetime, and degrades as a function of q2. Figure 5.12 shows the

dependence of the B0 χ2
FD (flight distance χ2) as a function of mBCM in the q2

regions considered for the rare decay.

As the correction factor is not meaningful for backgrounds this leads the candi-

dates to spread out making mBCM a discriminating variable between signal and

background. A two-dimensional cut is adopted:

mBCM > aBCM + bBCM · log(χ2
FD),

where the aBCM and bBCM coefficients are optimised as described in Sec. 5.6.7. The

requirement is not applied either at high-q2, because the variable loses discriminating

power, or to the muon channels for which the bremsstrahlung radiation is negligible.

5.6.6 Multivariate analysis

The final selection is performed using a neural network classifier2 based on the

NeuroBayes package [88, 89]. The multivariate analysis is intended to remove

some combinatorial background and obtain a clearer signal peak. In order to avoid

2The same architecture and options are used for Neural Network as described in Sec. 3.4.2
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Figure 5.12: Two-dimensional distributions of log(χ2
FD) versus mBCM for (left)

B0 → K∗0e+e− signal and (right) partially-reconstructed background. From top
to bottom the low-, central- and high-q2 intervals.

biases, a so-called k-fold approach is adopted to train and optimise the classifier,

using k = 10. In this method, the samples are divided into k equally sized sub-

samples; k classifiers are then trained and optimised each one using (k − 1) of the

subsamples and applied to the kth one. This approach ensures that a classifier is

never applied to the candidates used for its training. Each classifier is trained on half

of the candidates included in the (k − 1) subsamples and optimised using the other

half, which ensures that candidates used for training are not used for optimisation.
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Table 5.5: List of variables used as inputs for the neural network training.

Particle Variables
B0 pT, χ2

IP, χ2
FD, χ2

vtx/ndf, DIRA, χ2
DTF/ndf

K∗0 pT, χ2
IP, χ2

FD, χ2
vtx/ndf, DIRA

h min,max(pT,K , pT,π), min,max(χ2
IP,K , χ

2
IP,π)

`` pT, χ2
IP, χ2

FD, χ2
vtx/ndf, DIRA

` min,max(pT,`+ , pT,`−), min,max(χ2
IP,`+ , χ

2
IP,`−)

Samples:

Representative samples of the signal and background are needed to train the clas-

sifier. For the signal, fully reconstructed B0 → K∗0µ+µ− and B0 → K∗0e+e−

simulated events can be used, while a sample representative of the background

can be obtained using data candidates in the upper B0 sideband: m(Kπµµ) >

5400 MeV/c2 and m(Kπee) > 5600 MeV/c2. The lower sideband is not used in

the training as it contains a significant fraction of misreconstructed background. All

pre-selection requirements are applied to the samples used for the training. As L0

and PID variables are not well described in simulation these cuts are not applied to

the simulation but their effect is taken into account by event weights. An approxi-

mately equal number of signal and background candidates is used for the training

which corresponds to about 103 electron and 104 muon candidates.

Training:

The neural network input consists of 24 variables carrying information about the

kinematics of the decays and the quality of tracks and vertices. All the variables used

are listed in Tab. 5.5, while their distributions in data and simulation are reported

in Appendix F.

The single most discriminating variable is χ2
DTF, the χ2 of a kinematic fit (see

Sec. 2.10) that constrains the decay product of the B0, the K∗0 and the dilepton, to

originate from their respective vertices. Other variables that contribute significantly

are the χ2
IP of J/ψ and K∗0, the transverse momentum of the B0 and the pointing

direction (DIRA) of the reconstructed B0 to the primary vertex.
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Figure 5.13: Neural network output distributions for training (stripes) and test
(points) samples, for simulated signal (blue) and data sideband (red) candidates.
For the electron (left) and muon (right) training.
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Figure 5.14: Average value of neural network output as a function of 4-body invari-
ant mass for data sideband (top) and simulated signal (bottom) candidates for the
electron (left) and muon (right) trainings.

Figure 5.13 shows neural network output distributions for signal and background,

with the distributions from test samples overlaid in order to check for overtraining.

The test and training distributions follow the same slopes which indicates no signif-

icant overtraining. In general it can be concluded that the neural network is able to

separate signal from background and that the training converged properly.
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Figure 5.15: Fit to the data sidebands (central-q2) performed to estimate the amount
of residual background in the signal mass window for (left) muons and (right) elec-
trons. The region corresponding to the dashed line is excluded from the fit.

If too much information is given to the classifier, this can become able to calculate

the invariant mass of the candidates from its input variables. This could generate

a dependency of the efficiency on the 4-body invariant mass and it is therefore im-

portant to check for correlations between the invariant mass and the neural network

output. Figure 5.14 shows the average neural network output as a function of the

4-body mass for sideband data and simulated signal candidates. The distributions

are flat showing that no significant correlation is present.

5.6.7 Optimisation

In order to optimise the requirements on the mBCM and the neural network output

the expected signal significance, NS/
√
NS +NB, is maximised, where NS (NB) is

the number of rare signal (background) candidates. When the BCM requirement

is applied, the optimisation is performed in a three-dimensional space (tMVA, aBCM,

bBCM), where tMVA is the neural network output threshold below which a candidate

is considered background, and aBCM and bBCM are the parameters of the BCM cut

described in Sec. 5.6.5. Otherwise, only the MVA threshold is optimised (this is the

case for all muons samples and the high-q2 electron sample).

The number of signal candidates accepted by a given requirement is determined

using a data-driven method. Firstly, B0 → K∗0(J/ψ → `+`−) candidates selected
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Figure 5.16: Dependence of figure-of-merit on the requirement on neural network
output for electrons (top) and muons (middle). At the bottom, signal efficiency
versus background rejection. Plots correspond to the electron (left) and muons
(right) samples.



5.6. SELECTION 148

with all the requirements except for the MVA, and BCM cuts are fitted to determine

the total yield. This number is then scaled by the ratio of the rare and resonant

branching fractions and the efficiency ratio:

NS = NJ/ψ (``) ·
B(B0 → K∗0`+`−)

B(B0 → K∗0(J/ψ → `+`−))
· ε``
εJ/ψ (``)

.

The number of background candidates is also derived from data by fitting the back-

ground in the lower and upper mass sidebands with an exponential function, as

shown in Fig. 5.15, and extrapolating to obtain the residual yield into the signal

region. As the background shape changes as a function of the requirement that is

being optimised, the sidebands are refitted for each considered cut value.

The optimisation is performed in a signal mass window of ±100 MeV/c2 around

the nominal B0 mass for muons, and between 5000 and 5400 MeV/c2 for electrons.

The average result of the k optimisations is taken as the nominal requirement. The

variation of the signal and background efficiency, signal purity and figure-of-merit

as a function of the neural network output requirement for the central-q2 is shown

in Fig. 5.16 together with curves of the background rejection as a function of the

signal efficiency. After the full selection about ∼ 3% of events still contain multiple

candidates which are removed at random to retain only a single candidate per event.

5.6.8 Selection summary

Table 5.6 summarises the requirements applied for each sample on top of the pre-

selection requirements described in Sec. 5.6.1.
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Table 5.6: Summary of the selection requirements. The last column indicates to
which q2 intervals the requirement is applied.

Type Requirement q2

Quality All tracks
χ2
trk/ndf < 3 all

GhostProb < 0.4 all

ID K∗0 |m(Kπ)−mPDG
K∗0 | < 100 MeV/c2 all

PID

K ProbNNk · (1− ProbNNp) > 0.05 all

π ProbNNpi · (1− ProbNNk) · (1− ProbNNp) > 0.1 all

µ min(ProbNNmu) > 0.2 all µµ

e min(ProbNNe) > 0.2 all ee

BKG

Swap |m((h→ µ)µ)−mPDG
J/ψ ,(ψ(2S))| > 60 MeV/c2 all

B+ → K+`+`− max(m(K``),m((π→ K)``)) < 5.1 GeV/c2 all

B0
s → φ`+`− m(K(π→ K)) > 1040 MeV/c2 all

B0→ D−e+ν | cos θ` | < 0.8 except high-

B0 → K∗0γ σz(e
+e−) < 30 mm except γ(ee)

Comb

NNout > 0.68 µµ low-

NNout > 0.64 ee low-

NNout > 0.85 µµ central-

NNout > 0.97 ee central-

NNout > 0.40 µµ high-

NNout > 0.93 ee high-

NNout > 0.06 J/ψ (µµ)

NNout > 0.20 J/ψ (ee)

NNout > 0.16 γ(ee)

NNout > 0.68 ψ(2S)(ee)

Part-reco m(Kπ``)J/ψ > 5150 MeV/c2 J/ψ (ee)

Comb, part-reco

mBCM > 4680 + 31 · log(χ2
FD) ee low-

mBCM > 4437 + 64 · log(χ2
FD) ee central-

mBCM > 3380 + 140 · log(χ2
FD) γ(ee)
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5.7 Invariant mass fits

The signal yields are obtained using a simultaneous unbinned maximum likelihood

fit to the 4-body invariant mass, m(Kπ``), of the rare, normalisation and con-

trol samples. The simultaneous fit allows to share parameters e.g. those describing

data-simulation differences. The yields of the rare channels are parameterised as a

function of the corresponding J/ψ yields as

N``(r``, NJ/ψ ) = NJ/ψ · εrel · r``, (5.4)

where εrel is the relative efficiency between the rare and resonant channels (given in

Tab. 5.10). Consequently, r`` corresponds to the efficiency corrected ratio between

the raw rare and resonant yields:

r`` =
N``/ε

``

NJ/ψ/εJ/ψ (``)
. (5.5)

The two ratios, ree and rµµ, are then used to determine RK∗0 , as described in

Sec. 5.10. The following subsections contain a description of the line shapes used to

model the signal and background components for each sample.

5.7.1 Muon channels

For the rare and resonant µµ channels the yields are extracted from fits to the

m(Kπµµ) invariant mass determined using a kinematic fit where all vertices are

required to point to their mother particle. For the resonant channel, a further

constraint is imposed on the dimuon mass to be equal to the known J/ψ mass;

in this case the invariant mass is referred to as m(Kπµµ)J/ψ . The effect of the

kinematical constraint is to improve the mass resolution by roughly a factor of 2,

which results in a more stable fit. Furthermore, partially-reconstructed background

candidates are pushed away from the B0 peak towards low invariant mass values.

The mass spectrum is fitted in the range 5150 – 5800 MeV/c2 with the lower limit
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chosen to exclude completely the partially-reconstructed background. As it is not

necessary to model partially-reconstructed backgrounds in the fit, this also avoids

systematic uncertainties associated with the knowledge of their shape.

5.7.1.1 B0 → K∗0(J/ψ → µ+µ−) PDF

The signal PDF adopted to describe the reconstructed 4-body invariant mass of

B0 → K∗0(J/ψ → µ+µ−) candidates is the sum of a DCB function with opposite-

side tails and a Gaussian function, sharing a common mean, µ:

Psig(m|~λ) = fCB1 · PCB(m|µ, σ1, α1, n1) +

fCB2 · PCB(m|µ, σ2, α2, n2) + (1− fCB1 − fCB2) · PGauss(m|µ, σ3) ,

where fCBi is the relative fraction of candidates falling in the ith Crystal Ball func-

tion, σi is the width, αi and ni are the parameters controlling the power law tail of

each CB, and σ3 is the width of the Gaussian function.

As a first step, the parameters of the signal PDF are extracted by fitting the

m(Kπµµ)J/ψ distribution of B0 → K∗0(J/ψ → µ+µ−) simulated candidates; pa-

rameters are then fixed for the fit to the data. Figure 5.17 shows the fitted simu-

lated distribution for the normalisation channel, while fits for the rare channel in

the three q2 intervals are reported in Appendix G. In order to account for possible

discrepancies in the invariant mass distribution between data and simulation, the

mass is allowed to shift, µ→ µ+m′, and the widths are allowed to scale, σi → c ·σi,
where the scale factor c is common between the three widths.

In summary, the signal PDF for the J/ψ (µµ) channel fit to data is defined as

PJ/ψ (µµ)(m|m′, c) = fCB1 · PCB(m|m′, c) + fCB2 · PCB(m|m′, c) +

(1− fCB1 − fCB2) · PGauss(m|m′, c) ,

where the only free parameters are the mass shift, m′ and the width scale factor, c.



5.7. INVARIANT MASS FITS 152

m(Kπµµ)J/ψ [MeV/c2]
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900

C
an

di
da

te
s p

er
 5

 M
eV

/c
2

1−10

1

10

210

310

410

510

KstJPsMM_MC = -0.8 ±  0.32α

αKstJPsMM_MC =  1.6 ±  0.3
KstJPsMM_MCf2  =  0.2 ±  0.2  

=  0.4 ±  0.2fKstJPsMM_MC

mKstJPsMM_MC = 5279.9 ±  0.3
n2

KstJPsMM_MC =  4.5 ±  1.7 
nKstJPsMM_MC =  1.9 ±  0.2 
σKstJPsMM_MC =  5.0 ±  0.72

σKstJPsMM_MC =  8.5 ±  0.73

σKstJPsMM_MC =  5.8 ±  0.8

Figure 5.17: Fitted m(Kπµµ)J/ψ mass spectrum for B0 → K∗0J/ψ simulated events.

The following backgrounds are considered:

• Combinatorial : modelled with an exponential function;

• Λ0
b → pK(J/ψ → µ+µ−): described using fully reconstructed simulated events;

this distribution has a broad shape under the signal peak and is smoothed using

the RooKeysPdf class of the RooFit [133] package;

• B0
s → K∗0(J/ψ → µ+µ−): described using the same PDF adopted for the

signal, but a different central value, µ, which is set at the B0
s nominal mass.

The same shift m′ is used as for the signal.

5.7.1.2 B0→ K∗0µ+µ− PDF

The signal PDF adopted to describe the reconstructed 4-body invariant mass of the

rare B0→ K∗0µ+µ− candidates is a DCB function with opposite-side tails and a

common mean, µ. The parameters of the PDF are fixed to values obtained by fitting

simulated candidates, separately in each q2 interval. As for the charmonium channel,

the mass is allowed to shift and the widths are allowed to scale by a common factor:

Pµµ,q2(m|m′q2 , cq2) = fcore,q2 · PCB(m|m′q2 , cq2) + (1− fcore,q2) · PCB(m|m′q2 , cq2),
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where fcore,q2 is the relative fraction of candidates falling into the first Crystal Ball

function, m′q2 is the mass shift and cq2 is the width scale. The subscript “q2”

indicates that independent parameters are used for each q2 interval. The background

is described by an exponential function with independent slope parameters in the

three q2 intervals.

5.7.1.3 Summary

In summary, the free parameters of the simultaneous fit to the J/ψ (µµ) and µµ can-

didates are the signal and background yields, the combinatorial background slopes,

the mass shifts and the width scales. Figure 5.18 shows the results of the fit to

the resonant µµ candidates, while Fig. 5.19 reports the fitted distributions in the

three q2 regions considered for the rare channel. Values of the fitted parameters are

reported on the plots.
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Figure 5.18: Fitted m(Kπµµ)J/ψ invariant mass distribution for J/ψ (µµ) candidates
in linear (top) and logarithmic (bottom) scale. Dashed black lines represent the
signal PDF and filled shapes the background components.
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Figure 5.19: From top to bottom fitted m(Kπµµ) distributions for rare candidates
in the low-, central- and high-q2 intervals. Dashed black lines represent the signal
PDFs and filled shapes the background components.
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5.7.2 Electron channels

Following the muon case, the yields in the electron channel are obtained from fits

to distributions of the 4-body invariant mass determined using a kinematic fit. In

general, this does not include constraints to intermediate resonances, unless spec-

ified. When constraints to intermediate resonances are applied the invariant mass

is referred to as m(Kπee)R, where R = J/ψ or ψ(2S). A simultaneous fit to the

normalisation and control samples, as well as to B0 → K∗0e+e−, and across the

three trigger categories defined in Sec. 5.6.1 is performed. For each trigger category,

the J/ψ (ee) and ee yields are extracted from the following signal channel categories:

• B0 → K∗0(J/ψ → e+e−), with a J/ψ mass constraint, m(Kπee)J/ψ ;

• B0 → K∗0e+e− in the three q2 intervals.

The additional control channels, which are fit simultaneously, are:

• B0 → K∗0(γ → e+e−) to constrain the yield of partially-reconstructed back-

ground in the low-q2 and the leakage of B0 → K∗0γ into the low-q2 interval;

• B0 → K∗0(J/ψ → e+e−), without the J/ψ mass constraint, to constrain the

leakage into the central-q2 interval and the parameters that model residual

data-simulation discrepancies;

• B0 → K∗0(ψ(2S) → e+e−), with a ψ(2S) mass constraint, m(Kπee)ψ(2S), to

constrain the leakage to lower and higher q2 values.

When fitting the variable without a J/ψ mass constraint it is important to use a

wider mass range to better constrain the parameters modelling the radiative tails

and the backgrounds; therefore a mass window [4500,6200] MeV/c2 is used. The

lower limit is given by the point at which the q2 cut (at 6 GeV2/c4 to separate the

rare and resonant channels) starts to affect the 4-body invariant mass distribution.
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The invariant mass distributions vary according to the L0 line that triggered the

event and also to the number of bremsstrahlung photons recovered. Therefore, the

samples are divided into three trigger categories, as described in Sec. 5.6.1, and three

bremsstrahlung categories defined as:

• 0γ: candidates with no photons recovered;

• 1γ: candidates with one photon from either of the electrons;

• 2γ: candidates with more than one recovered photon.

All samples are fitted simultaneously, which allows a better use of the available

statistics. Furthermore, using this method the results for the three categories are

naturally combined into a single ree ratio. The PDFs used to fit the invariant mass

distributions are described in the following sections.

5.7.2.1 Signal PDFs for the electron channels

As for the muon channels, simulated candidates are fitted first to constrain the shape

parameters for the subsequent fit to data. The signal PDFs are constructed using

the following method:

• Simulated B0 → K∗0(J/ψ → e+e−) and B0 → K∗0e+e− candidates are di-

vided into each trigger and bremsstrahlung category and an independent fit

is performed to each sample. An independent fit is also performed for each q2

interval. It is important to use independent signal tail parameters for each q2

interval because, as can be seen in Fig. 5.20, the invariant mass distributions

can differ significantly.
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Table 5.7: Percentages of candidates with 0, 1 and 2 recovered photons in the three
trigger categories, obtained from simulation.

Trigger 0γ (%) 1γ (%) 2γ (%)
B0 → K∗0e+e− low-q2

L0E 34.2 56.0 9.8
L0H 27.8 58.1 14.2
L0I 31.7 56.9 11.4

B0 → K∗0e+e− central-q2

L0E 29.2 50.0 20.8
L0H 23.6 50.5 26.0
L0I 28.5 49.9 21.6

B0 → K∗0e+e− high-q2

L0E 20.6 51.2 28.2
L0I 10.0 53.8 36.2

B0 → K∗0(γ → e+e−)
L0E 40.4 59.6 –
L0H 32.2 67.8 –
L0I 39.3 60.7 –

B0 → K∗0(J/ψ → e+e−)
L0E 29.0 50.1 20.8
L0H 18.9 51.3 29.8
L0I 26.9 51.7 21.4

B0 → K∗0(ψ(2S)→ e+e−)
L0E 27.2 51.3 21.5
L0H 17.4 51.5 31.2
L0I 22.0 55.0 23.0

• For each trigger category a PDF is built as the sum of the three PDFs of the

bremsstrahlung categories:

PL0x(m) = fL0x
0γ ·PL0x

0γ (m)+fL0x
1γ ·PL0x

1γ (m)+(1−fL0x
0γ −fL0x

1γ ) ·PL0x
2γ (m), (5.6)

where the P(m)L0x
nγ functions are the chosen PDFs for the bremsstrahlung

and trigger categories and the fL0x
nγ parameters are the relative fractions of

candidates falling into each category.

• Most parameters are fixed and the combined PDF, PL0x
sig (m), is used to fit data

in each of the trigger categories.

The distribution of the m(Kπee) invariant mass in the 0γ category is characterised
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Figure 5.20: Comparison of m(Kπee) invariant mass distributions in different q2

regions.

by a sharp tail on the right hand side and is described using a CB function, while

the 1γ and 2γ categories are modelled using the sum of a CB and a Gaussian

function (CBG) with independent parameters. In all bremsstrahlung categories the

distribution of the 4-body invariant mass with the J/ψ mass constraint, m(Kπee)J/ψ ,

is modelled using the sum of a DCB and a Gaussian function as for the muon fit. To

account for possible data-simulation discrepancies, the mass (widths) of each trigger

PDF is allowed to shift (scale), similarly to the muon channels. However, due to

the larger background contamination these parameters are shared between the rare

and the B0 → K∗0(J/ψ → e+e−) control sample.

The fL0
nγ fractions are well modelled by the simulation and therefore they are fixed to

the simulated values, separately for the normalisation channel and each q2 interval.

Table 5.7 lists the percentages of candidates with 0, 1 and 2 recovered photons for

each trigger category.

In summary the signal PDF for the fit to each data sample is defined as:

Psig(m; c,m′) =
∑

x=E,H,I

[ fL0x
0γ · PL0x

0γ (m; c,m′) + fL0x
1γ · PL0x

1γ (m; c,m′)

+ (1− fL0x
0γ − fL0x

1γ ) · PL0x
2γ (m; c,m′)]

(5.7)

where the free parameters are: the scaling factors, c, and the mass shifts, m′.
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5.7.2.2 Background PDFs for the electron channels

This section describes the background components considered for each fitted sample.

B0 → K∗0e+e− low-q2

• Combinatorial : described using an exponential function; the yield and slope

parameters are free to vary in the fit.

• Partially-reconstructed : the shape is obtained from a K+
1 (1270) simulated

sample smoothed with a RooKeysPdf and mirroring is used to deal with edge

effects; the simulated distribution is shown in Fig. 5.21. The fraction of

partially-reconstructed candidates with respect to the signal is expected to

be very similar to that found in the γ(ee) sample and therefore the normali-

sation is constrained as:

Npart−reco
e+e−, low = Ne+e− ·

Npart−reco
γ(ee)

Nγ(ee)

,

where Npart−reco
γ(ee) /Nγ(ee) is the fraction of partially-reconstructed background

candidates relative to the signal yield in the γ(ee) channel.

• B0 → K∗0γ leakage: the leakage from the B0 → K∗0(γ → e+e−) decay into

the low-q2 region is modelled using simulated candidates that pass the low-q2

requirements. The distribution, smoothed with a RooKeysPdf, is shown in

Fig. 5.21 and the normalisation is constrained to the γ(ee) yield, Nγ(ee), as:

N leak
e+e−, low = Nγ(ee) · f leak,MC

γ(ee) ,

where f leak,MC
γ(ee) is the fraction of γ(ee) simulated candidates that leak into the

low-q2 region.
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B0 → K∗0e+e− central-q2

• Combinatorial : described using an exponential function; the yield and slope

parameters are free to vary in the fit.

• Partially-reconstructed : modelled using simulation as described for the low-q2

but in this case the normalisation is allowed to vary.

• B0 → K∗0J/ψ leakage: the leakage of the J/ψ radiative tail into the central-q2

interval is modelled by selecting simulated B0 → K∗0(J/ψ → e+e−) candidates

that pass the central-q2 requirements and smoothing the distributions with

a kernel density estimation method; the simulated distribution is shown in

Fig. 5.21. The normalisation is constrained to the J/ψ (ee) yield, NJ/ψ (ee), as:

N leak
e+e−, central = NJ/ψ (ee) · f leak,MC

J/ψ (ee) ,

where f leak,MC
J/ψ (ee) is the fraction of B0 → K∗0(J/ψ → e+e−) simulated candidates

that are reconstructed in the central-q2 interval.

B0 → K∗0e+e− high-q2

• Combinatorial : modelled using a shape obtained by reversing the neural net-

work requirement on data, which has the effect of selecting background candi-

dates instead of signal. Figure 5.22 shows the invariant mass distributions for

different anti-cuts on the electron and muon samples at high-q2. Shapes are

very similar in the two samples and as a function of the cut value. The shape

used to model the combinatorial background is taken from the muon sample

with a tight anti-MVA cut, NNout < 0.1, and smoothed with a RooKeysPdf.

• Partially-reconstructed : modelled using simulation as described for the previ-

ous intervals; the normalisation is allowed to vary.

• B0 → K∗0ψ(2S) leakage: the leakage from the ψ(2S) radiative tail is mod-

elled using B0 → K∗0(ψ(2S) → e+e−) simulated candidates that pass the
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high-q2 requirements. The normalisation is constrained to the ψ(2S)(ee) yield,

Nψ(2S)(ee) as:

N leak
e+e−,high = Nψ(2S)(ee) · f leak,MC

ψ(2S)(ee),

where f leak,MC
ψ(2S)(ee) is the fraction of B0 → K∗0(ψ(2S) → e+e−) simulated candi-

dates leaking into the high-q2 interval.

B0 → K∗0γ

• Combinatorial : described using an exponential function; the yield and slope

parameters are free to vary in the fit.

• Partially-reconstructed : modelled using simulation as described for the pre-

vious intervals; the normalisation is free to vary and used to constrain the

fraction of partially-reconstructed candidates in the low-q2 interval.

• B0 → K∗0e+e− leakage: as the K∗0γ was added to the low-q2 also the low-q2

leakage is added to K∗γ. The yield is constrained to the N low
ee yield.

B0 → K∗0J/ψ and B0 → K∗0ψ(2S)

The following backgrounds are considered for the fits to the invariant mass of

B0 → K∗0(J/ψ → e+e−) candidates:

• Combinatorial : described using an exponential function. The yield and slope

parameters are free to vary in the fit.

• Λ0
b → pK(J/ψ → e+e−): described using simulated candidates to which the

full selection is applied. This distribution, which is shown in Fig. 5.21, has

a broad shape under the signal peak and is smoothed using a RooKeysPdf.

The normalisation is fixed to the Λ0
b → pK(J/ψ → µ+µ−) yield obtained from

the muon fit after correcting for efficiency differences between final states with

muons and electrons.
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Figure 5.21: Distributions of them(Kπee) invariant mass of: decays involving higher
K∗0 resonances (top left), the J/ψ tail leakage into the central-q2 interval (top right),
Λ0
b decays (bottom left) and B0 → K∗0(γ → e+e−) decays (bottom right). The

shapes are smoothed using RooKeysPdfs and mirroring is used to deal with edge
effects.
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Figure 5.22: Distributions of the m(Kπ``) invariant mass for B0 → K∗0`+`− can-
didates selected with a reversed cut on the neural network output.
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• B0
s → K∗0(J/ψ → e+e−): described using the same PDF adopted for the

signal, but with a different central value, m0, which is set at the B0
s nomi-

nal mass. The normalisation is fixed to the B0 → K∗0(J/ψ → µ+µ−) yield

obtained from the muon fit after correcting for efficiency differences between

final states with muons and electrons.

The J/ψ mass constraint has the effect of pushing the partially-reconstructed back-

ground away from the peak outside the fit window. The J/ψ control sample is

selected using the requirement that the 4-body invariant mass constrained using

DecayTreeFitter is above 5150 MeV/c, which explicitly removes the partially-

reconstructed background; this cut does not produce significant distortion of the

unconstrained invariant mass distribution in the considered window. For these rea-

sons this background does not need to be modelled in either of these cases. For the fit

to B0 → K∗0(ψ(2S) → e+e−) candidates, which includes a ψ(2S) mass constraint,

only the combinatorial background is considered and described using an exponential

function.

5.7.2.3 Summary of the fit to the electron samples

In summary, the free parameters in the fit to data are:

• the B0 → K∗0(J/ψ → e+e−), B0 → K∗0(ψ(2S)→ e+e−) and B0 → K∗0(γ →
e+e−) yields in each trigger category;

• the ree ratio common to all trigger categories; one for the low-, one for the

central- and one for the high-q2 region;

• one mass shift, m′, and one width scale factor, c, for the signal PDF common

between B0 → K∗0(J/ψ → e+e−) and B0 → K∗0e+e− in all intervals, but

different for the three trigger categories and for B0 → K∗0(ψ(2S) → e+e−)

and B0 → K∗0(γ → e+e−);
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• the yield and slope, when applicable (e.g. no slope at high-q2), of the combi-

natorial background in each trigger category and for each channel;

• the yield of the backgrounds when not constrained or fixed as described in the

previous section.

Fits to simulated B0 → K∗0(J/ψ → e+e−) candidates are shown in Appendix G,

while fits to real candidates are shown in Fig. 5.23 for the normalisation channel, in

Fig. 5.24 for the rare channel and in Fig. 5.25 for the control channels. For simplicity

the latter two figures show the sum of the three trigger categories, while the separate

plots are reported in Appendix H, where fitted parameters are also reported on the

plots. In the high-q2 interval, above 15 GeV2/c4, the efficiency for the L0Hadron

trigger becomes very low as the K∗0 has very low momentum. In this region only 9

candidates are found in the interval 4500 < m(Kπee) < 6000 MeV/c2. Therefore,

only L0E and L0I triggered events are fitted for this region.

5.7.3 Event yields

Table 5.8 reports yields obtained from the fits described in the previous subsections.

The values for the rare channels and γ(ee) are not parameters free to vary in the fits

but, as described in Sec. 5.7, they are parameterised as a function of the number of

J/ψ (``) candidates found and the ratios ree and rµµ between the resonant and rare

branching fractions; the values in the tables are derived from the ratios.
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Table 5.8: Summary of the raw yields obtained from the invariant mass fits. The
uncertainty is statistical.

Sample γ(ee) J/ψ (ee) ψ(2S)(ee)

µµ – 373755± 641 –

ee L0E 614± 35 42797± 260 2701± 62

ee L0H 262± 24 3680± 79 58± 10

ee L0I 382± 39 10804± 138 569± 32

Sample low-q2 central-q2 high-q2

µµ 475± 24 636± 29 679± 29

ee L0E 117± 12 89± 13 158± 26

ee L0H 44± 8 18± 7 –

ee L0I 72± 11 38± 9 52± 13
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Figure 5.23: Fit to the constrained invariant mass, m(Kπee)J/ψ , of
B0 → K∗0(J/ψ → e+e−) candidates. The dashed black line represents the signal
and the shaded shapes the backgrounds.
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Figure 5.24: Fit to the m(Kπee) invariant mass of rare B0 → K∗0e+e− candidates.
From top to bottom for the low-, central- and high-q2 intervals. The dashed black
line represents the signal and the shaded shapes the backgrounds.



5.7. INVARIANT MASS FITS 168

]2cee) [MeV/πm(K
4600 4800 5000 5200 5400 5600 5800 6000 6200

C
an

di
da

te
s 

pe
r 3

4 
M

eV
/c

2

0

50

100

150

200

250

Bkg. comb.

Bkg. part-reco

Bkg. leak K*0ee

Sig. B0→K*0γ

]2cee) [MeV/πm(K
4600 4800 5000 5200 5400 5600 5800 6000 6200

C
an

di
da

te
s 

pe
r 

34
 M

eV
/c

2

0

1000

2000

3000

4000

5000

6000

7000

8000
Sig. K*0J/ψee

Bkg. comb.

Bkg. Λb→pKJ/ψ

Bkg. Bs→K*0J/ψ

5100 5150 5200 5250 5300 5350 5400 5450 5500 5550 5600

C
an

di
da

te
s 

pe
r 2

0 
M

eV
/c

2

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
Sig. K*0ψ(2S)ee

Bkg. comb.

m(Kπee)ψ(2S) [MeV/c2]

Figure 5.25: Fit to the m(Kπee) invariant mass of control channel candidates.
From top to bottom: the invariant mass distribution without mass constraint of
B0 → K∗0(γ → e+e−) and B0 → K∗0(J/ψ → e+e−) candidates, and the con-
strained invariant mass, m(Kπee)ψ(2S), of B0 → K∗0(ψ(2S) → e+e−) candidates.
The dashed black line represents the signal and the shaded shapes the backgrounds.
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5.8 Efficiency

The efficiency for each of the decay channels is calculated according to the formula

εtot = εgeom · εreco|geom · εPID|reco · εtrig|PID · εMVA|trig · εBCM|MVA,

where the first term is the efficiency to have final state particles in the LHCb detector

acceptance; the second term (εreco|geom) carries information about the reconstruction

and pre-selection efficiency; the third (εPID|reco) corresponds to the efficiency of the

PID requirements; the fourth (εtrig|PID) handles the trigger efficiency for those events

which are selected by the pre-selection process; and, finally, the latter two terms

deal with the efficiency of the neural network classifier and the BCM requirement.

Geometric, reconstruction, trigger, MVA and BCM efficiencies are evaluated using

simulated data samples with the trigger efficiency for B0 → K∗0J/ψ being cross-

checked using the data-driven TISTOS method as described in Sec. 3.6.3. The PID

efficiency is calculated with a data-driven method as described in Sec. 5.8.3.

Absolute efficiencies for the muon and electron normalisation channels are reported

in Tab. 5.9 and relative efficiencies between the rare and resonant channels, ε``/εJ/ψ (``),

are listed in Tab. 5.10; these are the efficiencies which are used in the fit.

Table 5.9: Absolute efficiencies for the resonant µµ and ee channels. For the latter,
the efficiency is shown for each of the three L0 categories considered.

ε
µµ ee

L0E L0H L0I

εgeom 0.1598± 0.0005 0.1589± 0.0005

εreco|geom 0.0947± 0.0001 0.0603± 0.0001

εPID|reco 0.8148± 0.0000 0.8222± 0.0000

εtrig|PID 0.7511± 0.0005 0.1939± 0.0005 0.0163± 0.0002 0.0707± 0.0003

εMVA|trig 0.8944± 0.0004 0.8597± 0.0007 0.8983± 0.0006 0.8276± 0.0017

εtot 0.0083± 0.0000 0.0013± 0.0000 0.0001± 0.0000 0.0005± 0.0000
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Table 5.10: Relative efficiencies, εrel = ε``/εJ/ψ (``), for the µµ and ee channels in the
low-, central- and high-q2 intervals.

ε
µµ ee

L0E L0H L0I

low-q2

εgeom 1.0200± 0.0091 1.0429± 0.0084

εreco|geom 0.1309± 0.0010 0.1961± 0.0007

εPID|reco 0.9861± 0.0003 0.9718± 0.0001

εtrig|PID 0.8103± 0.0048 0.6478± 0.0058 2.5556± 0.0455 1.2748± 0.0139

εMVA|trig 0.9528± 0.0024 0.9568± 0.0014 0.9570± 0.0013 0.9463± 0.0030

εBCM|MVA – 0.9394± 0.0014 0.9492± 0.0013 0.9590± 0.0023

εtot 0.7810± 0.0168 0.5809± 0.0097 2.2685± 0.0514 1.1073± 0.0200

central-q2

εgeom 1.0200± 0.0091 1.0429± 0.0084

εreco|geom 0.1891± 0.0012 0.1580± 0.0006

εPID|reco 0.9784± 0.0002 0.9672± 0.0001

εtrig|PID 0.8925± 0.0038 0.7909± 0.0069 2.1344± 0.0439 1.1208± 0.0141

εMVA|trig 0.9068± 0.0024 0.8397± 0.0024 0.8512± 0.0022 0.7946± 0.0054

εBCM|MVA – 0.8960± 0.0020 0.8978± 0.0020 0.9283± 0.0037

εtot 0.7171± 0.0124 0.8145± 0.0157 2.2235± 0.0595 1.0542± 0.0236

high-q2

εgeom 1.0200± 0.0091 1.0429± 0.0084

εreco|geom 0.1172± 0.0009 0.0530± 0.0003

εPID|reco 1.0286± 0.0001 1.0113± 0.0002

εtrig|PID 1.1122± 0.0038 1.5639± 0.0148 – 0.8090± 0.0195

εMVA|trig 0.8986± 0.0027 0.8228± 0.0036 – 0.7201± 0.0115

εtot 0.7843± 0.0155 0.6063± 0.0131 – 0.2745± 0.0095
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5.8.1 Geometric efficiency

In order to save CPU time and disk space, simulated samples only contain decays

that have final daughters inside the LHCb detector acceptance, which can therefore

be reconstructed. This requires the momenta of all final state particles to be within

10 and 400 mrad of the beam line direction. The efficiency of this requirement is

obtained using a separate generator level simulated sample.

5.8.2 Reconstruction efficiency and bin migration

The reconstruction efficiency is defined as the efficiency to reconstruct each de-

cay channel given that its daughters are inside the geometrical acceptance of the

detector. This includes both the probability that the final particles generate observ-

able signatures and the efficiency of all the pre-selection requirements described in

Sec. 5.6, including those intended to remove peaking backgrounds. The efficiency

of the PID requirements are treated separately because of known deficiencies in the

description of data by the simulation, while there are reliable data-driven methods

which can be used to extract it (see Sec. 5.8.3).

5.8.2.1 Bin migration

Candidates produced in a given q2 interval may be reconstructed in a different one;

this is referred to as “bin migration” and can be due to two different effects. The

first effect is due to the finite detector resolution that can cause candidates close

to the edges of the considered intervals to fall on the wrong side of the edge. This

effect is only important in the case where the true distributions are not flat in q2,

as this would cause the amount of bin migration in the two directions to differ. The

second possible source of bin migration is a systematic effect due to the presence of

bremsstrahlung photons that cannot be recovered. It is particularly important to

take into account the bin migration for the electron channels because more photons
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are radiated from the final state and the mass resolution is worse. Figure 5.26

shows the response matrix for simulated B0→ K∗0e+e− events, which represents

the correlation between reconstructed and generated q2 values. In the ideal case of

perfect resolution this plot would be a diagonal line and, in the case where no bias

is present, its slope would be 1. Table 5.11 lists the net amounts of bin migration,

Mnet, in the considered q2 intervals defined as:

Mnet = N(in→ in) +N(out→ in)−N(in→ out), (5.8)

where N(in→ in) is the number of candidates that are generated and reconstructed

inside the considered interval, N(out → in) the number of candidates that are

generated outside the interval but reconstructed inside and N(in→ out) the number

of candidates generated inside that fall outside. The reconstruction efficiency is

calculated comparing generated and reconstructed samples and therefore already

includes bin migration effects. Nevertheless, it is useful to single out this component

to better assess the corresponding systematic uncertainty.
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Figure 5.26: Generated versus reconstructed q2 for simulated B0→ K∗e+e− events.



173 CHAPTER 5. TESTING LEPTON FLAVOUR UNIVERSALITY WITH RK∗0

Table 5.11: Net bin migration amounts, Mnet, in the considered q2 intervals. Positive
values indicate “net in”, negative values “net out”.

Sample low-q2 central-q2 high-q2 J/ψ
µµ 0.0002± 0.0001 −0.0021± 0.0003 0.0032± 0.0004 −0.0012± 0.0000
ee 0.0268± 0.0005 0.0663± 0.0009 −0.4277± 0.0048 −0.0445± 0.0003

5.8.3 PID efficiency

The simulation does not reliably describe particle ID variables and therefore a data-

driven method is used to obtain this efficiency component. This is done using the

PIDCalib package described in Sec. 2.8.1. Furthermore, the same method is used

to weight the simulation in order to calculate the MVA and trigger efficiencies. The

PIDCalib package allows the phase-space to be divided into intervals of quanti-

ties relevant for the determination of the PID efficiency and obtain a data-driven

efficiency for each interval. For this analysis the phase-space is divided into approx-

imately equally populated bins of momentum and pseudorapidity of the particle

under study. Figure 5.27 shows performance tables for pions, kaons, muons and

electrons. After the efficiency tables are obtained for each particle, the total ef-

ficiency is calculated for each candidate as the product of the four final particles

efficiencies. ε = εK · επ · ε`1 · ε`2 . Finally, as the decay channel under study generally

has different kinematic distributions than the calibration sample, the total efficiency

is found by averaging over simulated events, namely

εPID =
1

N

N∑
i

εK(piK , η
i
K) · επ(piπ, η

i
π) · ε`(pi`1 , ηi`1) · εK(pi`2 , η

i
`2

). (5.9)

5.8.4 Trigger efficiency

While the trigger efficiency for the muon channels is calculated using simulated

events, for the electron channels a combination of simulation and data-driven meth-

ods is used. The efficiency of the software stage, HLT, is always obtained from
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Figure 5.27: PID efficiency performance tables in regions of η and p of the particle
under study, obtained with a data-driven method: for pions (top left), kaons (top
right), muons (bottom left) and electrons (bottom right).

simulation, while the efficiency of the hardware stage, L0, is obtained using a data-

driven method as described in the next subsection. For both muon and electron

channels it is possible to use the resonant sample to cross-check the efficiency ob-

tained using the simulation, as explained in Sec. 5.8.4.2.

5.8.4.1 Electron triggers

For the electron channels data is fitted separately in three trigger categories: L0E,

L0H and L0I and therefore the efficiency is calculated separately for each category.

While the HLT1 and HLT2 efficiencies are derived using simulated events, the effi-

ciency for the L0Electron and L0Hadron triggers, based on calorimeter information,

cannot be obtained from the simulation because the ageing of the calorimeters,

which modifies their response with time, is not simulated. Therefore, in these cases

the L0 trigger efficiency must be calibrated using data driven-methods.
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Tables of efficiencies as a function of the pT of the relevant particle for each trigger

are obtained by applying the TISTOS method to a calibration sample. These are

given separately for calorimeter regions with different properties e.g. the cell size.

The considered regions are the inner and outer HCAL, and the inner, middle and

outer ECAL. Figure 5.28 shows data-driven efficiencies for the L0Electron trigger in

the three ECAL regions as a function of the pT of the electron.
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Figure 5.28: Data-driven L0Electron trigger efficiencies as a function of the trans-
verse momentum of the electrons for the three ECAL regions: inner (top left), middle
(top right) and outer (bottom).

The probabilities of an event being triggered by L0Electron or L0Hadron are calcu-

lated for each candidate as:

PL0E = ε(e+) + ε(e−)− ε(e+)ε(e−) and PL0H = ε(π) + ε(K)− ε(π)ε(K).

The probability of a TIS trigger is independent of the signal by definition and

therefore must be the same in the rare and resonant channels and hence cancel

in their ratio.
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Event by event efficiencies for the three trigger categories are then defined to be

exclusive in the following way:

• L0E: εL0E = PL0E, namely the probability that the trigger decision is due to

at least one of the electrons of a decay candidate;

• L0H: εL0H = PL0H ·(1−PL0E), namely the probability that the trigger decision

is due to at least one of the hadrons of a decay candidate but none of the

electrons;

• L0I: εL0I = (1 − PL0H) · (1 − PL0E), namely the probability that neither the

hadrons or the electrons in decays candidates are responsible for the trigger

decision. Note that in this case εL0I does not correspond to the efficiency of

TIS trigger but to the probability that the event does not fall into the L0E or

L0H categories.

Finally, as in the PID case, the total efficiency is found by averaging over all events

of a simulated sample:

εL0 =
1

N

N∑
i

εL0(pT
i), (5.10)

where “L0” is a label indicating the trigger category under consideration.

5.8.4.2 TISTOS cross-check

The efficiency obtained using the simulation is cross-checked by applying the TISTOS

method, already described in Sec. 3.6.3, to resonant data. For this purpose a sam-

ple of B0 → K∗0(J/ψ → `+`−) candidates triggered independent-of-signal is used

as the control sample. As data also contains non-negligible amounts of background,

a narrow interval around the peak, dominated by the signal, is selected and the

sPlot method is used to remove residual background in the data sample. Results

are shown in Tab. 5.12, where the efficiency obtained using the TISTOS method is

compared between data and simulation. These are found to be in agreement for the
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Table 5.12: Trigger efficiencies obtained using the TISTOS method on simulated
and real B0→ K∗0J/ψ (→ `+`−) decays.

Sample MC Data Correction factor
J/ψ → µµ 0.797± 0.002 0.803± 0.004 1.0073

J/ψ → ee L0E 0.268± 0.002 0.255± 0.004 0.9536
J/ψ → ee L0H 0.028± 0.001 0.026± 0.002 0.9269
J/ψ → ee L0I 0.017± 0.001 0.011± 0.001 0.6760

muon channel, while they show deviations in the electron channels. In particular a

significant discrepancy is found, for the L0I category, for which the procedure ex-

plained in Sec. 5.8.4.1 does not ensure a correct calibration. The table also reports

a correction factor obtained according to the formula

f = 1 +
εTISTOS
data − εTISTOS

MC

εTISTOS
MC

, (5.11)

which can be used to correct the absolute resonant yields. Although discrepancies are

present, they are expected to cancel in the ratio between the rare and J/ψ channels;

only the residual discrepancy on this ratio, due to the different q2, is relevant for

the measurement of RK∗0 . In order to check if discrepancies do indeed cancel, a

data-driven efficiency is also required for the rare channels. To do this, the TISTOS

efficiency obtained using B0 → K∗0(J/ψ → `+`−) candidates must be re-weighted to

account for the different kinematics of the rare and resonant channels. This is done

by determining the TISTOS efficiency as function of the maximum pT of the particles

responsible for the L0 trigger decision, i.e. the leptons for L0Electron and L0Muon,

the kaon and the pion for L0Hadron, and all final state particles for L0Global. These

efficiencies, shown in Fig. 5.29, are used to re-weight the distribution of simulated

rare candidates. The ratios εTISTOS
`` /εTISTOS

J/ψ obtained using the data-driven method

and simulation are compared and found to be fully compatible. This means that,

even though the TISTOS correction has an effect on the absolute efficiency of each

channel, this is negligible on their ratio as originally anticipated. Therefore, no

correction due to this effect is applied for the calculation of the RK∗0 ratio.
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Figure 5.29: Trigger efficiency obtained by applying the TISTOS method to
B0 → K∗0(J/ψ → `+`−) candidates as a function of the maximum pT of the two
muons (top left), the maximum pT of the two electrons for the L0E category (top
right), the maximum pT of K and π for L0H (bottom left) and the maximum pT of
all the final particles for L0I (bottom right).

5.8.5 Neural networks and BCM efficiencies

The neural network and BCM efficiencies are evaluated from fully weighted simu-

lated samples, and separately for each trigger category for the electron channels. To

check for biases the efficiency obtained for B0→ K∗0(J/ψ → `+`−) decays can be

compared with that obtained for rare B0→ K∗0`+`− decays selected in the same

q2 region used for the resonant case. The ratio between the two should be close to

unity with small deviations due the fact that the q2 interval has a finite width and

the events are distributed differently within the interval. This ratio is found to be

0.997± 0.004 for the µµ channels and 0.981± 0.005 for the ee channels. Values for

the electron channels show a small deviation from unity due to the very large q2

interval used to select the resonant channel (6 – 11 GeV2/c4).
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5.9 Systematic uncertainties

This section describes the main sources of systematic uncertainty considered. Other

sources, which would matter in measurements of absolute quantities, cancel in the

ratio between the rare and resonant channels. The systematic uncertainties consid-

ered and their estimated effects on the RK∗0 ratio are summarised in Tab. 5.13; more

details about each source are given in the following sections. The total uncertainty

is evaluated by summing in quadrature the individual components and results in

∼ 2% for the low- and central-q2 intervals and ∼ 9% for the high-q2 interval. This

evaluation of systematic uncertainties represents the current status of the analysis

at the time of writing, and may evolve prior to publication.

Table 5.13: Summary of the systematic uncertainties on the RK∗0 ratio (%).

Source low-q2 (%) central-q2 (%) high-q2 (%)

Signal shape 1.65 1.10 2.92

Bremsstrahlung categories 0.04 0.06 0.37

Swap 0.30 0.12 0.13

Λ0
b → pK`+`− 0.25 0.28 0.77

Combinatorial 0.00 0.02 8.02

J/ψ leakage 0.06 0.01 0.10

ψ(2S) leakage 0.03 0.01 2.00

PDF smoothing 0.11 0.28 0.49

Efficiency 0.65 0.74 0.83

Bin migration 0.69 1.43 1.19

5.9.1 Choice of signal and background PDFs

There is a certain arbitrariness in the choice of PDFs used to model signal and

background contributions in the invariant mass fits, which could translate into a

bias on the final result. The systematic uncertainty due to the parameterisation of

the line shapes is studied in the following ways.
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For the signal PDF:

• Shape: in the electron channels the PDF is changed from a CBG to a DCB

function. Modifying the PDF has a negligible effect in the muon modes, while

it affects the electron ones. Furthermore the data-simulation discrepancy pa-

rameters (m′ and c) are constrained using the B0 → K∗0(γ → e+e−) sample

instead of B0 → K∗0(J/ψ → e+e−).

• Bremsstrahlung categories : Gaussian constraints are applied to the relative

fractions of the bremsstrahlung categories, instead of fixing them to the values

observed on simulation.

For the background PDFs:

• Swaps : a component that describes candidates where the particle identities are

swapped is added both to the muon and electron resonant fits, and constrained

to the number of candidates expected from simulation.

• Combinatorial : the PDF is changed from an exponential to the shape of a

background-enriched sample, obtained using an anti-MVA requirement; the

opposite is done for the high-q2 interval, where the anti-MVA shape is the

nominal one.

• Λ0
b → pK`+`−: this background is added to the fit for the rare channel and

returns zero yield for both the muon and the electron samples. Therefore, no

systematic uncertainty is assigned from this source. Furthermore, the Λ0
b →

pKJ/ψ (→ e+e−) normalisation is allowed to vary on the fit rather than being

fixed to the value predicted using the Λ0
b yield in the muon channel.

• Leakage: the amounts of the leakages, which are fixed in the nominal fit to

the corresponding signal yields, are allowed to vary.

• PDF smoothing : in all cases where a simulated sample is used to obtain back-

ground shapes and smoothed to obtain a PDF, the kernel of the density esti-
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mation is varied by ± 0.1 from the value used in the nominal fit. The largest

difference from the default values is assigned as a systematic uncertainty.

5.9.2 Efficiency determination

The statistical uncertainty on the efficiency determination due to the finite size of

the simulated and calibration samples is taken as the corresponding systematic un-

certainty. A further source of systematic uncertainty associated with the trigger

efficiency is estimated using the data-simulation differences observed in Sec. 5.8.4.2.

Ratios of efficiencies for the rare to resonant decays are found to be compatible be-

tween the electron and muon modes, indicating that the effect on RK∗0 is negligible,

therefore no uncertainty is assigned for this source.

5.9.2.1 Bin migration

The determination of the reconstruction efficiency is affected by the knowledge of

the amount of bin migration as explained in Sec. 5.8.2. This amount depends on the

shape of the q2 distribution, which in turn depends on the simulated B0 → K∗0e+e−

decay model. In order to assess this systematic, simulated samples are generated

using different models corresponding to different form factors [134, 135, 136]. The q2

distributions obtained using each model are compared with those obtained using the

default model [137]. Figure 5.30 shows the ratios of these q2 distributions relative to

the default model, which are used to re-weight the simulation. The amount of bin

migration is calculated using the simulation re-weighted to reproduce each model;

Table 5.14 lists the percent variations obtained. The largest difference between two

values is taken as the systematic uncertainty.
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Table 5.14: Variation on the level of bin migration (%) obtained using different form
factors models.

Model low-q2 central-q2 high-q2

Ball-Zwicky [134] -0.3 1.0 0.2
Colangelo [135] 0.4 0.4 0.8

Melikhov lattice [136] 0.1 -0.4 -0.4
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Figure 5.30: Ratios of the q2 distributions obtained using different form factors
models [134, 135, 136] with respect to the default model [137].

5.10 Result extraction and validation

This section presents the procedure to obtain the RK∗0 ratio, together with methods

to validate the robustness of the methods used. To avoid biases the analysis is

carried out in a blind way and the quantity of interest, RK∗0 , will not be calculated

until the candidate selection and efficiency estimation strategies are approved by the

LHCb Collaboration.
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5.10.1 rJ/ψ sanity check

In order to cross-check the analysis procedure, the ratio between the measured

branching ratio of the electron and muon resonant channels is calculated:

rJ/ψ =
B(B0 → K∗0(J/ψ → µ+µ−))

B(B0 → K∗0(J/ψ → e+e−))
=
εJ/ψ (µµ) ·NB0→K∗0(J/ψ→e+e−)

εJ/ψ (ee) ·NB0→K∗0(J/ψ→µ+µ−)

. (5.12)

Compared with absolute branching fractions calculations, the determination of rJ/ψ

represents a better sanity test as it is not affected by uncertainties due to the knowl-

edge of the amount of collected luminosity or of the fragmentation fraction: the

probability for a b quark to produce a B0 meson. These quantities come with large

uncertainties but they cancel in the rJ/ψ ratio. As new physics is expected not to

affect tree level b→ ccs processes, the ratio between the J/ψ channels should be 1,

while deviations from unity would signal unaccounted systematic effects.

5.10.2 B(B0 → K∗0γ)

As a further check, the B0 → K∗0γ branching fraction can be determined using the

ratio

rγ =
B(B0 → K∗0γ)

B(B0 → K∗0(J/ψ → e+e−))
=

Nγ(ee)

NJ/ψ (ee)

· εJ/ψ (ee)

εγ(ee)

.

This is an interesting cross-check as it involves only electrons which are more easily

affected by systematics effects due to the more complex reconstruction process. The

measured value can be compared with the one reported in the Review of Particle

Physics, (4.33± 0.15)× 10−5 [2].

5.10.3 RK∗0

The RK∗0 ratio is calculated by dividing the ree and rµµ parameters described in

Sec. 5.7. These ratios are direct parameters of the fit but they can also be built from
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the yields in Tab. 5.8 and the efficiencies in Tab. 5.10. In summary the definition of

the RK∗0 ratio is the following:

RK∗0 =
ree
rµµ

=
Nee

NJ/ψ (ee)

· NJ/ψ (µµ)

Nµµ

· εJ/ψ (ee)

εee
· εµµ
εJ/ψ (µµ)

. (5.13)

As the electron ratio, ree, is a shared parameter in the simultaneous fit across the

three trigger categories, its value is already a combination of the three samples.

Results are still blinded.
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Conclusions

In this work, two rare decays - one baryonic and one mesonic - are analysed in order

to look for hints of new physics using data collected by the LHCb detector at centre

of mass energies of 7 and 8 TeV and corresponding to a total integrated luminosity

of 3.0 fb−1.

A measurement of the differential branching fraction of the rare Λ0
b → Λµ+µ− decay

is performed together with the first measurement of angular observables for this

decay. Evidence for the signal is found for the first time in the q2 region between

the two charmonium resonances and below the square of the J/ψ mass, in par-

ticular in the [0.1, 2.0] GeV2/c4 interval, where an increased yield is expected due

to the photon pole. Thanks to a larger data sample and a better control of sys-

tematic effects, uncertainties on the measurements in the [15, 20] GeV2/c4 interval

are reduced by approximately a factor of three with respect to the previous LHCb

measurements [110]. The branching fraction measurements are compatible with SM

predictions in the high-q2 region, above the square of the J/ψ mass, but lie below

185
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the predictions in the low-q2 region. In the angular analysis of Λ0
b → Λµ+µ− de-

cays two forward-backward asymmetries, in the pπ system, AhFB, and in the dimuon

system, A`FB, are measured. The measurements of the AhFB observable are in good

agreement with the SM predictions, while for the A`FB observable they are consis-

tently above the predictions. Following the publication of these studies improved

theoretical calculations became available, which are reported in Appendix E and

show a better agreement with the measurement. Theoretical values are now com-

patible with the branching fraction measurements at low-q2 and overestimate the

experimental values at high-q2. The situation regarding the angular observables is

unchanged but the significance of the existing discrepancies is enhanced due to the

reduced uncertainties on the predicted values.

Secondly, an analysis to test flavour universality between electrons and muons ex-

ploiting rare decays is carried out. Selection requirements are defined to select the

rare and normalisation modes, B0 → K∗0`+`− and B0 → K∗0(J/ψ → `+`−), in both

electron and muons channels; this includes the definition of a multivariate classifier.

A study of backgrounds is performed, which results in a set of requirements to lower

their yields in the selected samples and a set of PDFs to model the remaining con-

tributions in the invariant mass fits. The efficiency of the selection requirements is

evaluated and fits to the 4-body invariant mass distributions are performed for all

channels. Finally, a study of the systematic uncertainties is presented and a proce-

dure to calculate the result and validate its robustness is defined. The results are

currently blinded, pending completion of the review within the LHCb Collaboration;

minimal changes are anticipated and publication is expected in the near future.
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APPENDIX A

Data-simulation comparison for the Λ0
b → Λµ+µ− analysis

This appendix reports a comparison between distributions in data and simulated
Λ0
b → J/ψ Λ evets. In the plots what is labeled as “Data” is real data in a 20

MeV interval around the Λ0
b mass, where a sideband subtraction technique to re-

move background. “Side” is real data for masses above 6 GeV containing mostly
combinatorial background. These can be compared to the previous sample to see
which variables differ the most. “MC” corresponds to Pythia8 Λ0

b → J/ψΛ simulated
events. Finally, the label “MC fully W” refers to the same simulated sample but
weighted for the Λ0

b and Λ kinematics (Sec. 3.3.2) and the decay model (Sec. 3.3.1).
Distributions are shown separately for long and downstream events.

Lb_MassConsLambda_chi2[0]/Lb_MassConsLambda_nDOF[0]
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Figure A.1: Distributions of χ2/ndf of the kinematic fit in data and simulation for
LL (left) and DD (right) events.
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Figure A.2: Distributions of maximum muon IPχ2 variable in data and simulation
for LL (left) and DD (right) events.
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Figure A.3: Distributions of Λ0
b momentum variable in data and simulation for LL

(left) and DD (right) events.
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Figure A.4: Distributions of Λ transverse momentum variable in MC, data signal
and data background for LL (left) and DD (right) events.
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Figure A.5: Distributions of pion transverse momentum variable in data and simu-
lation for LL (left) and DD (right) events.
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Figure A.6: Distributions of proton transverse momentum variable in data and
simulation for LL (left) and DD (right) events.



APPENDIX B

Importance of the inputs in NeuroBayes

All quantities related to the importance of the inputs are calculated based on the
correlation of the variables to the classification output. From Ref [138], the correla-
tion significance is calculated for each variable according to

ρti =
1
n

∑n
j=1

(
xtj− < xt >

)
·
(
xij− < xi >

)√
V [xt]V [xi]

,

where t denotes the truth, i the correlated variable, < xi > the expectation value for
the given variable, V [xi] its variance and n is number of events in training sample.
The correlation significance for a given variable, “only this” in Tab. 3.5, is ρti · √n.
For the significance loss, all input are decorrelated and the correlation is calculated
between the truth and each decorrelated variable ρ̃ti. The total correlation, “adds”
in Tab. 3.5, is then defined by

ρ2
TN =

N∑
i=1

ρ̃ti2,

where N is the number of variables. An analogous procedure is repeated without
the considered variable to calculate ρ2

TN−1. The significance loss, “loss” in Tab. 3.5,
is then given by (

ρ2
TN − ρ2

TN−1

)
· √n.

Intuitively, the correlation significance is proportional to the amount of information
provided by a given input without all others, while the significance loss corresponds
to the amount of information lost removing the given input while keeping all others.
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APPENDIX C

Systematic uncertainties on the efficiency calculation for the

Λ0
b → Λµ+µ− branching fraction analysis.

This appendix reports systematic uncertainties on absolute and relative efficiencies
for the Λ0

b → Λ µ+µ− branching fraction analysis.

q2 [ GeV2/c4 ] Lifetime Decay Model Polarisation
0.1-2.0 0.003% 0.059% 0.145%
2.0-4.0 0.007% 0.156% 0.145%
4.0-6.0 0.002% 0.156% 0.144%
6.0-8.0 0.003% 0.080% 0.144%
11.0-12.5 0.012% 0.101% 0.144%
15.0-16.0 0.007% 0.050% 0.144%
16.0-18.0 0.002% 0.059% 0.145%
18.0-20.0 0.009% 0.016% 0.145%
1.1-6.0 0.005% 0.651% 0.144%
15.0-20.0 0.007% 0.088% 0.144%

Table C.1: Absolute values of systematic uncertainties on relative geometric effi-
ciency.
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q2 [ GeV2/c4 ] Lifetime Decay Model Polarisation
0.1-2.0 0.007% 0.004% 0.008%
2.0-4.0 0.006% 0.001% 0.009%
4.0-6.0 0.009% 0.003% 0.008%
6.0-8.0 0.008% 0.005% 0.008%
11.0-12.5 0.010% 0.005% 0.009%
15.0-16.0 0.004% 0.006% 0.008%
16.0-18.0 0.003% 0.010% 0.010%
18.0-20.0 0.004% 0.011% 0.008%
1.1-6.0 0.009% 0.043% 0.010%
15.0-20.0 0.005% 0.072% 0.009%

Table C.2: Absolute values of systematic uncertainties on relative detection effi-
ciency.

Downstream Long
q2 [ GeV2/c4 ] Lifetime Model Polarisation Lifetime Model Polarisation
0.1-2.0 0.350% 0.234% 0.463% 0.066% 0.264% 1.081%
2.0-4.0 0.170% 0.640% 0.488% 0.005% 0.953% 1.088%
4.0-6.0 0.073% 0.514% 0.465% 0.052% 1.607% 1.087%
6.0-8.0 0.054% 0.298% 0.458% 0.011% 1.517% 1.075%
11.0-12.5 0.043% 0.030% 0.469% 0.025% 0.187% 1.080%
15.0-16.0 0.078% 0.499% 0.462% 0.030% 0.110% 1.082%
16.0-18.0 0.100% 0.215% 0.477% 0.021% 0.412% 1.078%
18.0-20.0 0.130% 0.044% 0.471% 0.034% 0.216% 1.079%
1.1-6.0 0.137% 0.279% 0.460% 0.025% 0.656% 1.078%
15.0-20.0 0.107% 0.511% 0.460% 0.016% 0.742% 1.077%

Table C.3: Absolute values of systematic uncertainties on relative reconstruction
efficiency for long and downstream candidates.

Downstream Long
q2 [ GeV2/c4 ] Lifetime Model Polarisation Lifetime Model Polarisation
0.1-2.0 0.038% 0.226% 0.070% 0.003% 0.061% 0.117%
2.0-4.0 0.009% 0.091% 0.034% 0.020% 0.072% 0.076%
4.0-6.0 0.028% 0.162% 0.058% 0.018% 0.165% 0.040%
6.0-8.0 0.005% 0.080% 0.075% 0.041% 0.035% 0.053%
11.0-12.5 0.002% 0.207% 0.079% 0.002% 0.148% 0.076%
15.0-16.0 0.036% 0.094% 0.035% 0.022% 0.021% 0.089%
16.0-18.0 0.023% 0.027% 0.029% 0.023% 0.003% 0.031%
18.0-20.0 0.017% 0.145% 0.034% 0.008% 0.199% 0.063%
1.1-6.0 0.024% 0.215% 0.029% 0.012% 0.733% 0.051%
15.0-20.0 0.025% 0.220% 0.031% 0.004% 0.108% 0.029%

Table C.4: Absolute values of systematic uncertainties on relative trigger efficiency
for long and downstream candidates.
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CALCULATION FOR THE Λ0

B → Λµ+µ− BRANCHING FRACTION ANALYSIS.

Downstream Long
q2 [ GeV2/c4 ] Lifetime Model Polarisation Lifetime Model Polarisation
0.1-2.0 0.022% 0.019% 0.025% 0.060% 0.106% 0.072%
2.0-4.0 0.127% 0.267% 0.017% 0.095% 0.002% 0.031%
4.0-6.0 0.116% 0.106% 0.045% 0.081% 0.139% 0.119%
6.0-8.0 0.111% 0.186% 0.020% 0.085% 0.387% 0.047%
11.0-12.5 0.008% 0.056% 0.017% 0.057% 0.030% 0.027%
15.0-16.0 0.002% 0.004% 0.066% 0.070% 0.124% 0.023%
16.0-18.0 0.024% 0.088% 0.027% 0.068% 0.105% 0.023%
18.0-20.0 0.031% 0.050% 0.027% 0.180% 0.506% 0.077%
1.1-6.0 0.118% 0.164% 0.037% 0.080% 0.183% 0.058%
15.0-20.0 0.001% 0.125% 0.037% 0.102% 0.541% 0.034%

Table C.5: Absolute values of systematic uncertainties on relative MVA efficiency
for long and downstream candidates.

q2 [ GeV2/c4 ] Reconstruction Trigger MVA
0.1-2.0 0.612% 0.250% 0.173%
2.0-4.0 0.515% 0.246% 0.223%
4.0-6.0 0.408% 0.180% 0.272%
6.0-8.0 0.412% 0.090% 0.218%
11.0-12.5 0.175% 0.047% 0.103%
15.0-16.0 0.962% 0.010% 0.141%
16.0-18.0 1.173% 0.037% 0.103%
18.0-20.0 1.557% 0.050% 0.122%
1.1-6.0 0.475% 0.220% 0.246%
15.0-20.0 1.254% 0.040% 0.083%

Table C.6: Values of DD vertexing systematic uncertainties on relative reconstruc-
tion, trigger and MVA efficiencies for downstream candidates.



APPENDIX D

Decay models

D.1 Λ0
b → Λµ+µ− distribution

The q2 and angular dependancies of the Λ0
b → Λµ+µ− decays are modelled based on

Ref. [111], where the angular distribution for unpolarised Λ0
b production is defined

as

W (θ`, θB, χ) ∝
∑

λ1,λ2,λj ,λ′j ,J,J
′,m,m′,λΛ,λ

′
Λ,λp

hmλ1λ2
(J)hm

′

λ1λ2
(J ′)ei(λj−λ

′
j)χ

× δλj−λΛ,λ
′
j−λ′ΛδJJ ′d

J
λj ,λ1−λ2

(θ`)d
J ′

λ′j ,λ1−λ2
(θ`)H

m
λΛλj

(J)Hm′†
λ′Λλ

′
j
(J ′)

× d
1/2
λΛλp

(θB)d
1/2

λ′Λλp
(θB)hBλp0h

B †
λp0 . (D.1)

In this formula θ` and θB correspond to the lepton and proton helicity angles, χ
is angle between dimuon and Λ decay planes (for unpolarised production we are
sensitive only to difference in azimuthal angles), dJi,j are Wigner d-functions and h,
hB and H are helicity amplitudes for virtual dimuon, Λ and Λ0

b decays. The sum
runs over all possible helicities with the dimuon being allowed in spin 0 and 1 states
(J and J ′). The m and m′ indices run over the vector and axial-vector current
contributions.

The production polarisation is introduced by removing ei(λj−λ
′
j)χ from the expression,

swapping small Wigner d-functions dJi,j to the corresponding capital ones DJ
i,j which

are related as
DJ
i,j(θ, φ) = dJi,j(θ)e

iφ(i−j) (D.2)
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and substitute spin density matrix for δλj−λΛ,λ
′
j−λ′ΛδJJ ′ . The spin density matrix

itself is given by

ρλj−λΛ,λ
′
j−λ′Λ =

1

2

(
1 + Pb cos θ Pb sin θ
Pb sin θ 1− Pb cos θ

)
. (D.3)

Those changes lead to the formula

W (θ`, θB, χ) ∝
∑

λ1,λ2,λj ,λ′j ,J,J
′,m,m′,λΛ,λ

′
Λ,λp

hmλ1λ2
(J)hm

′

λ1λ2
(J ′)

× ρλj−λΛ,λ
′
j−λ′ΛD

J
λj ,λ1−λ2

(θ`, φL)DJ ′

λ′j ,λ1−λ2
(θ`, φL)Hm

λΛλj
(J)Hm′†

λ′Λλ
′
j
(J ′)

× D
1/2
λΛλp

(θB, φB)D
1/2

λ′Λλp
(θB, φB)hBλp0h

B †
λp0 . (D.4)

The lepton amplitudes come directly from Ref. [111], Eq. 3. The Λ decay amplitudes
are related to the Λ decay asymmetry parameter as

αΛ =
|hB1

2
0
|2 − |hB− 1

2
0
|2

|hB1
2

0
|2 + |hB− 1

2
0
|2 . (D.5)

Finally, the Λ0
b decay amplitudes receive contributions from vector and axial-vector

currents and can be written as

Hm
λ2,λj

= HV m
λ2,λj
−HAm

λ2,λj
. (D.6)

Finally, the remaining amplitudes are expressed in terms of form factors (Ref. [111],
Eq. C6) as

HV m
1
2
t

=

√
Q+

q2

(
M− F

V m
1 +

q2

M1

F V m
3

)
,

HV m
1
2

1
=

√
2Q−

(
F V m

1 +
M+

M1

F V m
2

)
,

HV m
1
2

0
=

√
Q−
q2

(
M+ F

V m
1 +

q2

M1

F V m
2

)
,

(D.7)

HAm
1
2
t

=

√
Q−
q2

(
M+ F

Am
1 − q2

M1

FAm
3

)
,

HAm
1
2

1
=

√
2Q+

(
FAm

1 − M−
M1

FAm
2

)
,

HAm
1
2

0
=

√
Q+

q2

(
M− F

Am
1 − q2

M1

FAm
2

)
,

where M± = M1 ± M2, Q± = M2
± − q2. The form factors F are expressed in



D.1. Λ0
B → Λµ+µ− DISTRIBUTION 206

terms of dimensioneless quantities in Eqs. C8 and C9 in Ref. [111]. In our actual
implementation form factors calculated in the covariant quark model [111] are used
and for the numerical values of the Wilson coefficients Ref. [111] is used.

To assess effect of different form factors on efficiency calculations, an alternative set
of form factors is implemented, based on the LQCD calculation from Ref. [116]. The
form factors relations are found by comparing Eqs. 66 and 68 in Ref. [111] to Eq. 51
in Ref. [116]. Denoting LQCD form factors by FL

i and dimensionless covariant quark
model ones by fXXi we have

fV1 = cγ(F
L
1 + FL

2 ),

fV2 = −2cγF
L
2 ,

fV3 = cv(F
L
1 + FL

2 ),

fA1 = cγ(F
L
1 − FL

2 ),

fA2 = −2cγF
L
2 ,

fA3 = −cv(FL
1 − FL

2 ),

fTV1 = cσF
L
2 ,

fTV2 = −cσFL
1 ,

fTA1 = cσF
L
2 ,

fTA2 = −cσFL
1 ,

where

cγ = 1− αs(µ
2)

π

[
4

3
+ ln

(
µ

mb

)]
,

cv =
2

3

αs(µ
2)

π
,

cσ = 1− αs(µ
2)

π

[
4

3
+

5

3
ln

(
µ

mb

)]
. (D.8)

In the calculations µ = mb is used. For the strong coupling constant, we start
from the world average value at the Z mass, αs(m

2
Z) = 0.1185± 0.0006 [2], and we

translate it to the scale m2
b by

αs(µ
2) =

αs(m
2
Z)

1 +
αs(m2

Z)

12π
(33− 2nf ) ln

(
µ2

m2
Z

) , (D.9)

where nf = 5. The LQCD form factors FL
1 and FL

2 can be then taken directly from
Ref. [116] and plugged into the code implementing the calculation from Ref. [111].
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D.2 Two-dimensional angular distribution parameters

Expectations values for parameters in the two-dimensional angular distribution for
the Λ0

b → Λ µ+µ− decay calculated using form factors and numerical inputs from
Ref. [111].

q2 [GeV 2/c2] A`FB PΛ
z fL OP OLp OUV A

0.1 – 2.0 0.082 -0.9998 0.537 -0.463 -0.537 0.055
2.0 – 4.0 -0.032 -0.9996 0.858 -0.142 -0.857 -0.021
4.0 – 6.0 -0.153 -0.9991 0.752 -0.247 -0.752 -0.102
V.0 – VA.5 -0.348 -0.9834 0.508 -0.478 -0.505 -0.239
15.0 – 16.0 -0.384 -0.9374 0.428 -0.524 -0.413 -0.280
16.0 – 18.0 -0.377 -0.8807 0.399 -0.513 -0.368 -0.294
18.0 – 20.0 -0.297 -0.6640 0.361 -0.404 -0.260 -0.314
1.0 – 6.0 -0.040 -0.9994 0.830 -0.170 -0.830 -0.027
15.0 – 20.0 -0.339 -0.7830 0.385 -0.461 -0.3A -0.302

Table D.1: Prediction for angular observables entering two-dimensional angular dis-
tributions. Prediction is based on covariant quark model form factors from Ref. [111].

D.3 Λ0
b → J/ψΛ distribution

The angular distribution of the Λ0
b → J/ψ Λ decay is modelled using Ref. [139]. The

differential rate is written as

w(Ω,Ω1,Ω2) =
1

(4π)3

i=19∑
i=0

f1if2i(Pb, αΛ)Fi(θ, θ1, θ2, φ1, φ2), (D.10)

The expression uses four observables (angles) and depends on four complex ampli-
tudes a+, a−, b+, b− and two real valued parameters for the production polarisation,
Pb, and the Λ decay asymmetry, αΛ. The angle θ is the angle of the Λ momentum

in Λ0
b rest frame with respect to the vector ~n =

~pinc×~pΛ0
b

|~pinc×~pΛ0
b
| , where ~pinc and ~pΛ0

b
are the

momenta of incident proton and Λ0
b in the centre of mass system. The angles θ1 and

φ1 are polar and azimuthal angle of the proton coming from the Λ decay in the Λ
rest frame with axis defined as z1 ↑↑ ~pΛ, y1 ↑↑ ~n× ~pΛ. Finally, the angles θ2 and φ2

are the angles of the momenta of the muons in J/ψ rest frame with axes defined as
z2 ↑↑ ~pJ/ψ , y2 ↑↑ ~n× ~pJ/ψ .

The distribution depends on the Λ decay asymmetry parameter, αΛ, the production
polarisation Pb and four complex amplitudes. The αΛ is measured to be 0.642±0.013
for Λ. The production polarisation Pb and magnitudes of a+, a−, b+ and b− are



D.3. Λ0
B → J/ψΛ DISTRIBUTION 208

measured in Ref. [120]. Phases are not measured therefore, as default all phases are
set to zero and then they are randomly varied to calculate the systematic uncertainty.



APPENDIX E

Improved predictions for Λ0
b→ Λµ+µ− observables.

The publication of the results included in this thesis triggered interest in the the-
ory community, which produced improved lattice calculations and predictions [140].
This section reports the measured quantities with the new predictions overlaid as
reported in Ref. [140].

Prediction Measurement
〈dB/dq2〉[15, 20] 0.756± 0.070 1.20± 0.27
〈FL〉[15, 20] 0.409± 0.013 0.61+ 0.11

− 0.14

〈A`FB〉[15, 20] −0.350± 0.013 −0.05± 0.09
〈AΛ

FB〉[15, 20] −0.2710± 0.0092 −0.29± 0.08

Table E.1: Comparison of predictions for the Λ0
b → Λµ+µ− observables with the

LHCb data presented in this thesis in the interval [15,20] GeV2/c4, where the mea-
surement is most precise.
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Figure E.1: Measurement of the differential branching fraction of the Λ0
b→ Λµ+µ−

decay as a function of q2 already presented in Ch. 3 with improved Standard Model
predictions from Ref. [140] overlaid.
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Figure E.2: Measurement of the lepton side forward-backward asymmetry, A`FB, as a
function of q2 already presented in Ch. 4 with improved Standard Model predictions
from Ref. [140] overlaid.
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Figure E.3: Measurement of the hadron side forward-backward asymmetry, AhFB, as a
function of q2 already presented in Ch. 4 with improved Standard Model predictions
from Ref. [140] overlaid.
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from Ref. [140] overlaid.



APPENDIX F

Data simulation comparison for B0 → K∗0`+`− decays
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Figure F.1: Data(sPlot) - simulation comparisons as a function of the transverse
momentum of final and intermediate particles for B0 → K∗0(J/ψ → µ+µ−) in
logarithmic scale. All distributions are normalised to unit area.
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Figure F.2: Data(sPlot)/MC comparisons as a function of the transverse momentum
of final and intermediate particles for B0 → K∗0(J/ψ → e+e−) in logarithmic scale.
All distributions are normalised to unit area.
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Figure F.3: Data(sPlot)/MC comparisons as a function of the χ2
IP of final and

intermediate particles for B0 → K∗0(J/ψ → µ+µ−). All distributions are normalised
to unit area.
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Figure F.4: Data(sPlot) - simulation comparisons as a function of the χ2
IP of final and

intermediate particles for B0 → K∗0(J/ψ → e+e−). All distributions are normalised
to unit area.
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Figure F.5: Data(sPlot) - simulation comparisons as a function of the χ2
vtx/ndf of the

intermediate particles for B0 → K∗0(J/ψ → e+e−) in logarithmic scale for muons
(top) and electrons (bottom). All distributions are normalised to unit area.
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Figure F.6: Data(sPlot) - simulation comparisons as a function of χ2
FD for B0 →

K∗0(J/ψ → e+e−) in logarithmic scale for muons (top) and electrons (bottom). All
distributions are normalised to unit area.
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Figure F.7: Data(sPlot) - simulation comparisons as a function of χ2
DTF/ndf for

B0 → K∗0(J/ψ → e+e−). (left) Linear and (right) log scale for muons (top) and
electrons (bottom). All distributions are normalised to unit area.



APPENDIX G

Invariant mass fits to B0 → K∗0`+`− simulated candidates

This appendix contains fits to the m(Kπµµ) and m(Kπee) invariant mass of B0 →
K∗0`+`− simulated candidates used to constrain parameters in the fit to data.
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Figure G.1: Fitted m(Kπµµ) mass spectrum for simulated events in the low (top),
central (medium) and high (bottom) q2 intervals.
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Figure G.2: Fitted m(Kπee) mass spectrum of B0 → K∗0J/ψ(J/ψ → ee) simulated
events in the three trigger categories and no photon emitted.
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Figure G.3: Fitted m(Kπee) mass spectrum of B0 → K∗0J/ψ(J/ψ → ee) simulated
events in the three trigger categories and one photon emitted.
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Figure G.4: Fitted m(Kπee) mass spectrum of B0 → K∗0J/ψ(J/ψ → ee) simulated
events in the three trigger categories and two photons emitted.



APPENDIX H

Invariant mass fits to B0 → K∗0e+e− candidates divided in

trigger categories

This appendix contains fits to the m(Kπee) invariant mass of rare and control
channel candidates separately in the tree trigger categories. Each trigger category
is always fit with its own PDF but in the main text only their sum is shown for
simplicity.
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Figure H.1: Fit to the m(Kπee) invariant mass of B0 → K∗0(J/ψ → e+e−) candi-
dates in the three trigger categories (L0E, L0H and L0I) separately, and (bottom
right) combined. The dashed black line (shaded shapes) represents the signal (back-
ground) PDF.
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Figure H.2: Fit to the m(Kπee) invariant mass of B0 → K∗0(ψ(2S) → e+e−)
candidates in the three trigger categories (L0E, L0H and L0I) separately, and (bot-
tom right) combined. The dashed black line (shaded shapes) represents the signal
(background) PDF.
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Figure H.3: Fit to the m(Kπee) invariant mass of B0 → K∗0e+e− candidates at low-
q2 in the three trigger categories (L0E, L0H and L0I) separately, and (bottom right)
combined. The dashed black line (shaded shapes) represents the signal (background)
PDF.



225 APPENDIX H. INVARIANT MASS FITS TO B0 → K∗0E+E− CANDIDATES
DIVIDED IN TRIGGER CATEGORIES

]2cee) [MeV/πm(K
4600 4800 5000 5200 5400 5600 5800 6000 6200

2
c

C
an

di
dt

at
es

 p
er

 3
4 

M
eV

/

0

5

10

15

20

25

30

35

40

45

 0.0004± = -0.0037 
KstEE_central_L0E
combb

  0.5± =  2.7 shift
ψJ/m

 14.8± =  5.6 partRecoKstN

 22.1± = 181.4 combN

 260.9± = 42923.2 L0E
ψJ/N

 0.009± = 1.136 scale
ψJ/σ

Sig. KstEE

Bkg. comb

Bkg. partReco

Bkg. leakJPs

]2cee) [MeV/πm(K
4600 4800 5000 5200 5400 5600 5800 6000 6200

2
c

C
an

di
dt

at
es

 p
er

 3
4 

M
eV

/

0

2

4

6

8

10

12

 0.0009± = -0.0033 
KstEE_central_L0H
combb

  2.0± =  1.5 shift
ψJ/m

  9.1± =  1.3 partRecoKstN

  9.6± = 36.8 combN

 79.2± = 3677.1 L0H
ψJ/N

 0.03± = 1.09 scale
ψJ/σ

Sig. KstEE

Bkg. comb

Bkg. partReco

Bkg. leakJPs

]2cee) [MeV/πm(K
4600 4800 5000 5200 5400 5600 5800 6000 6200

2
c

C
an

di
dt

at
es

 p
er

 3
4 

M
eV

/

0

2

4

6

8

10

12

14

16

 0.0007± = -0.0031 
KstEE_central_L0I
combb

  1.2± =  0.7 shift
ψJ/m

  9.3± = 10.0 partRecoKstN

 12.8± = 54.9 combN

 137.3± = 10779.3 L0I
ψJ/N

 0.02± = 1.15 scale
ψJ/σ

Sig. KstEE

Bkg. comb

Bkg. partReco

Bkg. leakJPs

]2cee) [MeV/πm(K
4600 4800 5000 5200 5400 5600 5800 6000 6200

C
an

di
da

te
s 

pe
r 

34
 M

eV
/c

2

0

10

20

30

40

50

60
Sig. K*0ee

Bkg. comb.

Bkg. part-reco

Bkg. leak K*0J/ψ

Figure H.4: Fit to the m(Kπee) invariant mass of B0 → K∗0e+e− candidates at
central-q2 in the three trigger categories (L0E, L0H and L0I) separately, and (bot-
tom right) combined. The dashed black line (shaded shapes) represents the signal
(background) PDF.
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Figure H.5: Fit to them(Kπee) invariant mass ofB0 → K∗0e+e− candidates at high-
q2 in the L0E and L0I trigger categories (top) separately, and (bottom) combined.
The dashed black line (shaded shapes) represents the signal (background) PDF.
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