Proton-proton collisions at **ALICE**, LHC

Triggering excellent physics

Zoe Matthews for The ALICE Collaboration and University of Birmingham

What this talk will be:

What this talk won't be:

- Introduction to ALICE: "A Large Ion Collider Experiment"
 - Physics goals, detectors, trigger capabilities (Birmingham!)
- An overview of my work:
 - Estimating the p-p Diffractive fractions
 - A bigger puzzle than heavy ions? High multiplicity p-p!
 - Trigger plays a key role!

- About "Large Ion Collisions"...
 - but the physics is interesting I promise!
 - Feel free to invite me back as I now work in Heavy lons
 ③

The Large Hadron Collider

- p-p Collisions up to 14 TeV vs (900 GeV, 7 TeV)
 - Up to 2808 25ns bunches/orbit (8 bc/orbit)
 - Interaction rate reduced for ALICE (~0.1/bc)
- Pb-Pb collisions up to 5.5 TeV/nucleon pair

ALICE: A Large Ion Collider Experiment

• Aims for heavy ion collisions:

- "To study the physics of strongly interacting matter at extreme energy densities, where the formation of a new phase of matter, the quarkgluon plasma, is expected...
- a comprehensive study of the hadrons, electrons, muons and photons produced in the collision of heavy nuclei"

• ALICE has a proton-proton program

- "To study p-p collisions both as a comparison with lead-lead collisions and in physics areas where ALICE is competitive with other LHC experiments"
- Particle ID, transverse momentum, SPD trigger algorithms

The ALICE Detector

Inner Tracking System: Specifically the inner two layers which make up the Silicon Pixel Detector (SPD) used for triggering

Time Projection Chamber (TPC) is used for precise tracking measurements, dE/dx for **Particle Identification (PID)**

ZDC (Zero Degree Calorimeter) Detectors: Very forward, used for centrality measurements in heavy ions

V0 Detectors: scintillator counters used for triggering

0

Central Trigger Processor: University of Birmingham!

Minimum-bias Triggering detectors:

Silicon Pixel Detector:
 |η|<1.95 (first layer)

- Many trigger algorithms possible
- Threshold (number of pixels in each layer) can be tuned to select on e.g.
 multiplicity. This is unique to ALICE!
- 1200 pixel chips, nearly 10^7 pixels
 Designed to handle dN/dη up to 2000
 (Heavy ions!)

- V0 Detectors: Each has 32 Scintillator counters.
- o V0a: 2.8<η<5.1,
- **ο** V0c: -3.7<η<-1.7

Semi-forward asymmetric coverage

Triggering at ALICE: CTP

- p-p event rate ~16kHz
- Many subdetectors with varying readout times
- 3 levels of triggering: L0, L1, L2

TooBUSY: A Tool for Detector Diagnostics

Next in importance to having a good aim is to recognize when to pull the trigger -David Letterman

Estimating diffractive fractions in p-p at ALICE

High Multiplicity p-p at ALICE: Data Selection and Analysis Prospects (Strangeness and the Phi Resonance)

Aside

Rapidity y:

$$y = \frac{1}{2} \ln \frac{E + p_l}{E - p_l}$$

Pseudorapidity η :

$$\eta = \frac{1}{2} \ln \frac{|p| + p_l}{|p| - p_l}$$
$$\eta = -\ln \left[\tan(\frac{\theta}{2}) \right]$$

Pseudorapidity η

Beampipe -

dN/dη = Multiplicity per "unit" of pseudorapidity

What do we mean by "Diffraction"?

- a. elastic p-p interaction
- b. ordinary inelastic interaction
- c. –e. diffractive events: exchange of colour-neutral "pomeron" (2g exchange?) leads to characteristic gaps in rapidity.
 - c=single diffraction, d=double diffraction, e=central (double-pomeron exchange) diffraction

Current Understanding/Models

- Pomeron can be thought of as a leading Regge pole, vacuum quantum numbers
- In QCD Approach this approximates to ladder diagrams, double-gluon exchange to lowest order
- Higher energy at LHC larger diffractive mass range, different approaches in models
- Energy dependence of cross sections large uncertainty!

Phojet, Pythia and data: a comparison

Measuring Diffraction: Rapidity Gaps

- Idea
 - Trigger on/select events with rapidity gaps of a given size
 - Identify SD, elastic intact proton(s) with pots
- E.g: CDF, TOTEM (pots), ATLAS
- Warnings for ALICE:
 - Requires trigger with granularity in η Forward Multiplicity Detector?
 - ALICE has gaps in η coverage
 - Depending on multiplicity, may mis-tag ND event as SD
 - Cannot see elastic events/identify intact proton for SD!
 - Gap survival probability?
 - Would need to redefine "single diffractive" as "measureable single diffractive" and treat with models afterwards -Handle With Care!

M. Poghosyan working on this. ALICE Upgrade to fill gaps?

Measuring Diffraction: What's The Alternative?

- Idea:
 - Use different trigger-logic combinations that vary in η coverage
 - Measure trigger counts from data
 - Use MC simulation to estimate efficiency of triggers for diffractive events
 - Calculate fraction of diffractive events
- E.g: UA5
- Warnings For ALICE:
 - Detector effects not reproduced in MC will cause large systematics: Handle With Care!
 - Dependent on models' diffraction kinematics as with rapidity gap method (and uncertainty there increases measurement uncertainty) – Handle With Care!

Measuring Diffraction: What's The Alternative?

$$\sigma_{tot} = \sigma_{inel} + \sigma_{el}$$
$$\sigma_{inel} = \sigma_{NSD} + \sigma_{SD}$$

• UA5:

Two triggers: 1: A1 AND A2 and 2: A1 AND NOT A2

$$\sigma_1 = \sigma_{NSD} \varepsilon_{NSD}^1 + \sigma_{SD} \varepsilon_{SD}^1$$
$$\sigma_2 = \sigma_{NSD} \varepsilon_{NSD}^2 + \sigma_{SD} \varepsilon_{SD}^2$$

$$\boldsymbol{\varepsilon}_{proc}^{trig} = \frac{N_{proc}^{trig}}{N_{proc}^{gen}}$$

And given the efficiencies, one can calculate:

 $\sigma_{SD} = \sigma_1 \chi_1 + \sigma_2 \chi_2$ $\sigma_{NSD} = \sigma_1 \chi_3 + \sigma_2 \chi_4$ $\sigma_{inel} = \sigma_1 \chi_5 + \sigma_2 \chi_6$

– Where χ_i depend on efficiencies

Measuring Diffraction: Extending UA5 Method

- ALICE can use 7 independent logical combinations of triggers using SPD and V0 triggering detectors
 - In fact, all of these are subset of min-bias trigger
 - Can measure Ntrig for each offline using minimum bias data
 - (If beam-beam data is available, can be used to access Tr 0 (000)) but this would be a challenge!

Tr	V0a	GFO	V0c
1	0	1	0
2	0	0	1
3	0	1	1
4	1	0	0
5	1	1	0
6	1	0	1
7	1	1	1

Ntrig Sum(Tr 1-7) = Ntrig (min-bias) Minbias: V0a OR GFO OR V0C

Measuring Diffraction: The Extended UA5 Method

$$\begin{split} N_{trig} &= N_{trig}^{ND} + N_{trig}^{SD} + N_{trig}^{DD} + N_{trig}^{NI} \\ N_{trig} &= N_{data} \left(\frac{N_{trig}^{ND} N_{data}^{ND}}{N_{data}^{ND} N_{data}} + \frac{N_{trig}^{SD} N_{data}^{SD}}{N_{data}^{SD} N_{data}} + \frac{N_{trig}^{DD} N_{data}^{DD}}{N_{data}^{DD} N_{data}} + \frac{N_{trig}^{NI} N_{data}^{NI}}{N_{data}^{ND} N_{data}} + \frac{N_{trig}^{NI} N_{data}^{NI}}{N_{data}^{NI} N_{data}} \right) \\ N_{trig} &= N_{data} \left(f^{ND} \varepsilon_{trig}^{ND} + f^{SD} \varepsilon_{trig}^{SD} + f^{DD} \varepsilon_{trig}^{DD} + f^{NI} \varepsilon_{trig}^{NI} \right) \end{split}$$

- Efficiencies differ for trigger types with different η coverage sensitive to kinematic differences between processes
- Various triggers could be used in χ^2 minimization to fit to process fractions

$$N_{calc(i)} = \sum_{j=1,4} a_{ij} proc(j)$$
$$\chi^{2} = \sum_{trig} \left(\frac{\left(N_{trig(i)} - N_{calc(i)} \right)}{\sigma(N_{trig(i)})} \right)^{2}$$

Not sensitive to events with "no interaction" in minimum-bias (but would be using beam-beam trigger)

Extending the Method: ZDC (Zero Degree Calorimeters)

- ZDC Neutron and Proton calorimeters cover more forward region, should be more sensitive to the difference between SD and DD with increasing energy
- ALICE ZDC group have defined a "hit" flag, so that an offline ZDC "trigger" can be used
- Using "ZDC_OR_a" and "ZDC_OR_c" – each side uses OR of P and N detectors
- 32 independent trigger
 combinations possible
- (28 within minimum-bias)

Double Diffractive Pseudorapidity (10 TeV)

Single Diffractive Pseudorapidity

21

Fractions set to 50:50 PYTHIA:PHOJET fractions
Ntrig for 32 trigger types weighted to 50:50 PYTHIA:PHOJET kinematics

•Each set of MC efficiencies is used to fit to the fractions

PHOJET Coefficients

32 triggers – 4 unknowns + 1 constraint

Fraction	ND	SD	DD	NI	χ^2/dof
Generated	0.69	0.206	0.104	0	
Fit	0.657±0.015	0.212±0.017	0.115±0.02	0.0±0.03	18.9/29
PYTHIA Co	efficients				
Fraction	ND	SD	DD	NI	χ^2 /dof
Generated	0.69	0.206	0.104	0	
Fit	0.717±0.009	0.212±0.01	0.071±0.013	0.0±0.022	20.8/29
100 000 A	LICE EVENTS		(errors propag	ated through	fit) ₂₂

PHOJET Coefficients 2						rs – 4 unknowns + :	1 constraint	1
Fraction	ND	SD	SD			Nint	χ^2 /dof	
Generated	0.69	0.206	0.206			0		
Fit	0.67±0.013	0.213±0.017	0.213±0.017		1	99987±743	16.24/25	Ì
PYTHIA Coefficients								
Fraction	ND	SD	DD)	Ni	nt	χ^2 /dof	
Generated	0.69	0.206	0.1	L04	0			
Fit	0.71±0.01	0.229±0.016	0.0	061±0.012	10	15501±401	13.52/25	

100,000 ALICE EVENTS: 900 GEV

(errors propagated through fit)

PHOJET Co	oefficients		7 triggers –	4 unknowns + 1 c	constraint	
Fraction	ND	SD	DD	NI	χ^2 /dof	
Generated	0.69	0.206	0.104	0		
Fit	0.648±0.018	0.182±0.022	0.149±0.028	0.0±0.04	1/4	
PYTHIA Coefficients						
Fraction	ND	SD	DD	NI	χ^2 /dof	
Generated	0.69	0.206	0.104	0		
Fit	0.71±0.01	0.205±0.028	0.084±0.027	0.0±0.04	5.13/4	

(errors propagated through fit)

100,000 ALICE EVENTS: 900 GEV

Real Data

- 7 TeV
 - Data: good run used:
 - 1931000 events
 - Pythia, Phojet and Pythia8 describing

same run

- >100000 events each
- 900 GeV
 - Data: good run used
 - 1016000 events
 - Pythia, Pythia8
 - >100,000 events
 - Phojet
 - <100,000 events (not ideal)</p>

ZDC Interference in data caused by collimator jaws interfering with beam spot – not reproduced in MC, better in 7 TeV

Corrections: Beam Gas

- BG: When beam interacts with gas in beam pipe, or E: noise causing an empty event to be triggered on
 - BG events are asymmetric, look like SD
 - Beam-gas events occurring outside of V0 detectors can be vetoed but some remain
- MB Trigger took data from A-side, C-side only beams and E (empty bunch crossings)
 - Using this data, I can correct Ntrig and adjust statistical error accordingly:
 - (NtrigMB (NtrigA+NtrigC))+NtrigE (scaled to filling scheme)

Corrections: Beam Gas

Example – using 7 TeV data, 1st 7 trigs

Tr (No ZDC)	V0a	GFO	V0c	Ntrig (first)	Correction: Total	Ntrig after Timing correction	Remaining Correction
1	0	1	0	2384	2070 (1908 E)	280	37 (5 E)
2	0	0	1	2272	104 (28 E)	1466	100 (2 E)
3	0	1	1	3712	97 (0 E)	1847	167 (0 E)
4	1	0	0	4468	492 (397 E)	2074	147 (71 E)
5	1	1	0	3033	29 (O E)	1524	112 (0E)
6	1	0	1	1370	47 (O E)	527	2 (0E)
7	1	1	1	87989	394 (0 E)	43443	74 (0E)

 $N_{trig}(final) = N_{trig}(first) - N_{corr}$

Uncertainty_{stat} (*final*) = $\sqrt{(N_{trig} + N_{corr})}$

Quality Checks

- Hit content when trigger fired vs chips in order of $\boldsymbol{\varphi}$
 - Normalised N hits to 1
 - Checked for all trigger definitions, good for data vs MC

Quality Checks

• Caused by limited accuracy of the measurements of detector effects

Quality Checks

 ADC Spectra not perfectly simulated – some holes and a shoulder exist in the data

Also, a few slabs appear to have much less photon exposure than expected

 Can set new threshold slab by slab to remove shoulder and recalculate efficiencies

 Can remove these slabs and recalculate efficiencies

Results

	PHOJET Coefficients (Pythia errors)			28 tr	iggers – 4 unknowns +	1 constraint
Fraction) [ND	SD	DD	Ntot	χ^2 /dof
MC		79.37	13.86	6.77	>1931000	
Fit		63.94±1.69	14.61±1.76	21.45.±2.02	1958000±32644	40 37/25
F	PYTHIA	Coefficients (Pl	hojet errors)			
Fractio	on	ND	SD	DD	Ntot	χ^2 /dof
MC		67.81	19.19	13.0	>1931000	
Fit		71.67±1.02	16.96±1.12	11.33±0.94	1931000±2523	136/25

New: PYTHIA 8 Coefficients (Pythia coefficients)

Fraction	ND	SD	DD	Ntot	χ^2 /dof
MC	67.89	19.07	13.04	>1931000	
Fit	68.64±0.73	19.05±0.78	12.27±0.64	193078±2572	285/25

1931000 ALICE EVENTS: 7 TEV

(errors propagated through fit)

Estimating diffractive fractions in p-p at ALICE **Quark Gluon Plasma*** High Multiplicity p-p at ALICE: **Data Selection and Analysis** Prospects (Strangeness and the Phi Resonance)

How to spot a QGP in a Heavy Ion collision

- Strangeness enhancement
- Quarkonia screening (vs enhanced heavy quark production)
- Jet Quenching (and punch-through)
- Flow (elliptic hydro picture?)
- Chiral symmetry: resonance mass shifts?
- Hanbury Brown & Twiss: Bose Einstein enhancement of identical bosons

Strangeness

- Strangeness "enhancement" seen at SPS and RHIC in heavy ion collisions compared with p-p, p-ion
- **Heavy ion collisions**
 - Enhancemen Ratios of strange vs nonstrange particles describes a grandcanonical ensemble in thermal equilibrium!
 - Production mechanism? Deconfined partons... quark gluon plasma? (no shortage of strangeness!)
- p-p collisions
 - Here, statistical description predicts suppression in p-p as "canonical" (volume?)

*Note, ϕ (SS) also experimentally "enhanced" in NA49 158A GeV/c S. V. Afanasiev et al., NA49 Collaboration., Phys. Lett. B 491, 59 (2000) Pb-Pb collisions with respect to p-p (as if doubly strange), NOT predicted by 36 statistical physics

High Multiplicity: Why do we care?

 Bjorken: Energy density relation to multiplicity (number of particles produced) in collision

 $\langle \mathcal{E}(t)_B \rangle = \frac{1}{tA} \frac{dE_T(t)}{dy} = \frac{1}{tA} \frac{dN(t)}{dy} \langle m_T \rangle (t)$ *excludes minijets

- Could exceed required energy density for phase transition
 J.D. Bjorken Phys. Rev. D27 (1983) 140
- Bjorken: First to suggest possibility of QGP in p-p collisions

J.D. Bjorken FERMILAB-PUB-82-059-THY

• How could we probe this?

High Multiplicity: Why do we care?

- Previous measurements of strangeness ratios as a function of multiplicity have not been able to probe high enough
 - E.g. p-p at E735, Fermilab 1.8 TeV

 $d\eta$

to Au Au at AGS, Cu Cu at RHIC

High Multiplicity: Why do we care?

- INTERESTING QUESTIONS:
 - Can p-p collision be classed as a statistical system?
 - First guess = no N participants = 2...
 - High gluon/sea quark density at LHC energy, estimated number of partons ~30 for P_T > 3 GeV
 - Is there an "effective volume" effect? Is there some other effect causing strangeness suppression in p-p?
 - "Canonical suppression" may be less at high energy density
 - J. Rafelski: saturation in QGP may not be the same as in hadronic matter

Candidates for Analysis at High Multiplicity

Search for QGP signatures as seen in Au-Au, Cu-Cu collisions at RHIC (similar environment) Radial flow Yields e.g. Strangeness* Elliptic flow **Estimating diffractive fractions** in p-p at ALICE **Quark Gluon Plasma*** High Multiplicity p-p at ALICE: **Data Selection and Analysis** Prospects (Strangeness and the Phi Resonance)

Strangeness at High Multiplicity: A Feasibility Study

• Estimated required statistics at High Multiplicity

Yields	N (Min Bias)	N (High Mult)
π/К/р	10,000	5,000
$\Lambda/\overline{\Lambda}$	200,000	50,000
φ	300,000	300,000
$\Xi/\overline{\Xi}$	1,500,000	500,000

Reasonable significance in Pt bins up to 3.5 GeV, 10% statistical error max
 Assuming only TPC information is available
 Estimated for HM = 5-7*dN/dη

Strangeness at High Multiplicity: A Feasibility Study

- Assumptions made based on 3 months "optimal running" scenario
 - 70% time dedicated to full 1 kHz MB running, 30% rare trigger time
 - Max rare trigger rate 100Hz Assume HM max 10 Hz
- Min acceptable purity of triggered sample for singleinteraction events – 5%

Yield Analyses	N (HM) Required	Max Threshold	Corresponding min dN/dη	C (* <dn dη="">)</dn>
π/К/р	5,000	255 (95% pile- up), 1 Hz	64	~8.5
Λ/Λ	50,000	236, 2.4 Hz	59	~7.8
φ	300,000	208, 7.2 Hz	52	~6.9
E/E	500,000	199, (10.6 Hz)	50	~6.6
	*fo	r <dn dη=""> ~7.5</dn>	-	44

"Have an aim in life - then don't forget to pull the trigger." - Anon

Estimating diffractive fractions in p-p at ALICE **Quark Gluon Plasma*** High Multiplicity p-p at ALICE: **Data Selection and Analysis** Prospects (Strangeness and the Phi Resonance)

Understanding our Background: Iterative Extraction of Single-Interaction Multiplicity

Extracted Single interaction shape using Poisson statistics and an iterative fitting method, with limit of >10 on last bin

• Extracted purity provides the fraction of single events which would be kept after pile-up removal, for a given threshold

- Iterative method of extracting the single shape
 - Uses only full multiplicity distribution and interaction rate μ
 - Estimates pile-up shape and removes from full distribution
 - This converges to true single shape
- Can now see where pile-up becomes a problem for HM trigger

Iterative Extraction of Single-Interaction Multiplicity: Real data

10

50

100

150

μ vs. run number

Measured pixel chip multiplicity (inner + outer) is used to extract single and pileup interaction shapes. As a function of multiplicity, this information tells us about the rate and purity of a sample for a given threshold

Counters at high multiplicity allow for an approximation to the tail shape

250

300

Inner+Outer multiplicity

200

Fraction of rate as function of cut off

Understanding our Background: Purity

Threshold for High Multiplicity Data-Taking

Threshold depends on maximum rate for rare trigger (avoid downscaling), purity fraction and whether threshold is useful for physics

		Threshold (fired chips)				
Rate (Hz)	Fraction (%)	Inner + Outer	Outer	Purity (%)		
100	1.114	150	73	63		
	1	155	76	60		
50	0.557	170	81	55		
10	0.1111	210	103	32		

Early look at minimum bias HM data already showing signs of interest: see QM11...

There might be 1 finger on the trigger, but there will be 15 fingers on the safety catch - Harold MacMillan

Further Work and Things to Consider

High Multiplicity

- REMOVAL of pileup was assumed to be 95% but is still needed to be tuned
- Method works by identifying extra vertices: dependent on multiplicity and separation of vertices
- Efficiency improves with higher multiplicity
- Arvinder Palaha of University of Birmingham has done this – close to 100% pure!
- PID is available from TPC but combining this with other PID detectors effectively is still being tuned
- Plamen Petrov of University of Birmingham is working on this

Further Work and Things to Consider

High Multiplicity

- Analysis issues:
- Minijets? How can we remove these/estimate their contribution?
- Impact parameter/centrality?
- p-p 2 Particle Correlations?
 - Patrick, Lee Barnby, Roman Lietava?

Further Work and Things to Consider

Diffraction

- Improvement in data/simulation?
- Upgrades to ALICE?
- Rapidity gap measurements
- TOTEM data

Thanks for your time.....

....Questions?

