Developing Clinical Facilities for BNCT and proton radiotherapy in Birmingham

Stuart Green
University Hospital Birmingham

Particle Physics Group Seminar
Birmingham, November 2010
Overview of techniques and projects

- **External beam treatments**
 - X-ray therapy
 - Proton and ion beam therapy

- **Binary therapies**
 - Boron Neutron Capture Therapy
 - High Z enhanced radiotherapy

- **Systemic treatment**
 - Targeted radionuclide therapy
 - chemotherapy
Glioblastoma
Glioblastoma - clinical course

Head trauma
9M before

Mild headache

post-surgery

9M

Post-chemo-radiotherapy

Courtesy of Tetsuya Yamamoto, Tsukuba, Japan
The Tsukuba approach

Surgery → BNCT → XRT → Proton

Courtesy of Tetsuya Yamamoto, Tsukuba, Japan
Boron Neutron Capture Therapy

Ion combined range ~ 8-9µm. Cell diameter ~ 10 µm.

=> radiation damage mostly within cell
BNCT as a binary therapy

2 key steps

• Delivery of ^{10}B selectively to tumour cells and with a sufficiently high concentration

• Delivery of a thermal neutron fluence to the tumour cells, while delivering a non-toxic radiation dose to healthy cells
BPA-formulation – the problem

- Maximum concentration BPA-fructose ~30 mg/ml
- Clinical experience ranges 450 mg/kg/2 hours to 900 mg/kg/6 hours
 → 70 kg adult infusion volume 1.2 to 2.1 litres
- Target BPA dose 1050 mg/kg/2 hours → BPA-fructose volume 2.45 l
- Fructose not allowed for infusion in the UK

- In order to avoid any limitation imposed by tolerable fluid volume and regulatory authorities, a new BPA formulation was required.
BPA formulation – the solution?

• A range of excipients were tested for solubility and stability
 – fructose
 – glucose
 – mannitol
• The chosen product: BPA 100mg/ml in 110mg/ml mannitol
• pH of 8±0.2
• Osmotic pressure 1353 mOsm
• Thus BPA-mannitol concentration >3-fold BPA-fructose
• Avoids possible serious adverse reactions from hereditary fructose intolerance
Clinical optimisation of uptake parameters of Boronophenylalanine (BPA) for use in trials of Boron Neutron Capture Therapy (BNCT)

Trial Design

Stage 1: Route of delivery
- a) Using single dose BPA (350mg/kg over 2h) via central venous or intra-carotid artery
- b) With and without rapid (30s) Mannitol infusion (300ml 20%)

Stage 2: Dose escalation
- a) Single 750mg/kg dose over 2h
- b) Single 1050mg/kg dose over 2h
Study Plan

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Patients</th>
<th>BPA route</th>
<th>Mannitol BBB</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort 1</td>
<td>3</td>
<td>IV</td>
<td>No</td>
<td>Completed</td>
</tr>
<tr>
<td>Cohort 2</td>
<td>3</td>
<td>IV</td>
<td>Yes</td>
<td>Completed</td>
</tr>
<tr>
<td>Cohort 3</td>
<td>3</td>
<td>IA</td>
<td>No</td>
<td>Completed</td>
</tr>
<tr>
<td>Cohort 4</td>
<td>3</td>
<td>IA</td>
<td>Yes</td>
<td>Open - Nov 2010</td>
</tr>
</tbody>
</table>

This to be followed by dose escalation study on a further 6 patients.
Sampling

- **Blood** for 10B PK assay (-0.5h to +48h post start of Infusion)
- **Brain biopsies** for pathology & 10B assays (3h, 3.5 and 4h post infusion)
- **CSF** for 10B assay (at time of biopsies if accessible)
- **ECF** (Via Brain microdialysis) for 10B assay (0h to +48h)
- **Urine** for 10B for assay (-0.5h to +48h)
Results: Blood

Average Blood Data by Cohort

Boron Concentration (microg/g)

Cohort 1 Average
Cohort 2 Average
Cohort 3 Average

Times from infusion start (hrs)
Results: ECF

Average ECF Data by Cohort

- Cohort 1 Average
- Cohort 2 Average
- Cohort 3 Average

Boron concentration (micorg/g) vs. Time from infusion start (hrs)
Tumour cellularity

Patient 2 tumour biopsy

Patient 5 tumour biopsy
Correlation between boron uptake and Tumour cell number density

Boron uptake in tumour measured by ICP-MS [µg/g]

Cell number density

µg 10^6/g tissue, normalized

Cellularity Index
Results: adjusted for cellularity
Phenylalanine transport mechanism

• Selectively transported across the blood brain barrier, endothelial cells and astrocytic cells by a common LAT-1 transporter system.
• LAT-1 is upregulated in tumour cells and might be expected to enhance the concentration of L amino acids particularly in tumour cells.
• Increased uptake may be dependent on:
 – Strongly dependent on duration of exposure,
 – Less strongly dependent on concentration of BPA
 – Strongly dependent on relative expression of LAT-1
LAT-1 expression in GBMs

Photomicrographs of tumour cells in GBM (A) and a metastatic tumour (B) showing the LAT-1 cells as red, PCNA (proliferating) cells as blue and the LAT-1+PCNA cells as red-blue (arrows)

Slide courtesy of A Detta
Results for counted stained cell populations in GBMs

60-90 % of tumour cells express LAT-1

A much lower proportion are proliferating

Detta and Cruickshank, Cancer Res 2009
New findings on LAT-1

Expression of LAT1 predicts risk of progression of transitional cell carcinoma of the upper urinary tract

Kuniaki Nakanishi · Sho Ogata · Hirotaka Matsuo · Yoshikatsu Kanai · Hitoshi Endou · Sadayuki Hiroi · Susumu Tominaga · Shinsuke Aida · Hiroyasu Kasamatsu · Toshiaki Kawai

![Graph showing disease-free survival](image-url)
The conventional research paradigm compared with BNCT

Conventional wisdom
- Find something (protein, pathway, signal etc) that is unique to the tumour
- Block this and the tumour stops growing
 - Problem is that tumours adapt

BNCT with BPA
- find something that the tumour is doing (LAT-1 over expression)
- Exploit this to kill the tumour
- The more the tumour does this, the better BNCT will work
Glioblastoma Multiforme
Prognosis improvement in the last 30 years

Walker et al. J Neurosurg 49 (1978) 333-343

Disease progression or recurrence through lack of local control
Neutron source is $> 1 \times 10^{12} \text{ s}^{-1}$
(1 mA proton current at 2.8 MeV)

For 40 minute treatment time, need 5 mA proton current and suitable target
Neutron generation and moderation

Neutron source is $> 1 \times 10^{12} \text{ s}^{-1}$
Li target during fabrication
Thermal neutron intensity map

Thermal neutrons per source neutron
Doses to Tumour and normal cells
Dose to Tumour cells
Clinical Experience (Approx data to 2008)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Approx. patients (compound)</th>
<th>Tumours treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan (various)</td>
<td>>300 (BSH / BPA)</td>
<td>Mainly GBM</td>
</tr>
<tr>
<td>Brookhaven, NY</td>
<td>54 (BPA)</td>
<td>GBM</td>
</tr>
<tr>
<td>MIT, Boston</td>
<td>28 (BPA)</td>
<td>GBM, melanoma (extremity and brain)</td>
</tr>
<tr>
<td>Espoo, Finland</td>
<td>>200 (BPA)</td>
<td>GBM, Head and Neck</td>
</tr>
<tr>
<td>Studsvik, Sweden</td>
<td>52 (BPA)</td>
<td>GBM</td>
</tr>
<tr>
<td>Pavia, Italy</td>
<td>2 (BPA)</td>
<td>Metastases in liver (ex -vivo)</td>
</tr>
<tr>
<td>Petten, Netherlands</td>
<td>34 (BSH)</td>
<td>GBM, melanoma mets in brain</td>
</tr>
<tr>
<td>Rez, Czech Republic</td>
<td>5 (BSH)</td>
<td>GBM</td>
</tr>
<tr>
<td>Barriloche, Argentina</td>
<td>7 (BPA)</td>
<td>Melanoma of skin</td>
</tr>
</tbody>
</table>
BNCT Clinical Results from Tsukuba

15 patients only

BNCT + XRT
BNCT alone
Overall Survival Time

Time to progression

BNCT for glioblastoma
Boron neutron capture therapy for newly diagnosed glioblastoma

Tetsuya Yamamoto a,*, Kei Nakai a, Teruyoshi Kageji b, Hiroaki Kumada c, Kiyoshi Endo a, Masahide Matsuda a, Yasushi Shibata a, Akira Matsumura a

aDepartment of Neurosurgery, University of Tsukuba, Tsukuba City, Japan
bDepartment of Neurosurgery, Tokushima University, Japan
cDepartment of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency, Japan

Radiotherapy and Oncology 91 (2009) 80–84
Glioblastoma Multiforme
Prognosis improvement in the last 30 years

Walker et al. J Neurosurg 49 (1978) 333-343

Disease progression or recurrence through lack of local control
Collaborations and Acknowledgements

UHB Trust: Prof Alun Beddoe, Drs Cecile Wojnecki and Richard Hugtenburg (now Swansea Uni), Dr Spyros Manolopoulos (ex STFC)

University of Birmingham: Profs David Parker and Garth Cruickshank, Drs Monty Charles and Andy Mill

University of Oxford: Dr Mark Hill, Prof Bleddyn Jones

PhD students: Zamir Ghani, Ben Phoenix

Funding bodies, EPSRC, CR-UK, UHB Charities
Critical steps in developing a clinical facility

• Complete P-K study and demonstrate a good understanding of BPA uptake mechanisms
• Improve the power and reliability of our neutron source (STR+FC CLASP proposal)
• Finalise the safety-case for MHRA and respond to queries as appropriate (approx 2 years)
• Funder and legal approvals for clinical trial
• Information paper for UHB Chief Exec in preparation (submission in Spring 2011)
• Formal partnership between UB and UHB?
Proposed Developments

- **Ion Source**: Upgrade power supplies and diagnostics. Re-tune to be a better source of mass-1 protons.
- **Beam Transport System**: Refine to minimize proton losses on apertures etc.
- **Target Cooling System**: Improve via binary ice approach.
Final thoughts (on BNCT)

- Binary therapies such as BNCT are aimed specifically at tumours which exhibit a high degree of infiltration into the surrounding healthy tissues.
- BNCT is still at a very early stage of development (patient numbers < 1000).
- They require input from a wide range of scientific disciplines.
- BNCT with BPA appears to offer potential as a therapeutic modality for glioblastoma.
- New data may identify high LAT-1 expression as a marker of a resistant sub-group of tumours.

- BNCT is ripe for investment and provides a great opportunity for the UK to take a lead.
- Can we afford to miss this opportunity? (as we did with particle therapy)
The Birmingham BNCT team

UHB Trust
• Profs Alun Beddow and Bleddyn Jones (now Oxford), Drs Cecile Wojnecki and Richard Hugtenburg (now Swansea Uni), Dr Allah Detta.

University of Birmingham
• Profs David Parker and Garth Cruickshank, Drs Monty Charles and Andy Mill

University of Oxford
• Dr Mark Hill (Prof John Hopewell)

CR-UK Pharmacokinetic Study
• Contributions from Strathclyde, Newcastle, Manchester and CR-UK

PhD students
• Zamir Ghani and Ben Phoenix (plus approx 10 previous PhDs)
Protons
Birmingham
Care is best at the centre
PROTONS

% DOSE

Single field

Depth

2 opposed fields

Depth

3 co-planar fields

Depth

X-Rays

%DOSE

Single field

Depth

2 opposed fields

Depth

3 co-planar fields

Depth

Slide Courtesy of Prof Bleddyn Jones
Proton therapy in UK: we already have it!

- World First: hospital based proton therapy at Clatterbridge, Liverpool, [converted fast neutron therapy facility].
- >1400 patients with ocular melanoma; local control >98%.
- First example of 3D treatment planning in UK
- Unsung success story of British Oncology.
- 62 MeV protons so eye tumours only
Paul Scherrer Institute

- Swiss National Research Lab
- Long-standing investment in proton therapy
- Major expansion in progress, with new cyclotron (250 MeV) and new treatment room
The Siemens synchrotron system
Proton Gantry – scale of a person
Optimal environment... continues to evolve
Proposed facility: Treatment Floor
One possible Configuration: First Floor

- 2 x Virtual MDT rooms
- Hot-desk space
Second Floor

Paediatric Unit, managed by BCH
UK scene – latest news..

- 3 Trusts (UCLH, Christie and Birmingham) are “helping the DH with the development of their outline business case for the spending review”
- The choice appears to be between 2 or 3 centres.
- For patients and pathways, 3 is very much better than 2
- If there are 2, they will be London and Manchester
- If there is a 3rd, it will be in Birmingham