There's SNO place like Home:

The SNO+ Project

S. Biller, Oxford University

PHYSICAL REVIEW LETTERS

Direct Approach to Resolve the Solar-Neutrino Problem

Herbert H. Chen Department of Physics, University of California, Irvine, California 92717 (Received 27 June 1985)

A direct approach to resolve the solar-neutrino problem would be to observe neutrinos by use of both neutral-current and charged-current reactions. Then, the total neutrino flux and the electron-neutrino flux would be separately determined to provide independent tests of the neutrino-oscillation hypothesis and the standard solar model. A large heavy-water Cherenkov detector, sensitive to neutrinos from ⁸B decay via the neutral-current reaction $\nu + d \rightarrow \nu + p + n$ and the charged-current reaction $\nu_e + d \rightarrow e^- + p + p$, is suggested for this purpose.

PACS numbers: 96.60.Kx, 14.60.Gh

North Sault Ste. Marie Sudbury Thunder Bay

Hamilton Kitchener London Windsor

Mississauga Newmarket Peterborough South Toronto (5)

14:00 GMT, 28 November, 2006

Detector high voltage was ramped down as SNO ceased operation

Replace 1000 tonnes of ultrapure D₂O with 800 tonnes of ultrapure scintillator

(so, technically, should be "SNO-")

Physics with Liquid Scintillator

○ Neutrinoless double beta decay
 → various isotopes possible !

- Low energy solar neutrinos
 → pep, CNO, ⁸B and potentially ⁷Be & pp !!
- \circ Geo-neutrinos \rightarrow unmatched
- \circ 240 km baseline reactor neutrino oscillation → Δm^2 resolution comparable to KamLAND !

○ Supernova neutrinos → major player

○ "Invisible" modes of nucleon decay
 → unique sensitivity with initial water data !

The SNO+ Collaboration

Queen's University Laurentian University University of Alberta TRIUMF SNOLAB University of Pennsylvania University of Washington Black Hills State University Armstrong Atlantic University University of North Carolina Brookhaven National Lab

Oxford University Sussex University Leeds University Liverpool University Sheffield University QMUL

LIP Lisbon

TU Dresden

Current UK SNO+ Involvement

Oxford University:

Steve Biller, Nick Jelley, Armin Reichold, Phil Jones, Ian Coulter (UK Spokesperson & Head of Event Reconstruction) & Ken Clark*

Sussex University:

Elisabeth Falk, Jeff Hartnell, Simon Peeters, (Head of Data Flow) (Head of Calibration) Shak Fernandes, James Sinclair, Gwen Lefeuvre

Leeds University:

Stella Bradbury, Joachim Rose

Queen Mary University of London:

Jeanne Wilson (Analysis Coordinator)

Liverpool University Neil McCauley

University of Sheffield John McMillan

Now part of larger SNOLAB major underground science facility. Nigel Smith is the new director.

SNO+ Liquid Scintillator

- compatible with acrylic, undiluted
- high light yield
- pure (light attenuation length in excess of 20 m at 420 nm)
- low cost
- high flash point 130°C safe
- low toxicity

safe

- smallest scattering of all scintillating solvents investigated
- density r = 0.86 g/cm^3
- metal-loading compatible

Daya Bay and Hanohano plan to use LAB; others LENS, Double CHOOZ, LENA, NOnA considering

SNO+ AV Hold Down

SNO+ AV Hold Down

- Electronics refurbishment
- Improved cover-gas system
- New glovebox
- Repair of liner
- Re-sanding of acrylic vessel
- Overhaul of software design
- New calibration systems
- New purification systems
- Replacement of pipes

A Diverse Instrument for Neutrino Research within the SNOLAB Underground facility

Neutrinoless Double B-Decay

The Paradigm:

For each flavour, "fundamental" symmetric state has 4 distinct vs:

 ν_{L}

 ν_{R}

 $\overline{\nu}_{L}$

 $\overline{v}_{\mathsf{R}}$

 $\mathbf{v}_{\mathsf{R}} \left(=\overline{\mathbf{v}}_{\mathsf{R}}\right)$

Mixed "Majorana" states have coupled masses: "See-Saw"

 $v_{\perp} (= \overline{v}_{\perp})$

If lepton number is not a conserved quantity, mixing between $v \& \overline{v}$ can occur (like kaons)

The Paradigm:

For each flavour, "fundamental" symmetric state has 4 distinct vs:

 ν_{L}

 ν_{R}

 \overline{v}_{I}

 $\overline{v}_{\mathsf{R}}$

 $V_R (=V_R)^{CP \text{ violation}}$ ~ GUT scale

Mixed "Majorana" states have coupled masses: "See-Saw" Predominantly decay to matter

Cross-over

to baryons

("Sphalerons")

If lepton number is not a conserved quantity, mixing between $v \& \overline{v}$ can occur (like kaons)

~ sub-ev scale

 $v_1 (= v_1)$

Leptogenesis

- Seesaw mechanism with GUT-scale
 Majorana neutrino could explain scale
 of observed neutrino masses
- Coupled with CP violation, would be a key feature of Leptogenesis
- Would provide an extremely sensitive probe of the absolute neutrino mass

The ONLY Potentially Viable Approach Known is Neutrinoless Double β Decay

Single Beta Decay

Double Beta Decay

Double Beta Decay

Double Beta Decay

Neutrinoless Double Beta Decay

$$\Gamma^{0v} = G^{0v}(E0,Z) \left| M^{0v}_{GT} - (g_v/g_A)^2 M^{0v}_F \right|^2 \langle m_v \rangle^2$$

Exactly calculable phase integral

e Nuclear matrix elements (not so exactly calculable) Effective neutrino mass = $\Sigma m_i U_{ei}^2$

$$\begin{array}{ll} \textbf{(m_v)} \propto \Gamma^{\frac{1}{2}} & \Gamma \propto 1/\sigma_{\text{detection}} \\ \text{bound} & \text{bound} \end{array}$$

So,

Name	Nucleus	Mass*	Method	Location		
Operational & recently completed experiments						
CUORICINO	Te-130	11 kg	bolometric	LNGS		
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM		
	Construction funding					
CUORE	Te-130	200 kg	bolometric	LNGS		
EXO-200	Xe-136	160 kg	liquid TPC	WIPP		
GERDA I/II	Ge-76	35 kg	ionization	LNGS		
SNO+	Nd-150	56 kg	scintillation	SNOlab		
	Substantial R&D funding / prototyping					
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka		
Majorana	Ge-76	26 kg	ionization	SUSL		
NEXT	Xe-136	80 kg	gas TPC	Canfranc		
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM		
	R&D and/or conceptual design					
CARVEL	Ca-48	tbd	scintillation	Solotvina		
COBRA	Cd-116, Te-130	tbd	ionization	LNGS		
DCBA	Nd-150	tbd	drift chamber	Kamioka		
EXO gas	Xe-136	tbd	gas TPC	SNOlab		
MOON	Mo-100	tbd	tracking	Oto		
Other decay modes						
TGV	Cd-106		ionization	LSM		

*: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90% S. Schönert, TAUP 2009

SNO+ Double Beta Decay

- A liquid scintillator detector has poor energy resolution... but HUGE quantities of isotope (high statistics) and low backgrounds help compensate
- Large, homogeneous liquid detector leads to well-defined background model
 - fewer types of material near fiducial volume
 - meters of self-shielding
- "Source in"/"Source out" capability to test backgrounds, improve purification, etc.
- Interesting new technique with a rapid timescale that could perhaps be pushed even further

Loaded by carboxylate technique developed at Brookhaven

Radio-purification goals:

< 10⁻¹⁷ g ²²⁸Ra/²²⁸Th per g scintillator

demonstated by Borexino & KamLAND

²²⁸Th and ²²⁸Ra in 10 tonnes of 10% Nd (in form of NdCl₃ salt) down to < 10⁻¹⁴ g ²³²Th/g Nd
A reduction of >10⁶ relative to raw salt measurement!!!

Purification/Assay Programme:

1.LAB

Organic liquids are known to be very low in Th. Vacuum distillation will improve the purity even further and this has been successfully demonstrated by both Borexino and Kamland. Our purification systems are being designed and manufactured by the same company as Borexino. The fact that both Kamland and Borexino see low levels of Th $(\sim 10^{-17} \text{ g Th/g scintillator})$ demonstrates that this can be achieved.

2. PPO

PPO will be dissolved in an LAB concentrate and distilled using the same equipment as the LAB. Again, the distillation process will "remove" Th from the PPO solution, whilst leaving the PPO in solution. This is the same technique used by Borexino.

3. Nd salt

The NdCl₃ solution will be mixed with $BaCl_2$ and $(NH_4)_2SO_4$ will be added to co-precipitate any Ra with $BaSO_4$. The precipitate is simply filtered out of the solution.

To remove Th, Hydrous Zirconium Oxide (HZrO) is added to the solution. The HZrO co-precipitates with any Th and removed by filtering the supernatant solution. This is very similar to the final part of the secondary concentration stage of the HTiO assay process in SNO.

Each pass gives a factor of 1000 reduction in Th and Ra, so with 2 passes we would ostensibly get the required factor of 10⁶ reduction and our desired level of 10⁻¹⁷ g Th/g scintillator.

Experience from SNO indicates we can achieve this.

How clean are your pipes? How tight is your system?

BNL have also been working on their "chemistry 101" method. This is a self scavenging technique and relies upon the fact that Th is more soluble when compared with Nd at certain pH values. The salt is dissolved in (ultra pure) water at a controlled pH. The pH is then adjusted to a pre-determined level, at which "all" of the Th is separated.

Purification Spike Tests

cal

Cole

easy-Load® II

L/S®

Model 77200-60

MASTERFLEX ®

spike scintillator with ²²⁸Th (80 Bq) which decays to ²¹²Pb

counted by β - α coincidence liquid scintillation counting

Spike Test Results: Extraction Efficiencies of Th and Ra in 10% NdCl₃ using HZrO and BaSO₄

Purification	Adsorbent	Extraction efficiency	
method	Conc	228Th	226Ra
	0.1 mg/g Zr	<5%	<10%
	0.44 mg/g Zr	99.06±0.22%	30.7±5.7%
HZrO mixed-in	0.82 mg/g Zr	99.89±0.02%	30.1±9.0%
BaSO4 mixed-in	1.0 mg/g Ba	9.5±4.7%	63.4±1.9%
	0.49 mg/g Ba	20.4±4.4%	97.2±0.2%
BaSO4 co-precipitation	1.39 mg/g Ba	62.8±2.3%	99.89±0.03%

factor of 1000 purification per pass achieved for both Th and Ra!

4. TMHA

(Used in the Nd loading process) will be purified by distillation.

5. In-situ analysis

As with SNO, we plan an *in-situ* analyses of the backgrounds in the scintillator. We will search for the Bi-Po coincidences in both chains (300 ns half life). Also of interest will be to search for the 3 min Bi-Tl coincidence on the "other side of the branch". This may be possible as we can distinguish betas from alphas with our scintillator timing. Other approaches are also being explored.

etc., etc.,...

Light Output and Concentration

0.1% Natural Nd in SNO+

How do you firmly establish whether a possible signal is actually $0v2\beta$?

Two methods: 1) Redundancy 2) Redundancy

Different isotopes with signals predicted at different energies, with different backgrounds, and different signal rates that scale correctly with the corresponding matrix elements.

¹⁵⁰Nd enrichment

Nanoparticles

Rik Brydson (ParticlesCIC, Leeds) Alison Crossley, Kerstin Jurkschat (Oxford) Peter Dobson (Begbroke Science Park, Oxford)

Other Isotopes

KamLAND-Zen

¹³⁶Xe 400 kg loaded LS in mini-balloon, R=1.7m

¹³⁶Xe 400 kg:

2.7 wt% dissolved into LS easy handling/ enrichment (90%) longer 2∨ beta decay life time T^{2∨} >10²² years (cf: ~10¹⁹⁻²⁰)
KamLAND exists: ultra pure environment (U/Th~10⁻¹⁷ g/g) LS techniques

Balloon experience LS Density control techniques Reactor/Geo neutrino

0v Matrix Element ~ comparable to ¹⁵⁰Nd

0v Phase Space factor ~ 3.5 times worse than ¹⁵⁰Nd

Natural Abundance = 2.8% (half that of ¹⁵⁰Nd)

2v Lifetime = $2.3x10^{19}$ yr (2.5 times longer than ¹⁵⁰Nd)

Can also be loaded into LAB by similar process (so far, 6 month stability established with up to 3%)

More optically transparent than Nd

Inherent background radioactivity levels ?

Purification ?

Removal from scintillator ?

pep Solar Neutrinos

• pep v directly tests solar luminosity constraint & probes MSW in sensitive 1.4 MeV regime to test for non-standard interactions:

Friedland et al., Phys. Lett. B, **594**, (2004)

Survival Probability for Solar Neutrinos: All Experimental Data Distilled

Survival Probability for Solar Neutrinos: All Experimental Data Distilled

pep Solar Neutrinos

Also sensitive to θ_{13} - complementary to long baseline and reactor experiments: (hypothetical 5% stat. 3% syst. 1.5% SSM measurement has discriminating power for θ_{13})

CNO Solar Neutrinos

• CNO v gives information on age of Globular Clusters and also aims to solve "Solar Composition Problem" (contradictions with helioseismology) (Pena-Garay & Serenelli, arXiv:0811.2424)

SNOLAB depth of 6000 mwe gives a muon flux 800 times less than KamLAND and virtually eliminates background from ¹¹C, making SNO+ uniquely sensitive for a precision measurement.

Simulated SNO+ Energy Spectrum

3600 pep events/(kton·year), for electron recoils >0.8 MeV

²¹⁰Bi (U), ⁴⁰K are most important for solar studies. Borexino has demonstrated similar levels of backgrounds.

Geo-Neutrino Signal

antineutrino events $\overline{v}_e + p \rightarrow e^+ + n$:

- KamLAND: 33 events per year (1000 tons CH₂) / 142 events reactor
- SNO+: 44 events per year (1000 tons CH₂) / 38 events reactor

Reactors Contribution to the Spectrum

Main Reactors (distances smaller than 700km to the detector)

Reactor	d (km)	Th. Power (GW)	
Bruce	281	10,32	
Pickering	330	6,192	
Darlington	340	10,572	
R.E. Ginna	455	1,41	
James A. Fitzpatrick	488	2,34	
Nine Mile Point	488	5,07	
Perry	530	3,1615	
Enrico Fermi	559	3,255	
Kewaunee	568	1,509	
Davis-Besse	588	2,531	
Point Beach	589	2,91	
Palisades	617	2,34	
Gentily	648	1,914	
Beaver Valley	657	4,929	
Donald C. Cook	685	3,06	

• Bruce reactor will contribute mainly to the central peak.

• We can take advantage from any "shut-off" period

Study for Δm²

Chi^2 test applied to the visible energy spectrum with a varying Δm^2 around 7.59e-5 eV² and a fixed value of sin(2 Θ)²=0.8611 (plot for 6% resolution).

	Resolution	-1σ	+1σ	
	6%	7.27e-5	7.88e-5	
	3%	7.32e-5	7.82e-5	
*				
6%	$\Delta m_{12}^2 = 7.59_{-0.2}^{+0.2}$	$^{29}_{32} \times 10^{-5} (eV$) ² Relative	
3%	$\Delta m_{12}^2 = 7.59_{-0.0}^{+0.0}$	$^{23}_{27} \times 10^{-5} (eV$	$)^2$ in errors	
			~20%	

(life-time=1x10³²proton-year, approx 1.8 years for the calculations)

\overline{v}_{e} + p \longrightarrow e ⁺ + n	Sensitive to electron anti-neutrinos; Threshold energy = 1.8 MeV; Positron energy ~ tens of MeV; Coincidence with n capture on hydrogen (~ms);
\overline{v}_{e} + ¹² C \longrightarrow ¹² B + e ⁺ \downarrow \overline{v}_{e} +	Sensitive to electron anti-neutrinos; Threshold energy = 14.4 MeV; Coincidence with ¹² C: $t_{1/2}$ = 20.2ms, 12C + e ⁻ (endpoint 13.4 MeV)
$v_e + {}^{12}C \longrightarrow {}^{12}N + e^{-}$ $\downarrow v_e +$	Sensitive to electron neutrinos; Threshold energy = 17.3 MeV; Coincidence with ¹² N: $t_{1/2}$ = 11ms, 12C + e ⁺ (endpoint 16.3 MeV)
$v_x + {}^{12}C \longrightarrow {}^{12}C^* + v_x$ $\downarrow 1^2C +$	Sensitive to any flavour neutrino; Distinctive mono-energetic gamma - γ (15.1 <u>MeV</u>)
$v_x + p \longrightarrow v_x + p$	Sensitive to any flavour neutrinos; Low KE (sub-MeV), not well-defined signature. Possible detection from rates near threshold
$v_x + e^- \longrightarrow v_x + e^-$	Principally sensitive to electron neutrinos; Cherenkov signal would also be seen in H2O (with directional information)

$tan^2\theta_{13}$	v _e p →e+ n		$\overline{v}_e {}^{12}C \rightarrow {}^{12}B e+$		$v_e^{12}C \rightarrow {}^{12}N e$ -	
	nominal	+earth effect	nominal	+earth effect	nominal	+earth effect
10 ⁻⁶	<mark>463</mark> (463)	487 (487)	<mark>56</mark> (56)	45 (45)	25 (25)	27 (27)
>10-3	463 (644)	487 (644)	<mark>80</mark> (56)	80 (45)	25 (51)	27 (51)
no osc	383		2	.6	1	3

$v_x p \longrightarrow v_x p$	$v_x {}^{12}C \longrightarrow {}^{12}C^* v_x$
676	44

KamLAND predictions from Bandyopadhyay et. al, hep-ph/0312315

Initial flux at r~10 km

Final flux at r~200 km after collective n-n interactions

Anti-neutrinos undergo flavour swap
High- energy neutrinos undergo flavour swap, but
low energy neutrinos don't (spectral split)

(Lisi @ TAUP 07)

Nucleon Decay

"Invisible" Modes of Nucleon Decay

modes where negligible visible energy from by-products is deposited in the detector

For example:
$$n \rightarrow 3v$$

- Violates (B-L) (interesting for matter/antimatter asymmetry)
- Models can be constructed where this is primary mode!! {Mohapatra & Perez-Lorenzana, Phys Rev D67, 075015 (2003)}

6 or 7 MeV nuclear γ emitted about 45% of the time

In SNO, this would have contaminated NC signal (de-excitation following n capture on tritium or Cl)

Compare D₂O and salt data: τ_{inv} >2.3 ×10²⁹ years

Phys. Rev. Lett. 92 (2004) 102004 arXiv:hep-ex/0310030

Best current bound from KamLAND: $\tau_{inv} > 5.8 \times 10^{29}$ years (Araki et al., PRL, 96, 2006)

However, with H_2O in SNO detector, we expect virtually

Zero background around 6 MeV, aside from solar v ES!

We need to take H_2O data when commissioning and filling for SNO+ detector anyway. With just 1 month of H_2O data we would expect to achieve a sensitivity of:

$$\tau_{inv} > 2 \times 10^{30} \text{ years}$$

Order of magnitude improvement on current bound may be possible with just 3 months of data !!! Schedule & Status

First Data in 2012

Rough Order or Running:

Ne N nucleon $H_2O \sim couple months$ decay tor S initial reactor upernova Pure Scintillator ~ several months geo-neutrinos solar study Phase I Nd-loaded Scintillator ~ few years D Q ββ utrinos guiuun detailed Pure Scintillator ~ few years solar study Phase II $\beta\beta$? Other ? Follow-on Phase \sim ?

UK Status:

Alpha-4 rated in last Prioritisation Exercise

Bridging funds provided by STFC for next 2 years

Will apply for continued ("proper") support in 2012 (travel, postdocs, academic time... but not much else)

High UK Impact; Significant Scientific Output; Preserves Substantial Scientific Diversity; Capitalises on Previous Investments; Extremely Modest Cost to STFC

First Attempt:

Produce neutrinos at the lowest possible energy, then physically boost to frame of reversed helicity

SASQUATCH COMPANION Version 1.00

HOME

<u>User Manual</u> <u>Programmer Manual</u> <u>SNOMAN Companion</u> <u>Code</u>

Getting started

Introduction Installation Tutorials FAQ

Reference

<u>DocDB</u> <u>SNOLAB</u> <u>SNO+ Wiki Page</u> <u>Verification</u>

Technical

Coding Standards Update Documentation

Code Version 1.00

Welcome to the SASQUATCH Companion, a guide to the SNO+ simulation and analysis software which represents an unholy union between the <u>SNOMAN</u> and RAT codes (a truly abominable SNOMAN!). Together with the <u>User Manual</u> and the <u>Programmer Manual</u>, this should hopefully tell you all you ever wanted to know about SASQUATCH but were afraid to ask! Please send any comments, suggestions or complaints to <u>Steve Biller</u>.

Last updated: 16 October 2009

Search for:

find all words (AND) 🛟

Find

Which Mechanism?

V

W

ũ

Ĩ

ũ

λ'

d-

d٠

0

е

е

u

U

е

RH Currents

Extra Dimensions

FIG. 1: Relative deviations of half life ratios $\mathcal{R}^{NP}(^{A}X)$, normalized to the half-life of ⁷⁶Ge, compared to the ratio in the mass mechanism $\mathcal{R}^{m_{\nu}}(^{A}X)$.

Deppisch & Päs, 2007

see also Gehman & Elliott, 2007

OUTLOOK:

By 2015, neutrino masses above ~100 meV will either be firmly established or firmly ruled out based on multiple experiments (including SNO+) using different isotopes.

If established, first constraints on several physics mechanisms will likely be made using ratio of lifetimes in these different isotopes.

If ruled out, all experiments will have to push to larger masses/enrichment to properly test inverted hierarchy. First experiments here might be running by ~2018.

3 Years of data, m_v =350meV, U/Th = 10⁻¹⁷ g/g 0.1% natural Nd loading, IBM-2 matrix elements

SNO CC Recoil-Electron Spectrum

Phys. Rev. C 81, 055504 (2010), arXiv:0910.2984

