Study of Charm Fragmentation at H1

Juraj Braciník (in collaboration with Zuzana Rúriková and Günter Grindhammer) University of Birmingham

for H1 Collaboration

Birmingham particle group seminar 18/2/2009

- Introduction
- Observable definitions & measurement
- Extraction of fragmentation parameters

Introduction I.

$$L_{\text{QCD}} = -\frac{1}{4} F^{(a)}_{\mu\nu} F^{(a)\mu\nu} + i \sum_{q} \overline{\psi}^{i}_{q} \gamma^{\mu} (D_{\mu})_{ij} \psi^{j}_{q}$$
$$-\sum_{q} m_{q} \overline{\psi}^{i}_{q} \psi_{qi} ,$$
$$F^{(a)}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} - g_{s} f_{abc} A^{b}_{\mu} A^{c}_{\nu} ,$$
$$(D_{\mu})_{ij} = \delta_{ij} \partial_{\mu} + ig_{s} \sum_{a} \frac{\lambda^{a}_{i,j}}{2} A^{a}_{\mu} ,$$

QCD: language problem

- It speaks about partons
- We see hadrons all around

Introduction II.

Our picture of particle production at high energies:

Parton Density Function *Hard Scattering* (perturbative)

Three ingredients needed to describe high energy hadronic collision:

- parton density functions (from experiment)
- matrix element (calculable in pQCD)
- fragmentation functions (from experiment)

How to describe fragmentation 1.

Independent fragmentation:

Model of Feynman and Field:

- each quark fragments independently
- there are many quarkantiquark pairs in the vacuum
- quark picks antiquark from vacuum, forming a hadron
- whole process continues until cut-off energy
- fraction of original quark energy carried by hadron is described by an arbitrary function, tuned to data

How to describe fragmentation 2.

Lund string model:

- small string pieces form hadrons
- the function describing string breaking tuned to data

Bham Particle physics seminar, 18/2/2009

Fragmentation functions for light and heavy quarks 1

Fragmentation of heavy quarks should be different compared to light quarks (Bjorken, Suzuki, ~1977):

Fragmentation functions for light and heavy quarks 2

Most of light hadrons carry a small fraction of original parton momentum ...

Juraj Bracinik

Bham Particle physics seminar, 18/2/2009

Fragmentation functions for light and heavy quarks 4

Peterson et al.:
$$D_{\mathrm{Q}}^{\mathrm{H}}(z) \propto \frac{1}{z[1-(1/z)-arepsilon/(1-z)]^2}$$

Kartvelishvili et al.:
$$D_{
m Q}^{
m H}(z) arpropto z^lpha (1-z)$$

All models use fragmentation functions tuned to e+e- data!

\Rightarrow interesting to check, how well this approach works in ep

Juraj Bracinik

Bham Particle physics seminar, 18/2/2009

Fragmentation - a bit of terminology

ep physics at HERA collider

HERA I+II data: Luminosity≈0.5 fb⁻¹

<u>Fragmentation in e⁺e⁻ and ep</u>

Bham Particle physics seminar, 18/2/2009

Observables for ep: Jet observable

Jet method:

momentum of c-quark approximated by momentum of rec. D*-jet

$$\mathbf{z}_{\text{jet}} = \frac{(E+p_{\text{L}})_{D^*}}{(E+p)_{\text{jet}}}$$

▷ k_{\perp} -clus jet algorithm applied in γp -frame $(E_t(D^*jet) > 3 \text{ GeV})$

Observables for ep: Hemisphere observable

Hemisphere method:

momentum of c-quark approximated by momentum of rec. D*-hemisphere

$$\mathbf{z}_{\text{hem}} = \frac{(E+p_{\text{L}})_{D^*}}{\sum_{\text{hem}}(E+p)_i}$$

▷ $\eta(\text{part}) > 0$ for *p*-remnant suppression

b thrust axis in plane perpendicular to γ used for hemisphere division

Comparison of Observables

Hemisphere Method:

- Sums more gluon radiation than jet method
- May have different sensitivity to the hadronization process

Interesting to measure both $d\sigma/z_{hem}$ and $d\sigma/z_{iet}$ because:

- Allows to test understanding of parton radiation
- Both distributions should look differently, but extracted non-pert. FF should be the same if model is perfect

Event Selection

Golden channel: $D^* \rightarrow D^0 \pi_s \rightarrow K \pi \pi_s$

▶ 99+2000 data (47 pb⁻¹)

N(D*)≈1500

<u>Charm tagging - D*</u>

Modified jet finder:

- inclusive kT algorithm
- treating D*=K as one particle
- quite a good correlation with 'truth' down to low ET

- Subtraction of the beauty contribution to D* production
 - using bb RAPGAP MC prediction (fraction below 2%)
- Correcting for detector effects
 - regularized unfolding procedure applied, migrations from one bin into another one taken into account by detector response matrix
- QED radiative corrections
 - calculated by RAPGAP/HERACLES

Frag. Observable Distributions

Reasonable (but not optimal) description of the data by models

FF Extraction Procedure

Non-pert. Frag. function defined only within given theoretical model:

- LO+PS Monte Carlo models RAPGAP and CASCADE with Lund string fragmentation model as implemented in PYTHIA (default setting, Aleph setting)
- NLO calculations (HVQDIS)
- Fitted parametrizations of nonpert. FF: Kartvelishvili, Peterson
- optimal parameters and confidence limits obtained from χ^2 (correlated statistical and sys. errors taken into account)

$$\chi^2(\boldsymbol{\varepsilon}) = (\mathbf{z} - \mathbf{z}^{\mathrm{MC}}(\boldsymbol{\varepsilon}))^{\mathrm{T}} \mathbf{V}^{-1} (\mathbf{z} -$$

QCD Models I. (Rapgap, Cascade)

RAPGAP:

- using DGLAP parton density functions and parton showers
- (in philosophy very similar to PYTHIA)

CASCADE:

- using CCFM parton density functions and parton showers
- Off-mass-shell LO matrix element
- Unintegrated parton density function

Extracted FF Plots - MC

Rapgap with Aleph setting & Kartvelishvili parametrization:

Extracted FF parameter depends on all other free parameters of the model ! (f.e. α = 4.5 for Aleph setting, α =3.3 for default Pythia setting)

Observables as a function of W

pronounced

QCD Models II. (HVQDIS)

HVQDIS:

- full NLO calculation
- not really an event generator (rather a calculation with numerical integration using Monte Carlo method)
- negative event weights
- fixed (3) number of flavours
- results are a configurations of partons

"hand made" fragmentation:

- c-quarks fragmented in yp frame
- p_L(D*) generated according to given
- parametrization (D* put on mass shell)

Extracted FF Plots - HVQDIS

HVQDIS: massive NLO calculation

(m_c=1.5 GeV, μ_r=μ_f=√(Q²+4m_c²), proton PDF= CTEQ5F3)
 data corrected to parton level & compared with NLO partonic cross-sections (c-quark fragmented independently in γ*p-rest frame)

Peterson fails to describe the data

Reasonable description in case of Kartvelishvili

FF Parameter Fit Results (Summary)

Investigating the Threshold Region I.

Hemisphere method does not need any "hard" object to be present:

- events not fulfilling hard scale cut $E_{T}(D^{*}jet)>3GeV$
- ~1300 D* events, approximately half of our D* statistics
- a big fraction of total charm cross section (efficiency is small at low P_{τ})
 - => interesting kinematic region!

Investigating the Threshold Region II.

- extracted FF almost 4₀ far from the FF extracted from the nominal sample (spectrum much harder!)
- discrepancy due to improper description of underlying physics close to the charm production threshold in QCD models
- NLO (HVQDIS) completely fails to describe the data

Rapgap with Aleph tune and Kartvelishvili FF:

Juraj Bracinik

Investigating the Threshold Region III.

<u>Global fits of FF's</u>

Several groups:

- trying to do "global fits " of fragmentation functions to various data
- similar to the global fits of parton density functions by MRST (MSTW) and CTEQ

Example:

- B. Kniehl at al (2008): global fit of several precision e+e- experiments:
- ◆ description of low energy experiments (Belle, Cleo, √s~10 GeV) very good
- problem to describe high energy data (LEP, √s~100GeV)

Global fit dominated by low s experiments, there FF seems to be significantly harder that at high \sqrt{s}

Conclusions I

- charm fragmentation studied with ep data at H1 experiment:
 - two different observable definitions (z_{iet} & z_{hem}) used
 - reasonable description of data by QCD models
- FF parameters extracted for LO+PS MC models and NLO, using Peterson and Kartvelishvili parametrizations:
 - both FF observables lead to consistent parameter values
 - ep FF parameters consistent with e⁺e⁻ FF parameters --> FF universality!
- Investigating threshold region with z_{hem}:
 - Needs different FF then basic sample
 - NLO (HVQDIS) fails completely

We don't get a consistent picture of charm fragmentation over full phase space

Juraj Bracinik

Conclusions II

Need more input from both theory and experiment!

Backup slides

RAPGAP with PYTHIA		hemisphere observable	jet observable
parameter settings	fragmentation function	$(\chi^2/{ m n.d.f.})$	$(\chi^2/n.d.f.)$
Aleph	Peterson $\varepsilon = 0.04$	6.0/5	4.3/4
default	Peterson $\varepsilon = 0.05$	6.1/5	6.0/4
default	Bowler $a = 0.3, b = 0.58$	5.6/5	3.5/4

Data compared with default MC models