

Searches for rare and BSM top quark processes at the ATLAS experiment

Birmingham HEP Seminar 03/05/23

Will George University of Birmingham

Top Quark Physics at the LHC

- Top phenomenology driven by its mass
 - Heaviest known elementary particle
 - $Y_t \sim 1 \rightarrow$ large coupling to Higgs
 - Potentially large couplings to hypothetical new particles
- ATLAS Run 2 dataset: huge sample of top events
 - ~115 mn top pairs, ~40 mn single top
 - Clear decay signature ~100% to Wb ($|V_{tb}|$ ~1)
 - Unprecedented sensitivity to rare SM top processes
 - Possibility to probe possible new physics interactions

Today: rare & BSM top interactions

- No new physics searches at the LHC have yet been fruitful
- Raises possibility that $\Lambda_{_{\rm NP}} >> \Lambda_{_{\rm EW}} \to$ motivates indirect searches for non-SM couplings
 - Observation of 4 top quark production
 - Searches for flavour-changing neutral current (FCNC) interactions of the top quark
 - Search for charged lepton flavour-violating (CLFV) interactions of the top quark
- All measurements discussed are from Run 2 (2015-2018) using the full 13 TeV dataset of 140 fb⁻¹

Today: rare & BSM top interactions

- No new physics searches at the LHC have yet been fruitful
- Raises possibility that $\Lambda_{_{\rm NP}} >> \Lambda_{_{\rm EW}} \to$ motivates indirect searches for non-SM couplings
 - Observation of 4 top quark production
 - Searches for FCNC interactions of the top quark
 - Search for CLFV interactions of the top quark

Sensitive to BSM corrections/MC modelling

Unobservable in SM \rightarrow evidence would point to BSM

 All measurements discussed are from Run 2 (2015-2018) using the full 13 TeV dataset of 140 fb⁻¹

Effective field theory (EFT)

- For $\Lambda_{_{\rm NP}}$ significantly greater than experimental sensitivity, we can employ an EFT approach
 - \circ E.g. Fermi theory of β -decay point-like four fermion interaction
 - Perform calculations without knowledge of short-distance theory
- Construct effective Lagrangian in terms of SM fields:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i,n} \underbrace{\frac{c_i^{(n)}}{\Lambda^{n-4}}}_{i} \underbrace{\mathcal{O}_i^{(n)}}_{i} \quad \underset{\text{new product}}{\text{O}_i} \underbrace{\mathcal{O}_i^{(n)}}_{i}$$

Operators introducing new interactions

Familiar SM ("renormalisable") Encodes strength of coupling

• SMEFT: 59 independent dim-6 operators (assuming B-conservation)

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	ating	
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{lpha} ight) ight.$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{lpha j} ight) ight]$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{lpha}) ight]$	$(j)^T C q_r^{\beta}$	$\left[(q_s^{\gamma m})^T C l_t^n \right]$
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight.$	Cu_r^{β}	$\left[(u_s^{\gamma})^T C e_t\right]$
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$		(<u>arXiv:</u>	1008.	<u>4884)</u>

p,r,s,t = flavour/family indices

The ATLAS experiment

- Multipurpose particle detector
 - Forward–backward symmetric
 - Almost full 4π coverage around interaction point
- LHC bunch crossing rate ~40 MHz
 - Most crossings result only in soft QCD interactions
- Two-level trigger system to select potentially interesting physics events at rate of ~1 kHz

Inner detector

Measure trajectory and momentum of charged particles Immersed in 2 T magnetic field

Run Number: 271421, Event Number: 287349506

Calorimeters

Electromagnetic and hadronic calorimeters measure energy of both charged and neutral particles

Run Number: 271421, Event Number: 287349506

Run Number: 271421, Event Number: 287349506

Run Number: 271421, Event Number: 287349506

- Select events of interest based on triggers
 - Analyses discussed today use single-lepton or dilepton triggers
- Apply reconstructed object selections to events passing trigger(s)
 - Electrons, photons, muons
 - Jets (collimated shower of hadrons from quarks/gluons)
 - Hadronically-decaying tau leptons
 - Missing transverse energy (MET) \rightarrow neutrinos, mis-calibration, BSM?

(Top) analyses at ATLAS

- B-tagging:
 - Determine likelihood that a jet originated from a B-hadron decay (as opposed to C- or light hadron decay)
- Events categorised into regions by event kinematics/further object selection
 - \circ SRs signal-dominated regions \rightarrow sensitivity to process of interest
 - CRs signal-depleted regions → correct/modelling background processes
- Profile likelihood fit across all regions
 - Systematic uncertainties profiled as nuisance parameters

Rare SM top

processes

Status: February 2022

Four top quark production

Motivation

- Very rare SM process ($\sigma_{4t}^{SM} = 12.0 \pm 2.4 \text{ fb}$)
- Many BSM models predict enhancements to σ_{4t}
 - E.g. gluino pair production, 2HDM
 - Sensitivity to four-fermion EFT couplings
- Also sensitive to CP properties of y_t

Measurement channels

- 1ℓ/2ℓOS (57% BR)
 - Large irreducible $t\bar{t}$ +HF \rightarrow significant theoretical uncertainties
- $2\ell SS/3\ell (13\% BR) \rightarrow arXiv:2303.15061$
 - Low background (dominated by $t\bar{t}H/Z/W$ + jets)

EW 4*t* production - sensitivity to y_t

 $t\bar{t}$ + $b\bar{b}$ production

Four top production - background estimation

- Low background 2^lSS/3^l channel
- Signature: high jet multiplicity, high b-jet multiplicity, high overall energy
- Data-driven background estimations to correct MC modelling
 - Dedicated CRs for non-prompt/fake leptons
 - **Dedicated correction to** *#W*

variable
(γ^*) decay
conversion
version counting
V
\mathcal{L}_2
$P_{\rm T}$
/
-l2
p_{T}
or $N_j < 6$
GeV N _j
or $N_j < 6$
GeV N _j
conversion
Nj
conversion
N _j
GNN score

$$H_T = \sum_j^{N_{jets}} p_T^j + \sum_\ell^{N_\ell} p_T^\ell$$

16

Four top production - background estimation

- Low background 2²SS/3²
 channel
- Signature: high jet multiplicity, high b-jet multiplicity, high overall energy
- Data-driven background estimations to correct MC modelling
 - Dedicated CRs for non-prompt/fake leptons
 - Dedicated correction to *#W*

Pagion	Channel	N.	N.	Other	Fitted
Region	Channel	νj	Nb	selection	variable
CR Low m_{γ^*}	SS, ee or $e\mu$	$4 \le N_{\rm j} < 6$	≥ 1	ℓ_0 or ℓ_1 is from virtual photon (γ^*) decay ℓ_0 and ℓ_1 are not from photon conversion	counting
CR Mat. Conv.	SS, ee or $e\mu$	$4 \le N_{\rm i} < 6$	≥ 1	ℓ_0 or ℓ_1 is from photon conversion	counting
CR HF μ	е <i>µµ</i> ог <i>µµµ</i>	≥ 1	= 1	$100 < H_{\rm T} < 300 { m GeV}$ $E_{\rm T}^{\rm miss} > 50 { m GeV}$ total charge is ±1	$p_{\mathrm{T}}^{\ell_2}$
CR HF e	eee or $ee\mu$	≥ 1	= 1	$100 < H_{\rm T} < 275 { m GeV}$ $E_{\rm T}^{\rm miss} > 35 { m GeV}$ total charge is ±1	$p_{\mathrm{T}}^{\ell_2}$
CR $t\bar{t}W^+$ +jets	SS, eμ or μμ	≥ 4	≥ 2	$\frac{ \eta(e) < 1.5}{\text{when } N_b = 2: H_T < 500 \text{ GeV or } N_j < 6}$ when $N_b \ge 3: H_T < 500 \text{ GeV}$ total charge > 0	Nj
CR $t\bar{t}W^-$ +jets	SS, eμ or μμ	≥ 4	≥ 2	$\begin{aligned} & \eta(e) < 1.5\\ \text{when } N_b = 2: \ H_{\mathrm{T}} < 500 \ \text{GeV} \ \text{or} \ N_j < 6\\ \text{when } N_b \geq 3: \ H_{\mathrm{T}} < 500 \ \text{GeV}\\ \text{total charge} < 0 \end{aligned}$	Nj
CR 1b(+)	2LSS+3L	≥ 4	= 1	ℓ_0 and ℓ_1 are not from photon conversion $H_{\rm T} > 500 {\rm GeV}$ total charge > 0	Nj
CR 1b(-)	2LSS+3L	≥ 4	= 1	ℓ_0 and ℓ_1 are not from photon conversion $H_{\rm T} > 500 {\rm GeV}$ total charge < 0	Nj
SR	2LSS+3L	≥ 6	≥ 2	$H_{\rm T} > 500$	GNN score

$$H_T = \sum_{j}^{N_{jets}} p_T^j + \sum_{\ell}^{N_{\ell}} p_T^{\ell}$$

17

Aside: ttW

LO ttW production

- Observed in Run 1, differential measurements now available
- Irreducible background to many multi-lepton analyses (incl. ttH)
- Theory seen to consistently underestimate cross-section
- Currently nothing to explain discrepancy \rightarrow ideally use data-driven treatments

ATLAS-CONF-2023-019

Four top production - ttW background estimation

• Jet multiplicity-dependent correction: derive four scaling factors using four CRs

$$a_0 \quad a_1 \quad \mathrm{NF}_{t\bar{t}W^+(4\mathrm{jet})} \quad \mathrm{NF}_{t\bar{t}W^-(4\mathrm{jet})}$$

- Rely on known scaling properties of QCD jets at hadron colliders *
 - For low N_{iets} expect Poisson scaling → N(j+1)/N(j) = const/(1+j)
 - At high N_{jets} expect fixed probability of additional emission $\rightarrow N(j+1)/N(j)$ = constant

$$NF_{t\bar{t}W(j)} = NF_{t\bar{t}W^+(4jet)} \times \prod_{j'=4}^{j'=j-1} \left[a_0 + \frac{a_1}{1 + (j'-4)} \right] + NF_{t\bar{t}W^-(4jet)} \times \prod_{j'=4}^{j'=j-1} \left[a_0 + \frac{a_1}{1 + (j'-4)} \right]$$

Scaling factor for events "Staircase" scaling Poisson scaling vith j > 4 jets

Four top production - ttW background estimation

$$NF_{t\bar{t}W(j)} = NF_{t\bar{t}W^+(4jet)} \times \prod_{j'=4}^{j'=j-1} \left[a_0 + \frac{a_1}{1 + (j'-4)} \right] + NF_{t\bar{t}W^-(4jet)} \times \prod_{j'=4}^{j'=j-1} \left[a_0 + \frac{a_1}{1 + (j'-4)} \right]$$

tłW background	a_0	a_1	$NF_{t\bar{t}W^+(4jet)}$	$NF_{t\bar{t}W^-(4jet)}$
Value	0.51 ± 0.10	$0.22^{+0.25}_{-0.22}$	$1.27\substack{+0.25 \\ -0.22}$	$1.11\substack{+0.31 \\ -0.28}$

Left: ttW control regions

Right: difference of events with total +ve and -ve charge in all regions

Four tops - signal extraction

- Fully-connected graph neural network
 - Reconstructed j/ ℓ/E_T^{miss} as nodes
 - Angular separations encoded in edges
- 6-way splitting for training/application using SR
- Key input: pseudo-continuous b-tagging scores categorise how likely jets are to contain *b*-hadrons

arXiv:2303.15061

Four tops - results

$$\mu = 1.89^{+0.37}_{-0.35}(\text{stat}) {}^{+0.62}_{-0.37}(\text{syst}) = 1.89 {}^{+0.73}_{-0.51}.$$

$$\sigma_{t\bar{t}t\bar{t}} = 22.7^{+4.7}_{-4.4}(\text{stat}) {}^{+4.6}_{-3.4}(\text{syst}) \text{ fb} = 22.7 {}^{+6.6}_{-5.5} \text{ fb}.$$

- Profile likelihood fit across SR and all CRs
- Observed (exp.) significance: 6.1σ (4.3σ)
- Dominant systematics from modelling of signal and data-driven estimate of ttW background
- CMS also <u>report</u> observation with 5.5σ

Observation of 4 tops production!

arXiv:2303.15061

S+B model shows good agreement with observed data in high GNN score region

24

Four tops \rightarrow top Yukawa coupling

- Sensitive to Yukawa coupling strength (κ_t) and CP mixing angle (α)
- Parametrise four top signal and ttH GNN distributions in $\kappa_{_t}$ and α

arXiv:2303.15061

Four tops \rightarrow EFT

- BSM physics could enhance four top cross-section
- New physics with strong couplings to tops should show up in four top production

$$\sigma_{t\bar{t}t\bar{t}} = \sigma_{t\bar{t}t\bar{t}}^{SM} + \frac{1}{\Lambda^2} \sum_i C_i \sigma_i^{(1)} + \frac{1}{\Lambda^4} \sum_{i \le j} C_i C_j \sigma_{i,j}^{(2)}$$

Operators	Expected C_i/Λ^2 [TeV ⁻²]	Observed C_i/Λ^2 [7]	V^{-2}]
O_{OO}^1	[-2.4,3.0]	[-3.5,4.1]	
$O_{Ot}^{\tilde{1}\tilde{z}}$	[-2.5,2.0]	[-3.5,3.0]	
$O_{tt}^{\tilde{1}}$	[-1.1,1.3]	[-1.7,1.9]	Limits
O_{Qt}^8	[-4.2,4.8]	[-6.2,6.9]	by CIV

Limits comparable with those found by CMS - <u>JHEP11 (2019) 082</u>

arXiv:2303.15061

Four tops \rightarrow three tops?

- Set limits on cross-section of very rare 3 tops process ($\sigma_{3t}^{SM} = 1.67$ fb)
- Three top cross-section expected to be significantly enhanced by top FCNC couplings

Processes	95% CL cross section interval [fb]						
	$\mu_{t\bar{t}t\bar{t}}=1$	$\mu_{t\bar{t}t\bar{t}} = 1.9$					
tīt	[4.7, 60]	[0, 41]					
$t\bar{t}tW$	[3.1, 43]	[0, 30]					
tītq	[0, 144]	[0, 100]					
$\sigma_{t\bar{t}t} = \sigma_{t\bar{t}tW} + \sigma_{t\bar{t}tq}$							

Possible top FCNC interaction with SM boson

Search for FCNC

interactions of the

top quark

Flavour universality broken by Yukawa couplings of Higgs to fermion fields

Fermion mass terms generated through EWSB:

$$m_f = \frac{\nu}{\sqrt{2}} y_f$$

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \bar{\psi} D \psi + \bar{\psi}_i y_{ij} \psi_j \phi + h.c. + |D_\mu \phi|^2 - V(\phi)$$

Complex Yukawa matrices can be diagonalised by rotations in flavour space to obtain physical fermion masses

This however introduces a flavour-violating term in CC interactions with W:

$$\begin{split} \mathcal{L}_{cc} &= \frac{g}{\sqrt{2}} \left(\overline{u}_L \gamma^{\mu} (V_u^{\dagger} V_d) d_L + \overline{\nu}_L \gamma^{\mu} (V_{\nu}^{\dagger} V_e) e_L \right) W_{\mu}^{+} + h.c. \\ &\xrightarrow{arXiv:1709.00294} \\ \mathsf{V}_{\mathsf{CKM}} & \qquad \mathsf{Absence of } \mathsf{v}_{\mathsf{R}} \text{ in SM} \\ &\text{allows } \mathsf{V}_{\mathsf{e}} = \mathsf{V}_{\nu} \to \mathsf{no} \\ &\text{LFV in lepton sector} \end{split}$$

- → No LFV in lepton sector
- → In quark sector, LFV restricted to charged-current interactions

Why search for FCNCs in top interactions?

- Forbidden at tree level in the Standard Model
- Heavily suppressed at loop level through GIM mechanism
- Top FCNC searches performed at LEP, HERA Tevatron
- Large top mass \rightarrow many channels
 - Search in both single top production and top pair decay

u/c

g

ecercice

31

Why search for FCNCs in top interactions?

- SM predictions: BR ~ 10^{-12} to 10^{-17}
- Wide variety of BSM models predict FCNCs with rates observable at LHC
- Describe FCNC couplings in terms of EFT framework

Why search for FCNCs in top interactions?

- SM predictions: BR ~ 10^{-12} to 10^{-17}
- Wide variety of BSM models predict FCNCs with rates observable at LHC
- Describe FCNC couplings in terms of EFT framework

Dimension-6 EFT operators sensitive to top FCNCs

$$\begin{array}{ll}
Q_{u\varphi} & (\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi}) \\
Q_{uG} & (\bar{q}_{p}\sigma^{\mu\nu}T^{A}u_{r})\widetilde{\varphi}\,G^{A}_{\mu\nu} \\
Q_{uW} & (\bar{q}_{p}\sigma^{\mu\nu}u_{r})\tau^{I}\widetilde{\varphi}\,W^{I}_{\mu\nu} \\
Q_{uB} & (\bar{q}_{p}\sigma^{\mu\nu}u_{r})\widetilde{\varphi}\,B_{\mu\nu}
\end{array}$$

32

Search for single top production via FCNC
 tqg vertex (q = u/c)

(Eur. Phys. J. C 82 (2022) 334)

• Single lepton, 1 *b*-tagged jet and MET

FCNC tqg

- Dedicated high-purity b-tagging calibration to suppress W + bb
- Data-driven estimate for events with fake leptons from multi-jet background
- Neural networks (NNs) used to discriminate between $u+g \rightarrow t$, $c+g \rightarrow t$ and background
 - Kinematic input variables including reconstructed top kinematics

FCNC *tqg* (Eur. Phys. J. C 82 (2022) 334)

- Profile likelihood fit to NN discriminants in SR
- Dominant uncertainties:

(

- ugt: MC stat uncertainty and modelling of W+jets
- *cgt*: parton shower modelling of FCNC *cgt* and SM *tq* processes

5

$$\begin{array}{c|c}
\mathcal{B}(t \to u + g) < 0.61 \times 10^{-4} \\
\mathcal{B}(t \to c + g) < 3.7 \times 10^{-4} \\
\end{array}$$
(95% CL)
$$\begin{array}{c|c}
\mathcal{C}_{uG}^{ut} \\
\overline{\Lambda^2} \\
\end{array} < 0.057 \, \text{TeV}^{-2} \\
\end{array}$$

- Search for FCNC *tqγ* in **top** production and decay
 - Single lepton, high $p_T \gamma$, MET
- CRs for main backgrounds with prompt photons ($t\bar{t}\gamma$, W γ +jets)
- Data-driven corrections to rate of electron/hadron $\rightarrow \gamma$ fakes

FCNC *tqy* (Phys. Lett B (2022) 137379)

- Multiclass deep neural networks to split events into two signal modes and background
- Dominant uncertainties:
 - Limited statistics ($tu\gamma$), $tq\gamma$ theory cross-section, $h \rightarrow \gamma$ estimate ($tc\gamma$)

1 b-jet

 $m_{\rm T}(\ell_W, \nu) > 40 \,{\rm GeV}$

$$\begin{split} |m_{j_a\ell\ell}^{\text{reco}} - m_t| &> 2\sigma_{t_{\text{FCNC}}} \\ |m_{j_b\ell_W\nu}^{\text{reco}} - m_t| &< 2\sigma_{\overline{j_W}} \end{split}$$

FCNC tqZ (arXiv:2301.11605)

- Search for FCNC *tqZ* in **top production and decay**
 - Trilepton event selection (*low background channel*)
- Two SRs targeting production and decay processes
 - Split by mass of reconstructed top(s)
- Additional CRs for dominant (diboson, $t\bar{t}Z$) and fake lepton ($t\bar{t}$) backgrounds

1 b-jet

 $m_{\rm T}(\ell_W, \nu) > 40 \,{\rm GeV}$

 $|m_{j_b\ell_W\nu}^{\text{reco}} - m_t| < 2\sigma_{t_{\text{SM}}}$

1 b-jet

 $|m_{j_a\ell\ell}^{\rm reco} - m_t| < 2\sigma_{t_{\rm FCNC}}$

FCNC *tqZ* (arXiv:2301.11605)

• GBDTs used for S/B discrimination

- Reconstructed top kinematics provide key inputs
- Dominant uncertainty: limited statistics

Observable	Vertex	Coupling	Observed	Expected
	SRs+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	6.2×10^{-5}	$4.9^{+2.1}_{-1.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZu	RH	6.6×10^{-5}	$5.1^{+2.1}_{-1.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZc	LH	13×10^{-5}	$11^{+5}_{-3} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZc	RH	12×10^{-5}	$10_{-3}^{+4} \times 10^{-5}$
$ C_{\mu W}^{(13)*} $ and $ C_{\mu B}^{(13)*} $	tZu	LH	0.15	$0.13 ^{+0.03}_{-0.02}$
$ C_{\mu W}^{(31)} $ and $ C_{\mu B}^{(31)} $	tZu	RH	0.16	$0.14 \stackrel{+0.03}{_{-0.02}}$
$ C_{\mu W}^{(23)*} $ and $ C_{\mu B}^{(23)*} $	tZc	LH	0.22	$0.20 \stackrel{+0.04}{_{-0.03}}$
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	RH	0.21	$0.19 \substack{+0.04 \\ -0.03}$
	SR1+CRs			
$\mathcal{B}(t \to Z)$.7	TTT	0.7.10-5	$0 < +3.6 \dots 10^{-5}$
$\mathcal{B}(t \to z)$ Se	ensitive	e to sa	ime EF	-T 0 ⁻⁵
$\frac{1}{\mathcal{B}(t \to Z)}$	opera	ators a	as <i>tqy</i>	0^{-5}
$\mathcal{B}(t \to Zq)$	tZu	RH	9.0×10^{-3}	$6.6^{+2.9}_{-1.8} \times 10^{-5}$

FCNC $tqH(\tau\tau)$ (arXiv:2208.11415)

- Search for FCNC *tqH* in **top production and** decay
 - Require $H \rightarrow \tau \tau$ decay
- Many SRs targeting different top and *τ*-lepton decays channels
- Data-driven background estimates for fake $\tau_{\rm had}$ and fake/non-prompt light leptons
- BDTs used for S/B discrimination
 - Rely on event kinematics for training (including kinematic reconstruction where possible)

BDT discriminant in most sensitive SR

FCNC $tqH(\tau\tau)$

(arXiv:2208.11415)

Search for CLFV interactions of the top quark

Neutrino oscillations & CLFV

 Neutrino oscillations → LFV in lepton sector but far beyond any experimental sensitivity

q

 New physics which introduces additional terms involving lepton fields in Lagrangian will in general lead to LFV

Why search for CLFV in top quark interactions?

- Best sensitivity typically in muon channels
 - \circ Best CLFV limits from MEG: B(µ→eγ)<4.2×10⁻¹³ (90% CL) *
- Models predicting CLFV in muons also apply to taus, often additionally enhanced due to larger mass (e.g. LQs)
- Searches for LFV involving taus, tops, H, Z require colliders

History of $\mu \to e\gamma$, $\mu N \to eN$, and $\mu \to 3e$

- First direct search for tµτq coupling
- Complements searches for *teµq* coupling by ATLAS (<u>arXiv:1809.09048</u>) and CMS (<u>IHEP 06 (2022) 082</u>, <u>CMS PAS TOP-22-005</u>)

- Signal includes single top production and top quark pair decay
- Trilepton selection including *hadronic taus*
- Same-sign muons in SR → significant background reduction

	SR1	SR2	$CR\tau$	$\mathbf{CR}tt\mu$
Lepton flavour		$2\mu 1\tau_{ m had-vis}$		$2\mu 1e \ (\ell_3 = \mu)$
$N_{ m jets}$	≥ 2	1	≥ 2	≥ 2
$N_{b-{ m tags}}$	1	1	1	≤ 2
Muon p_T cut	> 15 GeV	> 15 GeV	> 15 GeV	> 10 GeV
Lowest p_T muon selection	Tight	Tight	Tight	Loose
Muon charges	SS	SS	OS	-
$ m_{\mu\mu}^{OS} - M_Z $	-	-	<10 GeV	>10 GeV

- Data-driven background estimations for fake background processes
- Scale factors to correct rate of fake τ_{had} background
- Correct normalisation of non-prompt background in fit

- Profile likelihood fit across two SRs and non-prompt muon CR
- Good agreement between data and background-only model
- Statistically limited

	Exclusion limit $B(t \rightarrow \mu \tau q)$		
	Stat. only	All systematics	
Expected	7.57×10^{-7}	9.82×10^{-7}	
Observed	9.43×10^{-7}	10.8×10^{-7}	

- Stringent limits on Wilson coefficients corresponding to 2Q2L operators
 - Improve upon the previous results by up to a factor of 51

$$\Gamma(t \to \ell_i^+ \ell_j^- q_k) = \frac{m_t}{6144\pi^3} \left(\frac{m_t}{\Lambda}\right)^4 \left\{ 4|c_{lq}^{-(ijk3)}|^2 + 4|c_{eq}^{(ijk3)}|^2 + 4|c_{lu}^{(ijk3)}|^2 + 4|c_{eu}^{(ijk3)}|^2 + 4|c_$$

	95%	95% CL upper limits on Wilson coefficients						$c/\Lambda^2~[{ m TeV}^{-2}]$	
	$c_{lq}^{-(ijk3)}$	$c_{eq}^{(ijk3)}$	$c_{lu}^{(ijk3)}$	$c_{eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{1(ij3k)}$	$c_{lequ}^{3(ijk3)}$	$c_{lequ}^{3(ij3k)}$	
Previous (u)	12	12	12	12	26	26	3.4	3.4	
ATLAS expected (u)	0.47	0.44	0.43	0.46	0.49	0.49	0.11	0.11	
ATLAS observed (u)	0.49	0.47	0.46	0.48	0.51	0.51	0.11	0.11	
Previous (c)	14	14	14	14	29	29	3.7	3.7	
ATLAS expected (c)	1.6	1.6	1.5	1.6	1.8	1.8	0.35	0.35	
ATLAS observed (c)	1.7	1.6	1.6	1.6	1.9	1.9	0.37	0.37	

Previous limits and equation from <u>JHEP04 (2019) 014</u> (reinterpretation of <u>JHEP07 (2018) 176</u>)

Concluding remarks

- Many exciting Run 2 rare top results!
 - Observation of four top production
 - Diverse BSM couplings programme
- No evidence for new physics as of yet...
 - In many cases setting most stringent limits on these branching ratios to date
- Many measurements statistically limited → significant improvements with Run 3 and beyond
- Modelling of signal and background is frequently a limiting systematic
 - Much work is going into improving modelling of generators and theoretical predictions

History of 4*t* production measurements at the LHC SATLAS

Both ATLAS and CMS now report observation of this process

HL-LHC 4*t* prospects

(ATL-PHYS-PUB-2022-004)

Study into HL-LHC sensitivity - ATL-PHYS-PUB-2022-004

Consider conservative/optimistic systematic reductions with 3000 ifb at 14 TeV in 2\lss/3\ll channel

Expected significance (wrt B-only hypothesis): 4.2-6.4σ

Expected uncertainty on cross section: 14%-20%

HL-LHC 4*t* prospects

(ATL-PHYS-PUB-2022-004)

Integrated luminosity (fb ⁻¹)	"Run 2"	"Run 2 Improved"
500	3.5	4.1
1000	3.9	4.9
2000	4.0	5.9
3000	4.2	6.4

Uncertainty source	Treatment in the "Run 2 Improved" model
Signal modelling	
tītī cross section	Half of Run 2
tītī modelling	Half of Run 2
Background modelling	
tīW+jets modelling	
Renormalisation and factorisation scales	Half of Run 2
Generator	Half of Run 2
Jets multiplicity modelling	Scaled by Run 2 pulls
Additional heavy flavour jets	Scaled by luminosity
tīt modelling	
Cross section	Half of Run 2
Additional heavy flavour jets	Scaled by luminosity
Non-prompt leptons modelling	Scaled by luminosity
$t\bar{t}H$ +jets and $t\bar{t}Z$ +jets modelling	
Cross section	Half of Run 2
Renormalisation and factorisation scales	Half of Run 2
Generator	Half of Run 2
PDF	Half of Run 2
Additional heavy flavour jets	Scaled by luminosity
Other background modelling	
Cross section	Half of Run 2
Additional heavy flavour jets	Scaled by luminosity
Charge misassignment	Same as Run 2
Template fit shape uncertainties	
Mat. Conv., γ^* , and HF non-prompt leptons	Scaled by luminosity
Other fake leptons	Half of Run 2
Additional heavy flavour jets	Half of Run 2
Instrumental	
Jet uncertainties	Same as Run 2
Jet flavour tagging (light-flavour jets)	Half of Run 2
Luminosity	Same as Run 2
Jet flavour tagging (b-jets)	Half of Run 2
Jet flavour tagging (c-jets)	Half of Run 2
Other experimental uncertainties	Same as Run 2

Fake/non-prompt background	NF _{Mat. Conv.}	$NF_{Low \ m_{\gamma^*}}$	NF _{HF} e	$\rm NF_{\rm HF}\mu$
Value	$1.80^{+0.47}_{-0.41}$	$1.08^{+0.37}_{-0.31}$	$0.66^{+0.75}_{-0.46}$	$1.27^{+0.53}_{-0.46}$

$$NF_{t\bar{t}W(j)} = NF_{t\bar{t}W^+(4jet)} \times \prod_{j'=4}^{j'=j-1} \left[a_0 + \frac{a_1}{1 + (j'-4)} \right] + NF_{t\bar{t}W^-(4jet)} \times \prod_{j'=4}^{j'=j-1} \left[a_0 + \frac{a_1}{1 + (j'-4)} \right]$$

<i>ttW</i> background	a_0	a_1	$NF_{t\bar{t}W^+(4jet)}$	$NF_{t\bar{t}W^-(4jet)}$
Value	0.51 ± 0.10	$0.22^{+0.25}_{-0.22}$	$1.27_{-0.22}^{+0.25}$	$1.11\substack{+0.31 \\ -0.28}$

Observable	Common requirements					
$n_{\text{Tight}}(e) + n_{\text{Medium}}(\mu)$	= 1					
$n_{\text{Loose}}(e) + n_{\text{Loose}}(\mu)$. =	= 1			
$E_{\mathrm{T}}^{\mathrm{miss}}$		> 30	0 GeV			
$m_{\mathrm{T}}\left(W ight)$		> 50	0 GeV			
n(j)	≥ 1					
$p_{\mathrm{T}}\left(\ell ight)$	$> 50 \mathrm{GeV} \cdot \left(1 - \frac{\pi - \Delta \phi(j_1, \ell) }{\pi - 1}\right)$					
		Analysi	s region	5		
	SR	W+jets VR	tī VR	tq VR		
$n(\eta(j) < 2.5)$	= 1	= 1	= 2	= 1		
n(b)	= 1	= 1	= 2	= 1		
ϵ_b	30%	0% 60% (veto 30%) 30% 30%				
$n(\eta(j) >2.5)$	≥ 0	≥ 0	≥ 0	= 1		
$D_{1(2)}$	-	$0.3 < D_{1(2)} < 0.6$	-	$0.2 < D_{1(2)} < 0.4$		

FCNC *tqg*

Fake estimation for events with fake leptons from multi-jet background

- e: shape from dijet MC (jet electron method)
- μ: shape from data enriched in non-prompt muons
- Maximum likelihood fit to E_{miss}^{T} (m_T) distribution in e (µ) channel to correct normalisation

FCNC *tqg* (Eur. Phys. J. C 82 (2022) 334)

- Two NNs to discriminate S/B
 - D_1 trained only on $c+g \rightarrow t$ (incl. $\overline{c}+g \rightarrow \overline{t}$) optimised for sea quark production
 - D_2 trained only on $u+g \rightarrow t$ (excl. $\overline{u}+g \rightarrow \overline{t}$) optimised for valence quark production
 - Multijet background excluded from NN training
- Use D_1 in *cgt* analysis and ℓ^- channel of *ugt* analysis
- Use D_2 in ℓ^+ channel of ugt analysis

FCNC *tqg* (Eur. Phys. J. C 82 (2022) 334)

Scenario	Description	$\mathcal{B}_{95}^{\exp}(t \to u + g)$	$\mathcal{B}_{95}^{\exp}(t \to c + g)$
(1)	Data statistical only	1.1×10^{-5}	2.4×10^{-5}
(2)	Experimental uncertainties also	3.1×10^{-5}	12×10^{-5}
(3)	All uncertainties except MC statistical	3.9×10^{-5}	18×10^{-5}
(4)	All uncertainties	4.9×10^{-5}	20×10^{-5}

5-h					
Object	8	SR	CR $t\bar{t}\gamma$	CR $W\gamma$ +jets	
Photon ($p_{\rm T} > 20$	GeV)		=	: 1	
Lepton $(p_{\rm T} > 27)$	GeV)		=	: 1	
$E_{ m T}^{ m miss}$			> 30) GeV	20
Jets $(p_{\rm T} > 25 {\rm C})$	GeV)	≥ 1	≥ 4	≥ 1	
b-tagged jets (60°	% WP)	= 1	_	= 0	
b-tagged jets (70°	% WP)	= 1	≥ 1	= 0	
b-tagged jets (77°	% WP)	= 1	≥ 2	= 1	
$m(e, \gamma)$		_	_	∉ [80, 100] Ge	eV
TLAS Simulation = 13 TeV			other pro $h \rightarrow \gamma$ fak Z γ +jets	$\begin{array}{c c} \text{ompt } \gamma & \blacksquare & t\overline{t}\gamma \\ \text{es} & \blacksquare & e \rightarrow \\ & \blacksquare & W\gamma \end{array}$	γ fake +jets
SR	CR N	/γ+jets		$CR t \overline{t} \gamma$	

Data-driven corrections to rate of $e/h \rightarrow \gamma$ fakes

- $e \rightarrow \gamma$: correct rate of $Z \rightarrow e\gamma$ to $Z \rightarrow ee$ in bins of photon η and reconstruction type
- $h \rightarrow \gamma$: ABCD method using modified photon ID & isolation; binning in photon p_T , η and reconstruction type

FCNC $tq\gamma$

(Phys. Lett B (2022) 137379)

NN output 59

Common selections						
Exactly 3 leptons with $p_{\rm T}(\ell_1) > 27 {\rm GeV}$ $\geq 1 {\rm OSSF}$ pair, with $ m_{\ell\ell} - m_Z < 15 {\rm GeV}$						
SR1 SR2						
≥ 2 jets 1 jet 2 jets						
1 <i>b</i> -jet	1 <i>b</i> -jet	1 <i>b</i> -jet				
—	- $m_{\rm T}(\ell_W, \nu) > 40 {\rm GeV}$ $m_{\rm T}(\ell_W, \nu) > 40 {\rm GeV}$					
$ m_{j_a\ell\ell}^{\text{reco}} - m_t < 2\sigma_{t_{\text{FCNC}}} - m_{j_a\ell\ell}^{\text{reco}} - m_t > 2\sigma_{t_{\text{FCNC}}}$						
_	$ m_{j_b\ell_W\nu}^{\text{reco}} - m_t < 2\sigma_{t_{\text{SM}}}$	$ m_{j_b \ell_W \nu}^{\text{reco}} - m_t < 2\sigma_{t_{\text{SM}}}$				

Common selections							
-	Exactly 3 leptons	with $p_{\rm T}(\ell_1) > 27 {\rm GeV}$					
$t\bar{t}$ CR	$t\bar{t}$ CR $t\bar{t}Z$ CR Side-band CR1 Side-band CR2						
\geq 1 OS pair, no OSSF	\geq 1 OSSF pair	\geq 1 OSSF pair	≥ 1 OSSF pair				
	with $ m_{\ell\ell} - m_Z < 15 \text{GeV}$ with $ m_{\ell\ell} - m_Z < 15 \text{GeV}$ with $ m_{\ell\ell} - m_Z < 15 \text{GeV}$						
-		<u> </u>	$m_{\rm T}(\ell_W, \nu) > 40 {\rm GeV}$				
≥ 1 jet	\geq 4 jets	≥ 2 jets	1 jet				
1 <i>b</i> -jet	2 <i>b</i> -jets	1 <i>b</i> -jet	1 <i>b</i> -jet				
_	_	$ m_{i_{\ell}\ell\ell}^{\text{reco}} - m_t > 2\sigma_{t_{\text{FONG}}}$	_				
-	-	$ m_{j_b\ell_W\nu}^{\text{reco}} - m_t > 2\sigma_{t_{\text{SM}}}$	$ m_{j_b \ell_W \nu}^{\text{reco}} - m_t > 2\sigma_{t_{\text{SM}}}$				

- GBDTs used for S/B discrimination
 - Reconstructed top kinematics provide key inputs
 - Separate training for each SR based on dominant FCNC process

FCNC $tqH(\tau\tau)$ (arXiv:2208.11415)

Pequirement		Hadronic channel		
Requirement	$t_h \tau_{\rm lep} \tau_{\rm had}$	$t_\ell au_{ m had} au_{ m had}$	$t_\ell au_{ m had}$	$t_h \tau_{\rm had} \tau_{\rm had}$
Trigger		di- τ trigger		
Leptons		=0 isolated e or μ		
$ au_{ m had}$	=1 τ_{had}	$=2 \tau_{had}$	=1 τ_{had}	=2 τ_{had}
Electric charge (Q)	$Q_{\ell} \times Q_{\tau_{\text{had}1}} = -1$	$Q_{\tau_{\text{had}1}} \times Q_{\tau_{\text{had}2}} = -1$	$Q_{\ell} \times Q_{\tau_{\text{had}1}} = 1$	$Q_{\tau_{\rm had1}} \times Q_{\tau_{\rm had2}} = -1$
Jets	≥3 jets	≥ 1 jets	≥ 2 jets	\geq 3 jets
<i>b</i> -tagging		=1 b -jets		=1 b-jets

	Regions	<i>b</i> -jets	Light-flavour jets	Leptons	Hadronic τ decays	Charge
1	$t_{\ell} \tau_{\rm had} \tau_{\rm had}$	1	≥ 0	1	2	$\tau_{\rm had} \tau_{\rm had} {\rm OS}$
	te Thad-1j	1	1	1	1	$t_{\ell} \tau_{had} SS$
	$t_{\ell} \tau_{had} - 2j$	1	2	1	1	$t_{\ell} \tau_{\rm had} SS$
SR	$t_h \tau_{\rm lep} \tau_{\rm had}$ -2j	1	2	1	1	$\tau_{\rm lep} \tau_{\rm had} {\rm OS}$
	$t_h \tau_{\rm lep} \tau_{\rm had}$ -3j	1	≥ 3	1	1	$\tau_{\rm lep} \tau_{\rm had} {\rm OS}$
	$t_h \tau_{had} \tau_{had} - 2j$	1	2	0	2	$\tau_{\rm had} \tau_{\rm had} {\rm OS}$
	$t_h \tau_{had} \tau_{had} - 3j$	1	≥ 3	0	2	$\tau_{\rm had} \tau_{\rm had} {\rm OS}$
VD	$t_{\ell} \tau_{had} \tau_{had}$ -SS	1	≥ 0	1	2	$ au_{had} au_{had}$ SS
VK	$t_h \tau_{had} \tau_{had}$ -3j SS	1	≥ 3	0	2	$ au_{had} au_{had}$ SS
	$t_{\ell}t_{\ell}1b\tau_{had}$	1	≥ 0	2	1	tete OS
	$t_\ell t_\ell 2b\tau_{had}$	2	≥ 0	2	1	tete OS
CRtt	$t_{\ell}t_h 2b\tau_{had}$ -2jSS	2	2	1	1	$t_{\ell} \tau_{\rm had} SS$
	$t_{\ell}t_h 2b\tau_{had}$ -2jOS	2	2	1	1	$t_{\ell} \tau_{\rm had} {\rm OS}$
	$t_{\ell}t_h 2b\tau_{had}$ -3jSS	2	≥ 3	1	1	$t_{\ell} \tau_{\rm had} SS$
	$t_{\ell}t_h 2b\tau_{had}$ -3jOS	2	≥ 3	1	1	$t_{\ell} \tau_{\rm had} {\rm OS}$

	$t \rightarrow$	сH		$t \rightarrow$	uН	
Signal Region	95% CL upper limit [10 ⁻³]	Significance	$\mathcal{B}[10^{-3}]$	95% CL upper limit [10 ⁻³]	Significance	$\mathcal{B}[10^{-3}]$
	Observed (Expect	ted)		Observed (Expect	ted)	
$t_h \tau_{had} \tau_{had}$ -2j	$1.80(2.72^{+1.18}_{-0.76})$	-0.96 (0.78)	$-1.03^{+1.03}_{-1.03}$	$1.07(1.60^{+0.71}_{-0.45})$	-0.90(1.31)	$-0.55^{+0.58}_{-0.58}$
$t_h \tau_{had} \tau_{had}$ -3j	$1.14(1.02^{+0.45}_{-0.29})$	0.34 (1.87)	$0.16_{-0.47}^{+0.47}$	$0.97(0.86^{+0.38}_{-0.24})$	0.36 (2.25)	$0.14_{-0.40}^{+0.40}$
Hadronic combination	$1.00(0.95^{+0.42}_{-0.27})$	0.26(1.99)	$0.11_{-0.43}^{+0.43}$	$0.76(0.76^{+0.33}_{-0.21})$	0.12 (2.52)	$0.04^{+0.34}_{-0.34}$
$t_{\ell} \tau_{had}$ -2j	$4.77(4.23^{+1.72}_{-1.18})$	0.41 (0.47)	$0.85^{+2.06}_{-2.06}$	$3.84(3.48^{+1.42}_{-0.97})$	0.36 (0.58)	$0.61^{+1.68}_{-1.68}$
$t_{\ell} \tau_{had}$ -1j	$3.80(3.56^{+1.51}_{-0.99})$	0.22 (0.58)	$0.36^{+1.70}_{-1.70}$	$2.98(2.78^{+1.17}_{-0.78})$	0.22 (0.73)	$0.29^{+1.33}_{-1.33}$
$t_h \tau_{\text{lep}} \tau_{\text{had}} - 2j$	$4.71(5.71^{+2.68}_{-1.60})$	-0.52 (0.38)	$-1.36^{+2.56}_{-2.56}$	$2.50(2.97^{+1.25}_{-0.83})$	-0.47 (0.70)	$-0.66^{+1.38}_{-1.38}$
$t_h \tau_{\text{lep}} \tau_{\text{had}} - 3j$	$2.71(2.71^{+1.25}_{-0.76})$	-0.03 (0.77)	$-0.03^{+1.26}_{-1.26}$	$2.02(2.03^{+0.86}_{-0.57})$	-0.05 (0.99)	$-0.03^{+0.98}_{-0.98}$
$t_{\ell} \tau_{\rm had} \tau_{\rm had}$	$1.35(0.61^{+0.27}_{-0.17})$	2.64 (3.31)	$0.74^{+0.33}_{-0.33}$	$0.97(0.44^{+0.19}_{-0.12})$	2.64 (4.38)	$0.53^{+0.24}_{-0.24}$
Leptonic combination	$1.25(0.58^{+0.25}_{-0.16})$	2.61 (3.46)	$0.69^{+0.31}_{-0.31}$	$0.88(0.41^{+0.18}_{-0.11})$	2.60 (4.62)	$0.49^{+0.22}_{-0.22}$
Combination	$0.94(0.48^{+0.20}_{-0.14})$	2.34 (4.02)	$0.51^{+0.24}_{-0.24}$	$0.69(0.35^{+0.15}_{-0.10})$	2.31 (5.18)	$0.37^{+0.18}_{-0.18}$

Preselection:	
Number of leptons	$N_{\ell} = 3, \ p_{\rm T} > 10 \text{ GeV}, \ \eta < 2.5$
Leading muon / electron $p_{\rm T}$	$p_{\rm T}$ > 27 GeV
Trigger matching	\geq 1 trigger-matched muon / electron
Sum of lepton charges	$\sum q_i = \pm 1$

	SR1	SR2	CRτ	CR <i>tt µ</i>
Lepton flavour		$2\mu 1\tau_{\rm had-vis}$		$2\mu 1e \ (\ell_3 = \mu)$
$N_{ m jets}$	≥ 2	1	≥ 2	≥ 2
$N_{b-{ m tags}}$	1	1	1	≤ 2
Muon p_T cut	> 15 GeV	> 15 GeV	> 15 GeV	> 10 GeV
Lowest p_T muon selection	Tight	Tight	Tight	Loose
Muon charges	SS	SS	OS	-
$ m_{\mu\mu}^{OS} - M_Z $	-	-	<10 GeV	>10 GeV

Operator	Lorentz Structure	
$O_{lq}^{1(ijkl)}$	$(\bar{l}_i \gamma^{\mu} l_j) (\bar{q}_k \gamma_{\mu} q_l)$	Vector
$O_{lq}^{3(ijkl)}$	$(\bar{l}_i \gamma^\mu \sigma^I l_j) (\bar{q}_k \gamma_\mu \sigma^I q_l)$	Vector
$O_{eq}^{(ijkl)}$	$(\bar{e}_i\gamma^{\mu}e_j)(\bar{q}_k\gamma_{\mu}q_l)$	Vector
$O_{lu}^{(ijkl)}$	$(\bar{l}_i \gamma^\mu l_j)(\bar{u}_k \gamma_\mu u_l)$	Vector
$O_{eu}^{(ijkl)}$	$(\bar{e}_i\gamma^{\mu}e_j)(\bar{u}_k\gamma_{\mu}u_l)$	Vector
${}^{\ddagger}O_{lequ}^{1(ijkl)}$	$(\bar{l}_i e_j) \varepsilon(\bar{q}_k u_l)$	Scalar
${}^{\ddagger}O_{lequ}^{3(ijkl)}$	$(\bar{l}_i\sigma^{\mu\nu}e_j)\varepsilon(\bar{q}_k\sigma_{\mu\nu}u_l)$	Tensor

$$\Gamma(t \to \ell_i^+ \ell_j^- q_k) = \frac{m_t}{6144\pi^3} \left(\frac{m_t}{\Lambda}\right)^4 \left\{ 4|c_{lq}^{-(ijk3)}|^2 + 4|c_{eq}^{(ijk3)}|^2 + 4|c_{lu}^{(ijk3)}|^2 + 4|c_{eu}^{(ijk3)}|^2 + 4|c_$$