Spacetime curvature and Higgs stability during and after inflation

arXiv:1407.3141 (PRL 113, 211102)
arXiv:1506.04065

Tommi Markkanen12 Matti Herranen3 Sami Nurmi4
Arttu Rajantie2

1King’s College London
2Imperial College London
3Niels Bohr International Academy, Copenhagen
4University of Jyväskylä

Birmingham
October 2015
1. Introduction

2. Higgs stability during inflation (QFT in Minkowski)

3. Higgs stability after inflation

4. Conclusions
Introduction

1. Introduction

2. Higgs stability during inflation (QFT in Minkowski)

3. Higgs stability after inflation

4. Conclusions
$V(\phi)$ has a minimum at $\phi = v$

A vacuum at $\phi \neq v$ incompatible with observations

Behaviour very sensitive to M_h and M_t

New physics needed to stabilize the vacuum?
Current status

Figure: Degrassi et al. (2013)

- **Meta** stable at 99% CL [1]
- Lifetime much longer than $13.8 \cdot 10^9$ years
- Is this also true for the early Universe?

Inflation and the Standard Model

- We assume the SM to be valid at high energies
 - Potential peaks at Λ_{max}

- Assuming also an early stage of exponential cosmological expansion (inflation) with a scale H
 - Important if $\Lambda_{\text{max}} \lesssim H$
 - State of the art calculations [2]: $\Lambda_{\text{max}} \sim 10^{11}\text{GeV}$

\[V(\phi) \]

V_{max}

0

v

Λ_{max}

\[[2] \text{ Degrazzi et. al.}(2013); \text{ Buttazzo et. al.}(2013) \]
1 Introduction

2 Higgs stability during inflation (QFT in Minkowski)

3 Higgs stability after inflation

4 Conclusions
Inflation induces fluctuations to the Higgs field $\Delta \phi \sim H$

Fluctuations may be treated as stochastic variables [3]

\Rightarrow We can assign a probability density $P(\phi)$ to ϕ

The essential input for $P(\phi)$ is $\tilde{V}_{\text{eff}}(\phi)$, the effective potential

1-loop Effective potential

- Derivation of $V_{\text{eff}}(\phi)$ is a standard calculation \cite{4}
- A theory with a massive self-interacting scalar field

$$V_{\text{eff}}(\phi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4!}\phi^4$$

- Classical

$$+ \frac{M(\phi)^4}{64\pi^2} \left[\log \left(\frac{M(\phi)^2}{\mu^2} \right) - \frac{3}{2} \right]$$

- Effective mass

- Quantum

- μ is the renormalization scale
- Similarly one may derive the potential for the SM Higgs

\cite{4} Coleman & Weinberg (1972)
Effective potential for the SM Higgs

\[V_{\text{eff}}(\phi) = -\frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda\phi^4 + \sum_{i=1}^{5} \frac{n_i}{64\pi^2}M_i^4(\phi) \left[\log \frac{M_i^2(\phi)}{\mu^2} - c_i \right] \]

\[M_i^2(\phi) = \kappa_i \phi^2 - \kappa'_i \]

<table>
<thead>
<tr>
<th>Φ</th>
<th>i</th>
<th>(n_i)</th>
<th>(\kappa_i)</th>
<th>(\kappa'_i)</th>
<th>(c_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W^\pm)</td>
<td>1</td>
<td>6</td>
<td>(g^2/4)</td>
<td>0</td>
<td>5/6</td>
</tr>
<tr>
<td>(Z^0)</td>
<td>2</td>
<td>3</td>
<td>((g^2 + g'^2)/4)</td>
<td>0</td>
<td>5/6</td>
</tr>
<tr>
<td>t</td>
<td>3</td>
<td>-12</td>
<td>(y_t^2/2)</td>
<td>0</td>
<td>3/2</td>
</tr>
<tr>
<td>(\phi)</td>
<td>4</td>
<td>1</td>
<td>3\lambda</td>
<td>(m^2)</td>
<td>3/2</td>
</tr>
<tr>
<td>(\chi_i)</td>
<td>5</td>
<td>3</td>
<td>\lambda</td>
<td>(m^2)</td>
<td>3/2</td>
</tr>
</tbody>
</table>

- Explicit \(\mu \) dependence?
The effective potential is renormalized at a scale μ

$$\lambda_0 \rightarrow \lambda_R + \delta \lambda, \quad \phi \rightarrow (1 + \delta Z)\phi$$

However, the physical result must not depend on μ.

We can impose this by demanding

$$\frac{d}{d\mu} V_{\text{eff}}(\phi) = 0$$

This can be used to improve the perturbative result.

 Leads to *running parameters*, e.g. $\lambda(\mu)$.

Same can be done for the SM.
For large ϕ, the potential is dominated by the quartic term $\lambda \phi^4$

$$V(\phi) \sim \frac{\lambda(\mu)}{4} \phi^4$$
Scale independence V_{eff}

- One can easily show that for the SM to 1-loop [5]
 \[\frac{d}{d\mu} V_{\text{eff}} = 0 + O(\bar{h}^2) \]

- We must choose μ to make the higher order terms as small as possible [6]

The optimal choice

\[\mu \sim \phi \]

\Rightarrow No large logarithms

- Now we have a well-defined potential with no unknown parameters!

<2->

- It is possible to include (classical) gravity in the quantum calculation, \(R = 12H^2 \)

\[\Rightarrow \text{The SM includes a non-minimal } \xi \text{-term, } \sim \xi R\phi^2 \]

- **Always** generated by running in curved space
- Virtually unbounded by the LHC, \(\xi_{\text{EW}} < 10^{15} \) [7]

- Curvature induces running of the constants [8]
- Leading potential contributions:

**Flat space, } \phi \gg m **

\[V_{\text{eff}}(\phi) \approx \frac{\lambda(\phi)}{4} \phi^4 \]

**Curved space, } H \gg \phi \gg m **

\[V_{\text{eff}}(\phi) \approx \frac{\lambda(H)}{4} \phi^4 + \frac{\xi(H)}{2} R\phi^2 \]

1-loop Effective potential in curved space

\[V_{\text{eff}}(\phi, R) = -\frac{1}{2}m^2(t)\phi(t)^2 + \frac{1}{2}\xi(t)R\phi(t)^2 + \frac{1}{4}\lambda(t)\phi(t)^4 \]

\[+ \sum_{i=1}^{9} \frac{n_i}{64\pi^2}M_i^4(t) \left[\log \left| \frac{M_i^2(t)}{\mu^2(t)} \right| - c_i \right] ; M_i^2(t) = \kappa_i \phi(t)^2 - \kappa_i' + \theta_i R \]

<table>
<thead>
<tr>
<th>(\Phi)</th>
<th>(i)</th>
<th>(n_i)</th>
<th>(\kappa_i)</th>
<th>(\kappa_i')</th>
<th>(\theta_i)</th>
<th>(c_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W^\pm)</td>
<td>1</td>
<td>2</td>
<td>(g^2/4)</td>
<td>0</td>
<td>(1/12)</td>
<td>3/2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>(g^2/4)</td>
<td>0</td>
<td>(-1/6)</td>
<td>5/6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-2</td>
<td>(g^2/4)</td>
<td>0</td>
<td>(-1/6)</td>
<td>3/2</td>
</tr>
<tr>
<td>(Z^0)</td>
<td>4</td>
<td>1</td>
<td>(\frac{g^2 + g'^2}{4})</td>
<td>0</td>
<td>(1/12)</td>
<td>3/2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>(\frac{g^2 + g'^2}{4})</td>
<td>0</td>
<td>(-1/6)</td>
<td>5/6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1</td>
<td>(\frac{g^2 + g'^2}{4})</td>
<td>0</td>
<td>(-1/6)</td>
<td>3/2</td>
</tr>
<tr>
<td>(t)</td>
<td>7</td>
<td>-12</td>
<td>(y_i^2/2)</td>
<td>0</td>
<td>(1/12)</td>
<td>3/2</td>
</tr>
<tr>
<td>(\phi)</td>
<td>8</td>
<td>1</td>
<td>(3\lambda)</td>
<td>(m^2)</td>
<td>(\xi - 1/6)</td>
<td>3/2</td>
</tr>
<tr>
<td>(\chi_i)</td>
<td>9</td>
<td>3</td>
<td>(\lambda)</td>
<td>(m^2)</td>
<td>(\xi - 1/6)</td>
<td>3/2</td>
</tr>
</tbody>
</table>
For large $H \sim 10^3 \Lambda_{\text{max}}$, the SM is not stable [9].

Coupling the Higgs to an inflaton $\sim \Phi^2 \phi^2 \Rightarrow$ stable [10].

How does including curvature change this?

First attempt, set $\xi_{EW} = 0$ and $H \sim 10^3 \Lambda_{\text{max}}$

$$V_{\text{eff}}(\phi) \approx \frac{\lambda(\mu)}{4} \phi^4 + \frac{\xi(\mu)}{2} R \phi^2$$

For large H one has $\lambda(\mu) < 0$, since $\mu^2 = \phi^2 + R$

ξ Can become positive or negative depending on ξ_{EW}
For large H one has $\lambda(\mu) < 0$, since $\mu^2 = \phi^2 + R$

ξ Can become positive or negative depending on ξ_{EW}
Now choosing $\xi_{\text{EW}} = 0.1$ [11]

$V_{\text{max}}(\text{curved}) \gg V_{\text{max}}(\text{flat})$ (and at a higher scale)

$P \sim \exp\left[-8\pi^2 \left(\frac{V_{\text{max}}}{3H^4}\right)\right] \Rightarrow \text{Stable!}$

The (in)stability of the potential is determined by ξ_{EW}.
1. Introduction
2. Higgs stability during inflation (QFT in Minkowski)
3. Higgs stability after inflation
4. Conclusions
inflation probably happened sometime here
Reheating

- Equation of state $w = p/\rho$ changes, $w_{\text{inf}} = -1 \rightarrow w_{\text{reh}}$

- Energy of inflation is transferred to SM degrees of freedom, which (eventually) thermalize $T = 0 \rightarrow T_{\text{reh}}$

- The crucial moment is right after inflation, but before thermalization

- A very complicated and dynamical process [12]
 - Reheating \Leftrightarrow Preheating

 - The Higgs always feels the dynamics of reheating
 (even without a direct coupling to the inflaton)

During reheating the inflaton oscillates ($p = w \rho$)

- The inflaton influences the Higgs via gravity

 ⇒ New stability constraints!

Two effects:
- A rapid drop in w, on average
- Oscillations in the complete solution
Oscillating mass (example)

For example for a coupling $\mathcal{L}_{\text{int}} \propto g\Phi^2\phi^2$

\[m_{\text{eff}}^2 \]

Oscillating mass for Higgs

\[m_{\text{eff}}^2 \sim g\Phi_0^2 \cos^2(t M_{\text{inf}}) \]

\(\square \) Parametric resonance via the Mathieu equation

\[
\frac{d^2 f(z)}{dz^2} + \left[A_k - 2q \cos(2z) \right] f(z) = 0, \quad z = t M_{\text{inf}}
\]

⇒ Exponential amplification

• May result in a very large fluctuation [13]

Oscillating R

- The curvature oscillates during reheating

$$G_{\mu\nu} = \frac{1}{M_{\text{pl}}^2} T_{\mu\nu} \quad \Rightarrow \quad R = \frac{1}{M_{\text{pl}}^2} \left[4V_{\text{inf}}(\Phi) - \left(\frac{d\Phi}{dt} \right)^2 \right]$$

- **Tachyonic resonance** [14]
- Oscillations of R via ξ provide efficient reheating
 - *Geometric reheating* [15]

Fluctuations from parametric resonance

- Resonance may give large fluctuations, ⇒ Instabilities ?!
- After one oscillation

\[n \sim \exp \left\{ \sqrt{\xi} \right\} \]

Superhorizon modes, \(k < aH \)

\[\Rightarrow \quad \Delta \phi^2 \sim \left(\frac{H}{2\pi} \right)^2 \frac{\exp \left\{ \sqrt{\xi} \right\}}{\sqrt{\xi}} \]

- Potentially a huge effect, \(\Delta \phi \gg \Lambda_I \)

However, the resonance may be shut off by backreaction

- Self-interactions
 \[\lambda \langle \hat{\phi}^2 \rangle \ll \xi R, \quad \text{if} \quad \lambda > 0 \]

- Gravity
 \[\rho_{\text{Higgs}} \ll 3M_{\text{pl}}^2 H^2 \]
For $H \gtrsim \Lambda_I \sim 10^{11}$ GeV, ξ is constrained to be $\sim 1/6$.

$\frac{H}{\Lambda_I} \sim 10^{11}$ GeV, ξ is constrained to be $\sim 1/6$.

⇒ For $H \gtrsim \Lambda_I \sim 10^{11}$ GeV, ξ is constrained to be $\sim 1/6$.

Stability results, reheating
Outline

1. Introduction
2. Higgs stability during inflation (QFT in Minkowski)
3. Higgs stability after inflation
4. Conclusions
Conclusions

- For a large H, curvature significantly effects the early universe SM instability
 - Running of couplings from H
 - A curvature mass $\propto \xi R \phi^2$ is always generated
- Stability during inflation and reheating constrains SM physics, namely for large H

$\xi \sim 1/6$

Thank You!