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Evidence of the 
four-top-quark 
production at the 
LHC



• Top-quark is the heaviest of all known fundamental particles mtop ~ 170 GeV


• a bizarrely steep mass hierarchy 


• Even heavier than the Higgs boson 

• Unique role as a result of its mass


• Many models predict that the top is special in order to explain its mass

Top-quark
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• Leaves us wondering:


• Is the top mass from the Higgs 
mechanism?


• Is there a hidden connection with 
the EWSB mechanism?


• Does it have any connection to 
Higgs compositeness? 



• Strongly interacts with the Higgs sector 


• Large top yukawa coupling yt ~ 1

Top-quark
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Thanks for 
popping me out of the 

vacuum!

No Problem! 
Have you seen any 
new physics down 

there?



• Short-lived, it decays before hadronizing 


•    


• 


• Possible to study the properties of a bare quark


• LHC is a top factory & many top-quarks are produced at the LHC 


• About   events are produced every hour 


• Gateway to New Physics  

• Precision SM top-quark properties measurements


• Search for non-SM top-quark interactions


• Searches of top-quark partners and other states

τhad ≈ 2 × 10−24s

τtop ≈ 0.5 × 10−24s

25,000 tt̄

Top-quark
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Top-quark Production Cross-section Measurements
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Top-quark Production Cross-section Measurements
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•  production is produced abundantly at the LHC and extremely well studied (total 
and differential cross sections)
tt̄

cr
os

s-
se

ct
io

n 
in

 p
b

Different processes



Top-quark Production Cross-section Measurements
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• +X events are related to new physics and important backgrounds for rare SM processes


• Rare top production modes become fully accessible with Run 2 data
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Top-quark Production Cross-section Measurements
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• 𝑍/ W are among the most massive signatures that can be studied at the LHC with high precision


• Important backgrounds for searches and measurements

tt̄ tt̄
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Top-quark Production Cross-section Measurements
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• H was recently observed using 80 fb-1 of Run 2 data-set                                
[ATLAS-CONF-2019-045]
tt̄

cr
os

s-
se

ct
io

n 
in

 p
b

Different processes

obs. in  
2018

obs. in  
2019

https://cds.cern.ch/record/2693930/files/ATLAS-CONF-2019-045.pdf
https://cds.cern.ch/record/2693930/files/ATLAS-CONF-2019-045.pdf


Top-quark Production Cross-section Measurements
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• Today I will talk about  

• Very tiny cross section in the SM 

•  = 11.97 fb at NLO QCD + NLO QED at 13 TeV  JHEP 02, 031 (2018)

tt̄tt̄

σSM(tt̄tt̄ )
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minimum energy 
required is ~700 

GeV

https://link.springer.com/article/10.1007/JHEP02(2018)031
https://link.springer.com/article/10.1007/JHEP02(2018)031


Predictions for four-tops
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• Rare process predicted by the SM and has never been observed 


• Very complicated process: 72 gg + 12  initiated diagrams at LO


• Sensitive to top-Yukawa coupling (yt)  


• A non-SM value of yt can change dramatically the production via an off-shell Higgs

qq̄



Predictions for four-tops
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• Rare process predicted by the SM and has never been observed 


• Very complicated process: 72 gg + 12  initiated diagrams at LO


• Sensitive to top-Yukawa coupling (yt)  


• A non-SM value of yt can change dramatically the production via an off-shell Higgs

qq̄

arXiv:1611.05032 [hep-ph]

Leading: O(αS4)

https://arxiv.org/pdf/1611.05032.pdf
https://arxiv.org/pdf/1611.05032.pdf
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• Rare process predicted by the SM and has never been observed 


• Very complicated process: 72 gg + 12  initiated diagrams at LO


• Sensitive to top-Yukawa coupling (yt)  


• A non-SM value of yt can change dramatically the production via an off-shell Higgs

qq̄

arXiv:1611.05032 [hep-ph]

Leading: O(αS4)

The production of  is predominantly a QCD process of order O(αS4)tt̄tt̄

https://arxiv.org/pdf/1611.05032.pdf
https://arxiv.org/pdf/1611.05032.pdf


Predictions for four-tops
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• Rare process predicted by the SM and has never been observed 


• Very complicated process: 72 gg + 12  initiated diagrams at LO


• Sensitive to the magnitude and CP properties of the Yukawa coupling of the top quark to the Higgs boson


• four top quarks can be produced via an offshell SM Higgs boson

qq̄

arXiv:1611.05032 [hep-ph]

The production of  is predominantly a QCD process of order O(αS4)tt̄tt̄

A sub-leading Higgs boson 
exchange contribution of 

order O(αS2yt4)

https://arxiv.org/pdf/1611.05032.pdf
https://arxiv.org/pdf/1611.05032.pdf


Predictions for four-tops
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• Sensitive to many BSM models

New Particles

Four-fermion 
contact 
interaction

2HDM scalar/
pseudoscalar

SUSY



Signatures
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• We have four-tops in our final state 


• Each top decays to Wb and the detector signature is defined by:  

• The presence of four b-quarks 


• The decays of the W bosons
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• We have four-tops in our final state 


• Each top decays to Wb and the detector signature is defined by:  

• The presence of four b-quarks 


• The decays of the W bosons

• 


•   

• 


•

W → qq̄ 2/3

W → τν 1/9

W → eν 1/9

W → μν 1/9

Signatures
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• We have four-tops in our final state 


• Each top decays to Wb and the detector signature is defined by:  

• The presence of four b-quarks 


• The decays of the W bosons

• 


•   

• 


•

W → qq̄ 2/3

W → τν 1/9

W → eν 1/9

W → μν 1/9

• 


• 


•  

τ → qq̄ (65%)

τ → μν (17.5%)

τ → eν (17.5%)

Signatures
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• We have four-tops in our final state 


• Each top decays to Wb and the detector signature is defined by:  

• The presence of four b-quarks 


• The decays of the W bosons

• 


•   

• 


•

W → qq̄ 2/3

W → τν 1/9

W → eν 1/9

W → μν 1/9

~75% hadronically 
 

~25% e or μ

}
}

• 


• 


•  

τ → qq̄ (65%)

τ → μν (17.5%)

τ → eν (17.5%)

Signatures
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• We have four-tops in our final state 


• Each top decays to Wb and the detector signature is defined by:  

• The presence of four b-quarks 


• The decays of the W bosons

0l:  (75%)4 ∼ 32 % 1l:  (25%) × (75%)3 × 4 ∼ 42 %

2lOS:  (25%)2 × (75%)2 × 4 ∼ 14 %2lSS:  (25%)2 × (75%)2 × 2 ∼ 7 %
3l:  ≥ 5 %

Signatures
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• Channels are split according to:


• 2ℓSS/3ℓ: 2ℓSS (7%) / 3ℓ (5%) Eur. Phys. J. C (2020) 80:1085


• Small branching fraction 


• Small background (ttW, ttZ, non-prompt leptons, charge misidentification)


• Most sensitive channel 


• 1ℓ/2ℓOS: 1ℓ (42%) / 2ℓOS (14%) JHEP 11 (2021) 118


• Dominant branching fraction 


• Large irreducible background from tt+jets (tt+heavy flavour jets) 


• 0ℓ (32%) 

• Experimentally very challenging 


• Large multi-jet background


• Not yet explored in ATLAS 

Signatures

https://link.springer.com/content/pdf/10.1140/epjc/s10052-020-08509-3.pdf
https://link.springer.com/article/10.1007/JHEP11(2021)118
https://link.springer.com/content/pdf/10.1140/epjc/s10052-020-08509-3.pdf
https://link.springer.com/article/10.1007/JHEP11(2021)118
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Search Strategy

Event Selection and Analysis regions  

Control Region to estimate 
the main background

Use BDT in the Signal 
Region to separate the 

signal from the background

tt̄ + bb̄

tt̄ + W

Si
gn

al

Background

Perform a fit in the Control and Signal Regions to extract 
the signal strength  μ = σtt̄tt̄ /σSM

tt̄tt̄

Extract measured cross section and compare to theory!

Validation Region to 
validate the model 

BDT output
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Event Selection

Event Selection and Analysis regions  

Control Region to estimate 
the main background

Use BDT in the Signal 
Region to separate the 

signal from the background

tt̄ + bb̄

tt̄ + W

Si
gn

al

Background

Perform a fit in the Control and Signal Regions to extract 
the signal strength  μ = σtt̄tt̄ /σSM

tt̄tt̄

Extract measured cross section and compare to theory!

Validation Region to 
validate the model 

BDT output
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Event Selection
• Focus on interesting events & maximize the statistical significance of a potential signal excess  

• Reduce major backgrounds (maximizing the significance of an excess)  

• Using full Run 2 dataset: 139 fb-1  

• Selection requirements in the 2ℓSS/3ℓ (signal region): 


• 2 same-sign leptons or 3 leptons (ℓ=e,μ) 


• ≥ 6 jets (pT > 25 GeV) 


• ≥ 2 b-tagged jets  

• efficiency of identifying b-jets is 77%


• HT > 500 GeV ; HT =
leptons

∑ PT +
jets

∑ PT

Example from the 3l channel
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Event Selection

• Selection requirements in the 1ℓ/2ℓOS: 


• Expect 10 (8) jets in 1L (2lOS) and 4 b-jets at truth level 


• Targeting events with high jet and b-jet multiplicities


• Event pre-Selection:


• 1 e/μ or 2 e/μ


• Njets ≥7 (1L), Njets ≥5 (2L) 


• Nb ≥2  

Example from the 1l channel
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Analysis regions

Event Selection and Analysis regions  

Control Region to estimate 
the main background

Use BDT in the Signal 
Region to separate the 

signal from the background

tt̄ + bb̄

tt̄ + W

Si
gn

al

Background

Perform a fit in the Control and Signal Regions to extract 
the signal strength  μ = σtt̄tt̄ /σSM

tt̄tt̄

Extract measured cross section and compare to theory!

Validation Region to 
validate the model 

BDT output
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Control Regions

Event Selection and Analysis regions  

Control Region to estimate 
the main background

Use BDT in the Signal 
Region to separate the 

signal from the background

tt̄ + bb̄

tt̄ + W

Si
gn

al

Background

Perform a fit in the Control and Signal Regions to extract 
the signal strength  μ = σtt̄tt̄ /σSM

tt̄tt̄

Extract measured cross section and compare to theory!

Validation Region to 
validate the model 

BDT output



Backgrounds:
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• Irreducible backgrounds: 


• Leptons from W, Z or leptonic τ decays 


•  (37%),  (17%), and  (14%) 


• Others (10%): Diboson, triboson, VH+jets, 
ttWW, tWZ, tZq


•  (1%) 

• Evaluated using MC normalised to SM cross 
sections, except  which is floating in the fit


• Defined a dedicated Control Region for 

tt̄W tt̄Z tt̄H

ttt

tt̄W

tt̄W

tt̄W tt̄Z tt̄H

Backgrounds in 2ℓSS/3ℓ Channel
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Backgrounds in 2ℓSS/3ℓ Channel

ATLAS-CONF-2019-045

• The motivation to float the  background comes from:


• the large +jets background normalisation factor found in 
recent measurements in a similar phase space ttH(H→multi-
leptons) 


• the effect of missing electroweak corrections in the MC simulation

tt̄W

tt̄W

https://cds.cern.ch/record/2693930/files/ATLAS-CONF-2019-045.pdf
https://cds.cern.ch/record/2693930/files/ATLAS-CONF-2019-045.pdf
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Backgrounds in 2ℓSS/3ℓ Channel
• Reducible backgrounds (3 dedicated control regions): 

• Charge mis-assignment (6%) and relevant for the 2ℓSS channel 


• Charge of electron is mis-measured, caused by:


• Bremsstrahlung photon emission followed by its conversion


• Mis-measured track curvature

tt̄

Charge Mis-assignment
Bremsstrahlung Mis-measured 

curvature

Beam Pipe

ℓ+: prompt lepton  

from W 

ℓ+: lepton from  

instrumental effect 

AT
LA

S 
D

et
ec

to
r
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Backgrounds in 2ℓSS/3ℓ Channel
• Fake and non-prompt backgrounds (15%):


• electrons from ɣ conversion in detector


• a virtual photon ɣ* leading to an e+e− pair (Low Mee)


• electrons (muons) from heavy-flavour (HF) decay

Non-prompt Leptons
Material 
conversion

Semi-leptonic 
b decay (HF)

Beam Pipe

tt̄

AT
LA

S 
D

et
ec

to
r

ℓ+: prompt lepton  

from W 

ℓ+: lepton from  

instrumental effect 
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• Template Method is used to determine the major backgrounds


• Background shapes are estimated from MC


• Normalisation is obtained from the fit 


• Fit is performed in 1 Signal Region 4 Control regioins


• Dedicated Control Regions are defined to constrain normalisation factors and the 
modeling is validated in the validation regions

Backgrounds in 2ℓSS/3ℓ Channel

Muon from Heavy FlavourElectron from Heavy Flavour  
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• Template Method is used to determine the major backgrounds


• Background shapes are estimated from MC


• Normalisation is obtained from the fit 


• Fit is performed in 1 Signal Region 4 Control regioins


• Dedicated Control Regions are defined to constrain normalisation factors and the 
modeling is validated in the validation regions

Backgrounds in 2ℓSS/3ℓ Channel

Low-mass   

Material Conversion

e+e−
 tt̄W
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• Results of the Template Fit 

• The factors are compatible with unity except for NFttW and NFMaterial Conversion

Fake and non-prompt backgrounds

Backgrounds in 2ℓSS/3ℓ Channel

• The high NFttW  is compatible with previous ATLAS ttH(H→multi-leptons) 
results and results from CMS 
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2ℓSS/3ℓ Channel:  Validation Regiontt̄W

• Use Validation Region to check 
+jets normalisation and 

modeling


• Additional jets: Uncertainty of 
125% is assigned to events with 
7 jets and  300% is assigned to 
events with ≥8 jets 


• Based on Validation Region 
mismodeling  

tt̄W
 Validation Region: ≥4jets ≥2b-tagged tt̄W
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6 Control Regions  
6 Signal Regions 
3 Validation Regions

Backgrounds in the 1ℓ/2ℓOS Channel
• Dominated by background coming 

from +jets; mainly + 


• Small contribution from non-ttbar 
background: 


• Single-top, Z, W, H, V+jets, 
VV, WW, ttt, tZ, and tWZ 

tt̄ tt̄ bb̄

tt̄ tt̄ tt̄
tt̄
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Backgrounds in the 1ℓ/2ℓOS Channel

•  +jets is a challenging background to 
model 


• Many additional jets are produced in the 
parton shower with limited precision


• Modelling of HF jets (b/c) is even more 
challenging

tt̄

lepton +jets Channel
 +  is underestimated by 
the current MC simulations
tt̄ bb̄
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• Events are categorized according to the number of jets and different b-tagging 
requirements 


• Both number of b-tags & their quality (Low or High)

Example from the 1l channel

Number of jets

N
um

be
r o

f b
-t

ag
ge

d 
je

ts

Regions in the 1ℓ/2ℓOS Channel
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• Events are categorized according to the number of jets and different b-tagging 
requirements 


• Both number of b-tags & their quality (Low or High)

Example from the 1l channel

Number of jets

N
um

be
r o

f b
-t

ag
ge

d 
je

ts

Regions in the 1ℓ/2ℓOS Channel
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1ℓ/2ℓOS Channel: Analysis Regions
• 12 Signal and Control regions will be used as input for the binned profile 

likelihood fit 


• HT
all (lepton+jets activities) distributions are used in Control Regions

Example from the 1l channel

Number of jets

N
um

be
r o

f b
-t

ag
ge

d 
je

ts

Signal Regions
Control Regions
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1ℓ/2ℓOS Channel: Analysis Regions
• Events with 2-bjets are used to derive pre-fit corrections factors applied to 

the +jets MC simulationstt̄

Example from the 1l channel

Number of jets

N
um

be
r o

f b
-t

ag
ge

d 
je

ts
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1ℓ/2ℓOS Channel: +jets Backgroundstt̄
• MC known to mismodel the +jets background at high-HT and high-b jet multiplicity 

(mostly noticeable in Njets and HT)


• Developed techniques to tackle MC mismodeling in 2 b-tagged regions


• Derived rescaling factors at pre-fit level 


• Designed a 3-step sequential re-weighting to target different type of mismodeling


• Njet  ➜  HTall ➜ 

tt̄

ΔRjets
avg
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1ℓ/2ℓOS Channel: +jets Backgroundstt̄

• Better Data/MC agreement after correcting the +jets background tt̄

uncorrected corrected
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Signal Seperation 

Event Selection and Analysis regions  

Control Region to estimate 
the main background

Use BDT in the Signal 
Region to separate the 

signal from the background

tt̄ + bb̄

tt̄ + W

Si
gn

al

Background

Perform a fit in the Control and Signal Regions to extract 
the signal strength  μ = σtt̄tt̄ /σSM

tt̄tt̄

Extract measured cross section and compare to theory!

Validation Region to 
validate the model 

BDT output
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Use of BDT in the Signal Region
• Signal is separated from background based on a multivariate discriminant built in the 

signal region by combining many input observables into a BDT:  

• Observables are selected based on their discrimination power and the requirement of 
good modelling 


• b-tagging information: Sum of the pseudo-continuous b-tagging discriminant score


• Lepton and jet kinematics 

Sum of b-tag scores pT(j5)+ +…
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Use of BDT in the Signal Region
• Signal is separated from background based on a multivariate discriminant built in the 

signal region by combining many input observables into a BDT:  

• Observables are selected based on their discrimination power and the requirement of 
good modelling 


• b-tagging information: Sum of the pseudo-continuous b-tagging discriminant score


• Lepton and jet kinematics 

Sum of b-tag scores pT(j5)+ BDT score+…=
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Profile Likelihood Fit 

Event Selection and Analysis regions  

Control Region to estimate 
the main background

Use BDT in the Signal 
Region to separate the 

signal from the background

tt̄ + bb̄

tt̄ + W

Si
gn

al

Background

Perform a fit in the Control and Signal Regions to extract 
the signal strength  μ = σtt̄tt̄ /σSM

tt̄tt̄

Extract measured cross section and compare to theory!

Validation Region to 
validate the model 

BDT output
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Results: post-fit plots

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
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2ℓSS/3ℓ Channel 1ℓ Channel

• A simultaneous profile likelihood fit is performed in the Control Regions and Signal Regions 


• The systematic uncertainties in both the signal and background predictions are included 
as nuisance parameters in the likelihood function  
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• The measured  signal strength is found 
to be: 

tt̄tt̄

μ = 2.0+0.4
−0.4(stat) +0.7

−0.5(syst) = 2.0+0.8
−0.6

Results: 2ℓSS/3ℓ Channel
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• The measured  signal strength is found 
to be: 




• Cross section: 



• Compared to the theoretical predication 
of 

tt̄tt̄

μ = σtt̄tt̄ /σSM
tt̄tt̄ = 2.0+0.4

−0.4(stat) +0.7
−0.5(syst) = 2.0+0.8

−0.6

σ(tt̄tt̄ ) = 24+5
−5(stat) +5

−4(syst) fb = 24+7
−6 fb

σ(tt̄tt̄ ) = 12 ± 2 fb

Results: 2ℓSS/3ℓ Channel
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• The measured  signal strength is found 
to be: 




• Cross section: 



• Compared to the theoretical predication 
of  

• Strong 4.3σ (2.4σ expected) evidence    
 
 
 
 
 

tt̄tt̄

μ = σtt̄tt̄ /σSM
tt̄tt̄ = 2.0+0.4

−0.4(stat) +0.7
−0.5(syst) = 2.0+0.8

−0.6

σ(tt̄tt̄ ) = 24+5
−5(stat) +5

−4(syst) fb = 24+7
−6 fb

σ(tt̄tt̄ ) = 12 ± 2 fb

Strong 4.3σ (2.4σ expected) evidence!!!!

Results: 2ℓSS/3ℓ Channel
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• The measured  signal strength is found 
to be: 




• Cross section: 



• Compared to the theoretical predication 
of  

• Strong 4.3σ (2.4σ expected) evidence    

• Consistent to 1.7σ with the Standard 
Model 


• Extensive tests were done to check the 
stability & consistency of the result

tt̄tt̄

μ = σtt̄tt̄ /σSM
tt̄tt̄ = 2.0+0.4

−0.4(stat) +0.7
−0.5(syst) = 2.0+0.8

−0.6

σ(tt̄tt̄ ) = 24+5
−5(stat) +5

−4(syst) fb = 24+7
−6 fb

σ(tt̄tt̄ ) = 12 ± 2 fb

Results: 2ℓSS/3ℓ Channel
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2ℓSS/3ℓ Channel: Uncertainties
• The dominant systematics 

uncertainties on the signal strength 
are:


• Theoretical uncertainty on the signal 


• Data statistics 


•  modeling


• ttt modeling


• Instrumental 


• B-tagging and Jet Energy Scale 


• Non-prompt lepton normalisation 
and modelling 


tt̄W
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Results: 1ℓ/2ℓOS Channel

• The measured  signal strength is found to be:  



• Cross section:                    



• Compared to the theoretical predication of                    



• Observed (expected) significance: 1.9 (1.0) σ 

tt̄tt̄
μ = σtt̄tt̄ /σSM

tt̄tt̄ = 2.2+0.7
−0.7(stat.) +1.5

−1.0(syst) = 2.2+1.6
−1.2

σ(tt̄tt̄ ) = 26 ± 8(stat) +15
−13(syst.) fb = 26+17

−15 fb

σ(tt̄tt̄ ) = 12 ± 2.4 fb
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1ℓ/2ℓOS Channel: Uncertainties
• The dominant systematics uncertainties are coming from the four-top 

signal and +jets background modelling uncertainties  

• Substantial impact from JES uncertainties and from the b-tagging 
efficiencies on light jets

tt̄
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Combination of 2ℓSS/3ℓ and 1ℓ/2ℓOS Channels

• The combined four-top cross-section:                              



• To be compared to 



• Compatible with the SM prediction 
within 2.0 σ 


• Observed (expected) significance:   
4.7 (2.6) σ

σ(tt̄tt̄ ) = 25+7
−6 fb

σ(tt̄tt̄ ) = 12 ± 2.4 fb
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Combination of 2ℓSS/3ℓ and 1ℓ/2ℓOS Channels

• The combined four-top cross-section:                              



• To be compared to 



• Compatible with the SM prediction 
within 2.0 σ 


• Observed (expected) significance:   
4.7 (2.6) σ

σ(tt̄tt̄ ) = 25+7
−6 fb

σ(tt̄tt̄ ) = 12 ± 2.4 fb

ATLAS finds further confirmation of evidence for 
four top-quark process 

🍾🍾🍾🍾
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Results from CMS 
• Similarly CMS published results for 2ℓSS/3ℓ channel using the full run 2 data-set (Eur. Phys. J. C 80 (2020) 75)


• Used BDTs to separate signal from background 


• Events split in many signal regions


• Observed (expected) significance: 2.6 (2.7) σ 

• Measured cross-section :  fb12.6+5.8
−5.2

Limits on top-Yukawa coupling 
 

upper limit ranges from [1.4, 2.0]
|yt /ySM

t | < 1.7

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-18-003/
http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-18-003/
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Results from CMS 
• Also published results for the 1ℓ/2ℓOS Channel using 36 fb-1 of run 2 data-set (JHEP 11 (2019) 082) 


• Events split in several categories for 1ℓ and 2ℓOS


• using (b-)jet multiplicity and different b-tagging working points 


• BDT discriminants in signal regions to separate signal from backgrounds 


• includes a BDT identifying 3-jets groups from hadronic top, Njets, topology variables


• Observed (expected) significance: 0.0 (0.4) σ

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-17-019/
http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-17-019/
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Summary of ATLAS and CMS measurements
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Search for heavy resonances in four-top-quark final state 

  

ATLAS-CONF-2021-048

https://arxiv.org/pdf/1604.07421.pdf
https://arxiv.org/pdf/1604.07421.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-048/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-048/
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Motivation 
• In many BSM theories, new “top-philic” vector resonances are predicted


• Associated production  is then favored over  annihilation


• Decay of the resonance to  leads to  final states 


• Consider a color singlet vector particle ( ) which dominantly couple to 


 

-top coupling       Chirality parameter  
 
 
Free parameters:


• Resonance mass:  = [1, 1.25, 1.5, 2.0, 2.5, 3.0] TeV


• Coupling to top quarks: 𝑐t = 1 (4% relative width)


• Chirality parameter: 𝜃 = 𝜋/4 (  production insensitive to 𝜃) 


• Loop-induced production of the  resonance is strongly suppressed

tt̄Z′� qq̄

tt̄ tt̄tt̄

Z′� tt̄

ℒint = ctt̄γμ(cosθPL + sinθPR)tZ′�μ

Z′�

mZ′�

tt̄Z′�

Z′�

 Phys. Rev. D 94, 035023 (2016)

https://arxiv.org/pdf/1604.07421.pdf
https://arxiv.org/pdf/1604.07421.pdf
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Reconstruction 
• Focus on 1 lepton channel using ATLAS 139 fb-1 Run-2 data


• Strategy: Use reclustered large-R jets to reconstruct the resonance, targeting 
fully hadronic decay


• Invariant mass of the top candidates (𝑚JJ) is the main discriminant 
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Background Estimation 

• Region definition based on 
number of additional jets (𝑁add.-jets) 
and number of b-jets (𝑁b-jets) 

• Functional form fit to data mJJ 
distribution in source region, 
extrapolated to signal regions by 
ratios of fits to MC mJJ distributions
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Results 
• Good agreement between data and estimated background


• no significant bumps detected 

• Limits set on simplified model as a function of  mass


• Observed (expected) limits range from 𝟔𝟓 (𝟓𝟒) fb at 1 TeV to 𝟏𝟐 (𝟏𝟏) fb at 3 TeV 

Z′�

≥4a, ≥ 4b No mass point exclusion with 𝑐t=1
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Outlook
• We’ve found exciting results using the full run 2 data-set 


• A slight excess in the measured four-top cross section,  
but still compatible with the SM prediction within 2 σ


• Efforts have started to both improve upon the latest result


• Run 3 will double our dataset, and could lead to discovery (5 σ) of the four-
top process


•  Will greatly benefit from better modeling of  &  processes, & from 
new techniques to better constrain these backgrounds 


• Have started exploring Beyond-the-SM interpretations such as EFT or new 
resonances

tt̄W tt̄bb



Thank you!
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Beyond the tttt measurement back-up
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Top-Higgs Yukawa Coupling
• Sensitive to top Yukawa coupling 


• off-shell Higgs does not depend on the Higgs width/BR assumptions


• Sources of CP violation? 


• The general top-quark Yukawa coupling is parameterized as following 
 ℒHtt = −

mt

ν
Ht̄(at + ibtγ5)t

σ(tt̄tt̄ )13 TeV
= 9.998 − 1.522a2

t + 2.883b2
t + 1.173a4

t + 2.713a2
t b2

t + 1.827b4
t

CP-even

CP-odd
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EFT
• Effective operators as higher dimensional terms 

 

• dimension 6-operators that mainly contribute to tttt 
production 
 
 
 
 

• also sensitive to heavy-light type operators


• Full set of 14 operators

ℒEFT = ℒ(4)
SM +

1
Λ ∑

k

C(5)
k 𝒪(5)

k +
1

Λ2 ∑
k

C(6)
k 𝒪(6)

k + . . .

https://arxiv.org/pdf/1708.05928.pdf

https://arxiv.org/pdf/1708.05928.pdf
https://arxiv.org/pdf/1708.05928.pdf
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EFT past results
• CMS has set limit on four major dimension-6 operators that mainly contribute to tttt 


• using 36 fb-1 of run 2 data (arxiv.1906.02805)


• observed (expected) 95% CL upper limit on cross-section, 33 (20) fb 

• ATLAS set limit on the pure right-handed operator 
 using 36 fb-1 of run 2 data (JHEP12(2018)039)


• observed (expected) limit on Wilson coefficient 

𝒪1
tt̄

https://arxiv.org/pdf/1906.02805.pdf
https://arxiv.org/pdf/1906.02805.pdf
https://link.springer.com/content/pdf/10.1007/JHEP12(2018)039.pdf
https://link.springer.com/content/pdf/10.1007/JHEP12(2018)039.pdf
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2ℓSS/3ℓ Channel back-up
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2ℓSS/3ℓ Channel: Selection in the different regions
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2ℓSS/3ℓ Channel: Background composition
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2ℓSS/3ℓ Channel: Background composition

Charge Mis-identification
Bremsstrahlung Mis-measured 

curvature

Non-prompt Leptons
Material 
conversion

Semi-leptonic 
b decay (HF)

Beam Pipe

ℓ+: prompt lepton 

from W 

ℓ+: lepton from 

instrumental effect 

tt̄
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S 
D
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2ℓSS/3ℓ Channel: pre-fit plots (input variables to the BDT)
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2ℓSS/3ℓ Channel: post-fit plots (input variables to the BDT)
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2ℓSS/3ℓ Channel: post-fit plots (input variables to the BDT)
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2ℓSS/3ℓ Channel: ttW Validation Region
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2ℓSS/3ℓ Channel: SR pre-fit
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2ℓSS/3ℓ Channel: ttW pre-fit
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Results from CMS - 2ℓSS/3ℓ Channel 
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1ℓ/1ℓOS Channel back-up
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 +  measurements from CMStt̄ bb̄

1ℓ/1ℓOS Channel: tt+bb backgrond
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1ℓ/1ℓOS Channel: Analysis Regions
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1ℓ/1ℓOS Channel: Analysis Regions
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1ℓ/1ℓOS Channel: Effect of the re-weighting
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1ℓ/1ℓOS Channel: pre-ft plots (input variables to the BDT)



89

1ℓ/1ℓOS Channel: pre-ft plots (input variables to the BDT)
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1ℓ/1ℓOS Channel: Ranking of systematics 
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BSM 4tops Search back-up
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Benchmark Signal Model
● Consider a color singlet vector particle (Z’), with mass ≫ mtop, leading to a 
narrow resonance: Probing TeV scale Top-Philic Resonances with Boosted Top-Tagging at the High Luminosity LHC 
● Using a model independent approach and focus on a two body decay of Z’ 
into  with  in the TeV range  
● Can produce top-philic resonances at tree-level and one-loop 

● We focus on tree-level production such as:  and  with 
  

tt̄ MZ′�

tt̄ + Z′�, tW + Z′ � tj + Z′�
Z′� → tt̄

tt̄ + Z′�

https://arxiv.org/pdf/1604.07421.pdf
https://arxiv.org/pdf/1604.07421.pdf
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Benchmark Signal Model

● The largest contribution at the LHC comes from the four top-quark final state  

●  production is smaller than  roughly by a factor of 2 while 
 production is smaller by a factor 4 

tj + Z′ � tt̄ + Z′�
tW + Z′�

tW + Z′�tt̄ + Z′� tj + Z′�

So far only considering  tt̄ + Z′�
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BumpHunter Results 



95

BumpHunter Results 
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Uncertanties 


