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Physics is Hard

What is the nature of dark matter ?

What is the nature of dark energy ?

What is the nature of dark matter ?

What do we even mean by dark energy ?

Where is all of the anti-matter ?

Is inflation realised ?

Do we live in a stable or metastable universe ?

What is the nature of SM particle masses ? 

How are these questions connected ?
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Particle Physics ☞ Cosmology

• We are entering an era of precision cosmology and precision particle 
physics experiments.  



Birmingham SeminarMichael E. Nelson �12

Particle Physics ☞ Cosmology

• We are entering an era of precision cosmology and precision particle 
physics experiments.  

• We need to: 

• Take advantage of that (I, for one, think we’re doing at great job here). 
• Establish and develop connections. Where do we start ?
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The Standard Model of Particle Physics

• Six flavours of quark. 

• Six (leptons + neutrinos). 

• Four gauge bosons. 

• The Higgs Boson … a 
fundamental (?) scalar (?)



The Higgs: Why do 
we care ?
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1) It has a mass of ~125 GeV

• Higgs boson discovered during Run 1 of the LHC. 

From arXiv:1207.7214
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2) It connects the SM to BSM

• Higgs mass explained by popular beyond Standard Model (BSM) theories 
like Supersymmetry … SPECIAL ! 
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3) It’s a scalar

• The only experimentally verified scalar … SPECIAL ! 
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4) It connects to cosmology 
• Can construct models connecting the Higgs potential to inflation.  

• If Higgs-like scalar = inflaton => could drive the early expansion of the universe.  

• We need to understand the global shape of the Higgs potential. 
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4) It connects to cosmology
• The mass of the Higgs is intimately related to the stability of our universe.  

• We need a detailed understanding the electroweak symmetry breaking in the 
early universe.  

• Again, this comes from understanding the global shape of the Higgs potential. 



Let’s talk about the 
Higgs potential … 
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The Global Higgs Potential
• Q: How can one probe the global shape of the Higgs potential ? 

Higgs mass HH production     HHH production     

Perturb minimum, v, by amount h    

Test the SM predictions:   

Cosmological implications !   
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The Global Higgs Potential
• Q: How can one probe the global shape of the Higgs potential ? 

Higgs mass HH production     HHH production     

Perturb minimum, v, by amount h    

Test the SM predictions:   

Cosmological implications !   

A: Investigating multi-Higgs couplings. We need

to measure di-Higgs production.
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Measuring the Higgs Self-Coupling

  

  

  

Destructive interference
=> small cross-section for HH production !  

• Can measure HH production at the LHC, hence constrain the self-
coupling.  

• Start with the highest cross-section production process, gluon-gluon 
fusion (ggF).
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Measuring the Higgs Self-Coupling

  

    

*From J. Alison
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Measuring the Higgs Self-Coupling

  

    

*From J. Alison

Q: Is all hope lost ? 

A: No !



How might New Physics 
Manifest in HH 
Production ?
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Searching for New Matter: Resonant

  

Direct BSM search   

X = New Matter

e.g. Spin-0: X = S, a new scalar

e.g. Spin-2 X = G, Randall-Sundrum 
graviton

• One can use HH to search for new matter which modifies the Higgs self-
coupling and enhances the HH cross-section => σHH /σHHSM > 1.

• Different models and different X-masses allow for different sizes of 
enhancement to the cross-section. 
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Searching for New Matter: Non-Resonant

  • Generic non-resonant enhancement is possibly in many BSM models, 
such as composite Higgs and Little Higgs scenarios.  

• Can get significant enhancements to the self-coupling. 

• Look for enhanced κλ or activation of new vertices. 

• Also motivates an EFT approach to Higgs physics. 
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Which channels ?

  
• We need to consider the most sensitive channels when searching for 

H(→ab)H(→cd) production. Driven by two important factors: 

• Branching fraction  
• Complexity of final states 
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Which channels ?

  
• We need to consider the most sensitive channels when searching for 

H(→ab)H(→cd) production. Driven by two important factors: 

• Branching fraction  
• Complexity of final states 



Looking for HH at 
ATLAS
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The ATLAS Experiment @ CERN
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A Slice of ATLAS
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B-jet Identification 

  

• Large branching fraction of H → bb 
makes b-tagging essential in di-Higgs 
searches. 

• Exploit the relatively long lifetime of B-
hadrons => b-decay displaced from the 
interaction point.  

• Displacement identified using tracking 
and secondary vertices.  

• Build multivariate discriminants from this 
low-level information to “tag” b-jets.   
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Trigger Challenges

  • Interesting physics is incredibly rare and we cannot save all events from LHC 
collisions to disk. Two-part trigger system: 
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Trigger Challenges

  • Interesting physics is incredibly rare and we cannot save all events from LHC 
collisions to disk. Two-part trigger system: 

• We rely on tracking at the HLT for b-tagging, which is very CPU intensive. This 
will get worse with more luminosity. We need to be smarter with tracking in 
future. 

• The dream: tracking and tagging at L1. 

LH
C
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Trigger

High-level
Trigger

Offline 

reconstruction

40 MHz / 50 Tbs-1

100 kHz / 150 Gbs-1

1 kHz
~ Gbs-1



HH →bb𝛾𝛾 @ 36 fb-1
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bb𝛾𝛾 channel

  • Small branching fraction, but very clean background and clean trigger on the 𝛾. 

• Excellent m𝛾𝛾 resolution. 

• Require 2 b-tagged jets and two 𝛾: 
• Non-resonant: mbb and m𝛾𝛾 reconstructed around the Higgs mass. 
• Resonant: reconstruct the full mbb𝛾𝛾 system and scan for resonances.

𝛾

𝛾
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bb𝛾𝛾 Regions
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bb𝛾𝛾 channel

  • Establish 0-tag regions (with loose and tight jet pT requirements) where the 𝛾+jet 
background is estimated from data and data/MC corrections to m𝛾𝛾 are extracted and 
applied to the 1- and 2-tag signal regions.  

Non-resonant Resonant
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bb𝛾𝛾 channel

• Example search regions in both the resonant and non-resonant channels.  

• Results are statistically limited at 36 fb-1. Full run 2 analysis in progress.  

• Use non-resonant search to set an upper limit on HH production from ggF, and the 
resonant to set an upper limit on the cross-section for e.g heavy scalar production.   

Non-resonant Resonant
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Constraining 𝜅λ

• Set limits on both the 
Higgs self-coupling and 
the ggF production cross-
section for non-resonant 
HH. 

• bb𝛾𝛾 sets stringent 
constraints on κλ.  

• Upper limits on the mass of 
X → HH(bb𝛾𝛾) set using the 
resonant channel. 

—8.2 < κλ < 13.2 @ 95 % CL 
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Constraining New Matter

• Set limits on both the Higgs 
self-coupling and the ggF 
production cross-section for 
non-resonant HH. 

• bb𝛾𝛾 sets stringent 
constraints on κλ.  

• Upper limits on the mass 
of X → HH(bb𝛾𝛾) set using 
the resonant channel. 



HH →bbbb and
HH →bb𝜏𝜏 @ 36 fb-1
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bbbb channel

  • bbbb uses a combination of small and large-radius jets to target highly-boosted 
resonant production.  

*From J. Alison
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bbbb channel

  • bbbb uses a combination of small and large-radius jets to target highly-boosted 
resonant production.  

*From J. Alison

Observed �2� �1� Expected +1� +2�

12.9 11.1 14.9 20.7 30.0 43.6
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bb𝜏𝜏 channel

bb𝜏lep𝜏had bb𝜏had𝜏had

• Single lepton triggering on events, with exactly two b-tagged jets and a 
“missing mass” > 60 GeV. From arXiv:1808.00336
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HH Combinations

• bb𝜏𝜏, bb𝛾𝛾, bbbb provide the most sensitive limits on the cross-section of 
non-resonant HH production.  

• Combine bb𝜏𝜏, bb𝛾𝛾, bbbb in a 2015+2016 limit of —5.0 <  κλ < 12.0. 
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From arXiv:1906.02025

Signal strength, σHH /σHHSM κλ scan
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HH Combinations

10 210 310 410 510
ggF
SMσ HH) normalised to → (pp ggFσ95% CL upper limit on 

Combined

-W+Wb b→HH

γγ
-W+ W→HH

-W+W-W+ W→HH

γγb b→HH

bbb b→HH

-τ+τb b→HH 12.5 15 12

12.9 21 18

20.3 26 26

160 120 77

230 170 160

305 305 240

6.9 10 8.8

Obs. Exp. Exp. stat.

Observed
Expected

σ 1±Expected 
σ 2±Expected 

ATLAS
-1 = 13 TeV,  27.5 - 36.1 fbs

 HH) = 33.5 fb→ (pp ggF
SMσ

λκ
20− 15− 10− 5− 0 5 10 15 20

t
κ

0.8

0.9

1

1.1

1.2

1.3

1.4

SM

 PreliminaryATLAS

SM
Best Fit H
Best Fit H+HH
68% CL
95% CL

-1 = 13 TeV, 27.5 - 79.8 fbs
 = 1bκ = lκ = Zκ = Wκ

HH
H
H+HH

Combined upper limit
σHH   / σHHSM < 6.9

Best fit H+HH combination:
κλ = 4.7
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HH Combinations
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In my opinion, hope is far from lost !



Future Prospects
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An optimistic illustration ? …

*From J. Alison and C. Vernieri 

2016
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An optimistic illustration ? …

*From J. Alison and C. Vernieri 
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A closing example

• Tracking information at the trigger level will be crucial to discovering HH 
at the LHC.  
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A closing example

• Tracking information at the trigger level will be crucial to discovering HH 
at the LHC.  

Calling all grad students: we need innovation and fresh 

ideas to discover HH at the LHC !
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Summary

• Breakthroughs in fundamental physics rely on establishing 
connections => particle physics and cosmology of EWSB. 



Birmingham SeminarMichael E. Nelson �63

Summary

• Breakthroughs in fundamental physics rely on establishing 
connections => particle physics and cosmology of EWSB. 

• HH production allows us to probe the global shape of the Higgs 
potential for the first time. Powerful implications for EWSB and inflation. 



Birmingham SeminarMichael E. Nelson �64

Summary

• Breakthroughs in fundamental physics rely on establishing 
connections => particle physics and cosmology of EWSB. 

• HH production allows us to probe the global shape of the Higgs 
potential for the first time. Powerful implications for EWSB and inflation. 

• At ATLAS we are pushing the boundaries of innovation and making large 
gains in HH sensitivity, even without the full run 2 dataset. 



Birmingham SeminarMichael E. Nelson �65

Summary

• Breakthroughs in fundamental physics rely on establishing 
connections => particle physics and cosmology of EWSB. 

• HH production allows us to probe the global shape of the Higgs 
potential for the first time. Powerful implications for EWSB and inflation. 

• At ATLAS we are pushing the boundaries of innovation and making large 
gains in HH sensitivity, even without the full run 2 dataset. 

• Prospects for discovery at (or even before ?) the HL-LHC are promising, 
but we need bright ideas and innovation.  

• I think we live in very exciting times for HH prospects. Come join the fun ! 



Thank you !



Backup
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Varying κλ

*From P. BokanTrue to all orders *in QCD*
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mHH for Different κλ

• Get different interference effects across mHH, particularly for κλ = 2. 

• mHH and pTHH can be dramatically modified. 
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NLO EW enhancements on κλ
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Non-resonant and Resonant Regions
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Non-resonant and Resonant Regions
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bb𝛾𝛾 Systematic Uncertainties

Source of systematic uncertainty
% e↵ect relative to nominal in the 2-tag (1-tag) category
Non-resonant analysis Resonant analysis: BSM HH

SM HH signal Single-H bkg Loose selection Tight selection

Luminosity ±2.1 (±2.1) ±2.1 (± 2.1) ±2.1 (±2.1) ±2.1 (±2.1)
Trigger ±0.4 (±0.4) ±0.4 (± 0.4) ±0.4 (±0.4) ±0.4 (±0.4)
Pile-up modelling ±3.2 (±1.3) ±2.0 (± 0.8) ±4.0 (±4.2) ±4.0 (±3.8)

Photon

identification ±2.5 (±2.4) ±1.7 (± 1.8) ±2.6 (±2.6) ±2.5 (±2.5)
isolation ±0.8 (±0.8) ±0.8 (± 0.8) ±0.8 (±0.8) ±0.9 (±0.9)
energy resolution - - ±1.0 (±1.3) ±1.8 (±1.2)
energy scale - - ±0.9 (±3.0) ±0.9 (±2.4)

Jet
energy resolution ±1.5 (±2.2) ±2.9 (± 6.4) ±7.5 (±8.5) ±6.4 (±6.4)
energy scale ±2.9 (±2.7) ±7.8 (± 5.6) ±3.0 (±3.3) ±2.3 (±3.4)

Flavour tagging
b-jets ±2.4 (±2.5) ±2.3 (± 1.4) ±3.4 (±2.6) ±2.5 (±2.6)
c-jets ±0.1 (±1.0) ±1.8 (±11.6) - -
light-jets <0.1 (±5.0) ±1.6 (± 2.2) - -

Theory

PDF+↵S ±2.3 (±2.3) ±3.1 (± 3.3) n/a n/a

Scale
+4.3 (+4.3) +4.9 (+ 5.3) n/a n/a
�6.0 (�6.0) +7.0 (+ 8.0) n/a n/a

EFT ±5.0 (±5.0) n/a n/a n/a
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bb𝛾𝛾 Yields
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bbbb channel
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HH → bb𝜏𝜏
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bb𝜏𝜏 channel

• Major analysis tool is the Boosted Decision 
Tree algorithm. 

• Takes different combinations of 11 
kinematic variables in the difference lep-had 
and had-had channels. 
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Acceptance x Efficiency

• Different κλ obtained using a reweighing of the ggF cross-section. 

• Cross-section varies based on the interference between the dominant 
triangle and box diagrams.



Birmingham SeminarMichael E. Nelson �79

HH Combinations

• Constrain spin-0 and spin-2 resonance models up 
to masses of ~ TeV. 

• Also probe hMSSM parameter space, constraining 
heavy Higgs mass up to ~ 500 GeV.
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HH Combinations
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Inputs to the H+HH Global Fit
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HL-LHC Prospects

• Extrapolated limits with the HL-LHC could lead to the 5σ discovery of 
HH production, and a definitive test of the self-coupling in the SM. 
Further prospects in ATL-PHYS-PUB-2018-053.  

• Success of discovery dependent on innovation and systematics. 
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HL-LHC Prospects

• Extrapolated limits with the HL-LHC could lead to the 5σ discovery of 
HH production, and a definitive test of the self-coupling in the SM. 
Further prospects in ATL-PHYS-PUB-2018-053.  

• Success of discovery dependent on innovation and systematics. 

Discovery of HH requires innovation and a deep

understanding of our systematics.
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HL-LHC Prospects: bb𝛾𝛾

SM
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