Search for Hidden Particles (ShiP): an experimental proposal at the SPS

ship.web.cern.ch/ship Mario Campanelli University College London

The Standard Model and beyond

- All SM particles have been discovered so far (apart from anti-ν_τ)
- Despite some anomalies, no compelling evidence of new physics found so far
- The Higgs mass points to a (meta-) stable universe
- The SM could be valid to the Plank scale
- Naturalness only a problem if we assume new particles between theEW and Plank scales

What we know we do not know

- Apart from naturalness, we do not understand:
 - Barion Asymmetry of the Universe
 - Dark Matter (indications are for cold, non-barionic)
 - The pattern of masses and mixings
 - Inflation
- Limits to masses of new particles being pushed in the TeV scale by the LHC.
 - → "protection" against a small Higgs mass getting weaker

ATLAS limits for SUSY

ATLAS SUSY Searches* - 95% CL Lower Limits

October 2019

	Model	S	Signature	e j	∫ <i>L dt</i> [fb [·]	¹] Ma	ass limit					Reference
S	$\tilde{q}\tilde{q}, \tilde{q} ightarrow q \tilde{\chi}_1^0$	0 <i>e</i> , μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss} \ E_T^{ m miss}$	139 36.1	 <i>q</i> [10× Degen.] <i>q</i> [1×, 8× Degen.] 	0.43	0.71	1	1.9	${f m}({ ilde {f \chi}}^0_1)\!<\!\!400~{ m GeV}\ {f m}({ ilde {f q}})\!=\!\!{f m}({ ilde {f \chi}}^0_1)\!=\!\!{f 5}~{ m GeV}$	ATLAS-CONF-2019-040 1711.03301
Inclusive Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ğ ğ		Forbidden		2.35 1.15-1.95	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e, μ ee, μμ	4 jets 2 jets	$E_T^{\rm miss}$	36.1 36.1	20 20 20			1.2	1.85	m(˜1)<800 GeV m(̃)-m(˜1)=50 GeV	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e,μ SS e,μ	7-11 jets 6 jets	$E_T^{\rm miss}$	36.1 139	ĩg ĩg			1.15	1.8	m(𝒱̃1 ⁰) <400 GeV m(𝔅̃)-m(𝒱̃1)=200 GeV	1708.02794 1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	755 755			1.25	2.25	$m({ ilde \chi}_1^0){<}200~{ m GeV} \ m({ ilde g}){-}m({ ilde \chi}_1^0){=}300~{ m GeV}$	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
3 rd gen. squarks direct production	$\tilde{b}_1\tilde{b}_1,\tilde{b}_1{\rightarrow}b\tilde{\chi}_1^0/\tilde{\chi}_1^\pm$		Multiple Multiple Multiple		36.1 36.1 139	$egin{array}{ccc} & & & & & & & & & & & & & & & & & &$	Forbidden Forbidden	0.9 0.58-0.82 0.74			$m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=1$ $300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=BR(t\tilde{\chi}_{1}^{\pm})=0.5$ $eV, m(\tilde{\chi}_{1}^{\pm})=300 \text{ GeV}, BR(t\tilde{\chi}_{1}^{\pm})=1$	1708.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 <i>b</i>	$E_T^{\rm miss}$	139	$egin{array}{ccc} eta_1 & Forbidden \ eta_1 & eta_1 \end{array}$	0.23-0.48		0.23-1.35	$\Delta m (\tilde{\chi}_2^0 \Delta m)$	$(\tilde{\chi}_{1}^{0})=130 \text{ GeV}, m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$ $(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0})=130 \text{ GeV}, m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$	1908.03122 1908.03122
	$ \begin{split} \tilde{\iota}_{1}\tilde{\iota}_{1}, \tilde{\iota}_{1} \rightarrow W b \tilde{\chi}_{1}^{0} \text{ or } \iota \tilde{\chi}_{1}^{0} \\ \tilde{\iota}_{1}\tilde{\iota}_{1}, \tilde{\iota}_{1} \rightarrow W b \tilde{\chi}_{1}^{0} \\ \tilde{\iota}_{1}\tilde{\iota}_{1}, \tilde{\iota}_{1} \rightarrow \tilde{\tau}_{1} b \nu, \tilde{\tau}_{1} \rightarrow \tau \tilde{G} \end{split} $	1 e, µ	0-2 jets/1-2 <i>l</i> 3 jets/1 <i>b</i> τ 2 jets/1 <i>b</i>	E_T^{miss} E_T^{miss}	36.1 139 36.1	\tilde{t}_1 \tilde{t}_1 \tilde{t}_1	0.44-0		1.16		$m(\tilde{\chi}_{1}^{0})$ =1 GeV $m(\tilde{\chi}_{1}^{0})$ =400 GeV $m(\tilde{\tau}_{1})$ =800 GeV	1506.08616, 1709.04183, 1711.11520 ATLAS-CONF-2019-017 1803.10178
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e, μ 0 e, μ	2 c mono-jet	E_T^{miss} E_T^{miss}	36.1 36.1	\tilde{c} $\tilde{7}_1$ $\tilde{7}_1$	0.46 0.43	0.85			$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) = 0 \; \mathrm{GeV} \\ m(\tilde{\iota}_{1},\tilde{c}) - m(\tilde{\chi}_{1}^{0}) = 50 \; \mathrm{GeV} \\ m(\tilde{\iota}_{1},\tilde{c}) - m(\tilde{\chi}_{1}^{0}) = 5 \; \mathrm{GeV} \end{array}$	1805.01649 1805.01649 1711.03301
	$ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z $	1-2 <i>e</i> ,μ 3 <i>e</i> ,μ	4 <i>b</i> 1 <i>b</i>	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 139	\tilde{l}_2 \tilde{l}_2	Forbidden	0.32-0.88 0.86			=0 GeV, $m(\tilde{t}_1) - m(\tilde{\chi}_1^0) = 180$ GeV = 360 GeV, $m(\tilde{t}_1) - m(\tilde{\chi}_1^0) = 40$ GeV	1706.03986 ATLAS-CONF-2019-016
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e, μ ee, μμ	≥ 1	$E_T^{ m miss} \ E_T^{ m miss}$	36.1 139			0.6			$\mathfrak{m}(\tilde{\chi}_1^0)=0$ $\mathfrak{m}(\tilde{\chi}_1^\pm)-\mathfrak{m}(\tilde{\chi}_1^0)=5~\mathrm{GeV}$	1403.5294, 1806.02293 ATLAS-CONF-2019-014
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via <i>WW</i> $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via <i>Wh</i>	2 <i>e</i> , μ 0-1 <i>e</i> , μ	2 <i>b</i> /2 γ	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	$ \tilde{\chi}_{1}^{\pm} $ $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ Forbidden	0.42	0.74			$m(ilde{\chi}^0_1)=0$ $m(ilde{\chi}^0_1)=70~{ m GeV}$	1908.08215 ATLAS-CONF-2019-019, 1909.09226
EW direct	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via $\tilde{\ell}_{L}/\tilde{\nu}$ $\tilde{\tau}\tau, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0}$	2 e,μ 2 τ	0.1-1-	E_T^{miss} E_T^{miss} E_T^{miss}	139 139	$\tilde{\chi}_{1}^{\pm}$ $\tilde{\tau}$ [$\tilde{\tau}_{L}, \tilde{\tau}_{R,L}$] 0.16-0.3	0.12-0.39	1.0	0		$m(\tilde{\ell}, \tilde{v}) = 0.5(m(\tilde{\chi}_1^{\pm}) + m(\tilde{\chi}_1^0))$ $m(\tilde{\chi}_1^0) = 0$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-018
	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e,μ 2 e,μ		$E_T^{\rm miss}$		<i>ℓ</i> <i>ℓ̃</i> 0.256		0.7			$ \begin{array}{c} m(\tilde{\chi}_1^0) = 0 \\ m(\tilde{\ell}) - m(\tilde{\chi}_1^0) = 10 \ GeV \\ \end{array} $	ATLAS-CONF-2019-008 ATLAS-CONF-2019-014
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 36.1	Й 0.13-0.23 Й 0.3		0.29-0.88			$ \begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \end{array} $	1806.04030 1804.03602
-lived cles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	t 1 jet	$E_T^{\rm miss}$	36.1	$ \begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} \end{array} \textbf{0.15} \end{array} $	0.46				Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
Long-lived particles	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple Multiple		36.1 36.1	\tilde{g} $\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$				2.0 2.05 2.4	$m(ilde{\mathcal{X}}_1^0){=}100~{ m GeV}$	1902.01636,1808.04095 1710.04901,1808.04095
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell_{YY} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \end{array} $	eμ,eτ,μτ 4 e,μ	0 jets 4-5 large- <i>R</i> je Multiple	$E_T^{ m miss}$ ts	3.2 36.1 36.1 36.1	$ \begin{split} \tilde{\gamma}_{\tau} \\ \tilde{\chi}_{1}^{+} / \tilde{\chi}_{2}^{0} & [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0] \\ \tilde{g} & [m(\tilde{\chi}_{1}^{0}) = 200 \text{ GeV}, 1100 \text{ GeV}] \\ \tilde{g} & [\chi'_{112} = 2e \cdot 4, 2e \cdot 5] \end{split} $		0.82	1.33 1.3)5	1.9 1.9 2.0	$\begin{split} \lambda'_{311} = & 0.11, \ \lambda_{132/133/233} = & 0.07 \\ & m(\tilde{\chi}^0_1) = & 100 \ \text{GeV} \\ & \text{Large } \lambda''_{112} \\ & m(\tilde{\chi}^0_1) = & 200 \ \text{GeV, bino-like} \end{split}$	1607.08079 1804.03602 1804.03568 ATLAS-CONF-2018-003
	$\begin{split} & \widetilde{ti}, \widetilde{t} \rightarrow \widetilde{tit}_{1}^{0}, \widetilde{t}_{1}^{0} \rightarrow tbs \\ & \widetilde{t}_{1}\widetilde{t}_{1}, \widetilde{t}_{1} \rightarrow bs \\ & \widetilde{t}_{1}\widetilde{t}_{1}, \widetilde{t}_{1} \rightarrow q\ell \end{split}$	2 e,μ 1 μ	Multiple 2 jets + 2 b 2 b DV		36.1 36.7 36.1 136	$\begin{array}{l} \widetilde{g} = [\lambda'_{323}=2e{-}4, 1e{-}2] \\[1ex] \widetilde{t}_1 = [qq, bs] \\[1ex] \widetilde{t}_1 = [1e{-}10{<}\lambda'_{23k} <{1e{-}8}, 3e{-}10{<}\lambda'_{23} \\[1ex] \end{array}$		55 1.0 0.61 1.0	0.4-1.4	¹⁵ 1.6	m($\tilde{\chi}_1^0$)=200 GeV, bino-like BR($\tilde{i}_1 \rightarrow be/b\mu$)>20% BR($\tilde{i}_1 \rightarrow q\mu$)=100%, cos θ_i =1	ATLAS-CONF-2018-003 1710.07171 1710.05544 ATLAS-CONF-2019-006
phen	a selection of the available ma omena is shown. Many of the lified models, c.f. refs. for the a	limits are ba	ased on	s or	1	0 ⁻¹			ı1	1	Mass scale [TeV]	

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

"Exotics" limits

Model	<i>l</i> ,γ Jets† E _T	^{liss} ∫£dt[fb	-1] Limit			Reference
ADD $G_{VK} + g/q$ ADD Don-resonant $\gamma\gamma$ ADD DBH $\beta \gamma$ ADD BH high $\Sigma p \gamma$ ADD BH multiet RSI $G_{VK} \rightarrow \gamma\gamma$ Buik RS $G_{KK} \rightarrow WW/ZZ$ Buik RS $G_{KK} \rightarrow WW \rightarrow qqqq$ Buik RS $g_{KK} \rightarrow tt$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Mo Mo	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2\\ n=3\;\text{HZ}\;\text{RIO}\\ n=6\\ n=6,\;M_D=3\;\text{TeV},\text{rot}\text{BH}\\ n=6,\;M_D=3\;\text{TeV},\text{rot}\text{BH}\\ k/\overline{M}_{P1}=0.1\\ k/\overline{M}_{P1}=1.0\\ k/\overline{M}_{P1}=1.0\\ \Gamma/m=15\%\\ Ter(1,1),\;\mathcal{B}(A^{(1,1)}\to tt)=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02285 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019- 1803.03678
$\begin{array}{ccc} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{g} \ \mathrm{SSM} \ Z' \to \tau\tau \\ \mathrm{Leptophobic} \ Z' \to bb \\ \mathrm{Leptophobic} \ Z' \to tt \\ \mathrm{SSM} \ W' \to tr \\ \mathrm{SSM} \ W' \to \taur \\ \mathrm{HVT} \ V' \to WZ - qqqq \ \mathrm{model} \\ \mathrm{HVT} \ V' \to WH/ZH \ \mathrm{model} \ \mathrm{B} \\ \mathrm{LRSM} \ W_R \to tb \\ \mathrm{LRSM} \ W_R \to \mu M_R \end{array}$	1 r - Y	es 139 es 36.1 - 139 36.1 36.1	Zimma 5.1% Zimma 2.4.1% Zimma 2.1.1% Zimma 2.1.1% Wirman 3.0.1% Wirman 3.7.1% Wirman 3.7.1% Wirman 3.7.1% Wirman 3.7.1% Wirman 3.2.1% Wirman 3.2.1% Wirman 3.5.1% Wirman 3.5.1%	ev	$\Gamma/m = 155$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.06299 1804.10823 CERN-EP-2019-10 1801.06992 ATLAS-CONF-2019- 1712.06518 1807.10473 1904.12679
Cl qqqq Cl ((qq Cl tttt	- 2j 2 e,μ - ≥1 e,μ ≥1 b,≥1 j ¥	- 36.1	Λ Λ Λ 2.57 TeV		21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{tt} = 4\pi$	1703.09127 1707.02424 1811.02305
Axial-vector mediator (Dirac DM Colored scalar mediator (Dirac I $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac DW	DM) 0 e,μ 1−4 j γ 0 e,μ 1 J,≤1 j γ	es 36.1 es 36.1 es 3.2 es 36.1	mass 1.55 TeV mass 1.67 TeV M, 700 GeV my 3.4 TeV		$\begin{array}{l} g_q {=} 0.25, g_{\chi} {=} 1.0, m(\chi) = 1 \mathrm{GeV} \\ g_{\pm} {=} 1.0, m(\chi) = 1 \mathrm{GeV} \\ m(\chi) < 150 \mathrm{GeV} \\ \gamma = 0.4, \lambda = 0.2, m(\chi) = 10 \mathrm{GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
Scalar LQ 1 st gen Scalar LQ 2 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2µ ≥2j ¥ 2⊤ 2b	es 36.1 es 36.1 - 36.1 es 36.1	LQ mass 1.4 TeV LQ mass 1.56 TeV LQ ⁺ mass 1.00 TeV LQ ⁺ mass 970 GeV		$\beta = 1$ $\beta = 1$ $\Re(LQ_1^0 \to b\tau) = 1$ $\Re(LQ_3^d \to t\tau) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
$\begin{array}{c} \text{VLQ } TT \rightarrow Ht/Zt/Wb + X \\ \text{VLQ } BB \rightarrow Wt/Zb + X \\ \text{VLQ } T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X \\ \text{VLQ } Y \rightarrow Wb + X \\ \text{VLQ } P \rightarrow Hb + X \\ \text{VLQ } QQ \rightarrow WqWq \end{array}$	$1 e, \mu \ge 1 b, \ge 1j$ Y $0 e, \mu, 2\gamma \ge 1 b, \ge 1j$ Y	es 36.1	Tomiss 1.92 TeV Bomiss 1.34 TeV Tu, misis 1.64 TeV Y mass 1.64 TeV G miss 1.23 TeV B miss 1.21 TeV G mass 690 GeV		$\begin{array}{l} & \mathrm{SU}(2) \ \mathrm{doublet} \\ & \mathrm{SU}(2) \ \mathrm{doublet} \\ & \mathrm{SU}(T_{3(3)} \rightarrow Wt) = 1, \ c(T_{3(3)}Wt) = 1 \\ & \mathrm{SV}(Y \rightarrow Wb) = 1, \ c_{\mathrm{N}}(Wb) = 1 \\ & \kappa_{\mathrm{N}} = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018- 1509.04261
Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton t^*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 36.7	g' mass 6.7 q' mass 2.5 TeV 5 mass 2.6 TeV 1 [°] mass 3.0 TeV 1 [°] mass 1.6 TeV	TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	ATLAS-CONF-2019- 1709.10440 1805.09299 1411.2921 1411.2921
Type III Seesaw LRSM Majorana ν Higgs triplet H ^{±±} → ℓℓ Higgs triplet H ^{±±} → ℓτ Multi-charged particles Magnetic monopoles	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		NP mon: 560 GeV H4* mon: 870 GeV 3.2 TeV H4* mon: 400 GeV 102 TeV mill: charged particle mass 1.22 TeV molycolar mass 2.37 TeV		$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$ DY production, $ q = 5e$ DY production, $ g = 1g_0$, spin 1/2	ATLAS-CONF-2019 1809.1110 1710.0974 1411.2921 1812.0367 1905.1013

*Small-radius (large-radius) jets are denoted by the letter i (J.

τ [ns]

The "hidden sector" approach to new physics

- Maybe new particles have not been yet found not because they are heavy, but because their coupling is very small, or null
- If an additional term to the Lagrangian is not interacting with SM, there could be invisible particles contributing to dark matter, and no naturalness issues
- However, an interference term between the Lagrangians would allow a very small coupling:

"Portals"

- Indications for a Hidden Sector may come from "ordinary" particles (SM, SUSY, axions etc.) acting as mediators with the HS Lagrangian
- The experimental signature is either missing energy or the appearance of SM particles very far away from its production, indicating an "oscillation" into the HS (and back)

Models	Final states
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}, \rho^{\pm} \to \pi^{\pm}\pi^{0}$
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^+\ell^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^-\nu$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^{0}\pi^{0}$

Standard Model portals:

- D = 2: Vector portal
 - Kinetic mixing with massive dark/secluded/paraphoton V : $\frac{1}{2} \epsilon F_{\mu\nu}^{SM} F_{HS}^{\mu\nu}$
 - Interaction with 'mirror world' constituting dark matter
- D = 2: Higgs portal
 - Mass mixing with dark singlet scalar χ : $(\mu \chi + \lambda \chi^2) H^{\dagger} H$

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \rho \ -\sin \rho \\ \sin \rho \ \ \cos \rho \end{pmatrix} \begin{pmatrix} \phi_0' \\ S' \end{pmatrix}$$

Mass to Higgs boson and right-handed neutrino, and function as inflaton in accordance with Planck and BICEP measurements

- D = 5/2: Neutrino portal
 - Mixing with right-handed neutrino N (Heavy Neutral Lepton): $YH^{\dagger}\overline{N}L$
 - Neutrino oscillation, baryon asymmetry, dark matter
- D = 4: Axion portal
 - Mixing with Axion Like Particles, pseudo-scalars pNGB, axial vectors : $\frac{a}{r}G_{\mu\nu}\tilde{G}^{\mu\nu}$, $\frac{\partial_{\mu}a}{\sigma}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi$, etc
 - → Solve strong CP problem, Inflaton
- And possiby higher dimensional operator portals and SUper-SYmmetric portals (light neutralino, light sgoldstino,...)
 - → SUSY parameter space explored by LHC
 - Some of SUSY low-energy parameter space open to complementary searches

Vector and scalar portals

 Vector Portal: (A' = "hidden photon")

 $\epsilon F'_{\mu
u}F^{\mu
u}$

 Higgs Portal: (H' = "hidden Higgs")

 $\lambda |H'|^2 |H|^2$

Sterile neutrinos

Fermions get mass via the Yukawa couplings:

$$-\mathcal{L}_{\text{Yukawa}} = Y_{ij}^{d} \overline{Q_{Li}} \phi D_{Rj} + Y_{ij}^{u} \overline{Q_{Li}} \tilde{\phi} U_{Rj} + Y_{ij}^{\ell} \overline{L_{Li}} \phi E_{Rj} + \text{h.c.}$$

If we want the same coupling for neutrinos, we need right-handed (sterile) neutrinos... the most generic Lagrangian is $U_{I\ell} \sim$

$$\mathcal{L}_{N} = i\overline{N}_{i}\partial_{\mu}\gamma^{\mu}N_{i} - \frac{1}{2}M_{ij}\overline{N^{c}}_{i}N_{j} - Y_{ij}^{\nu}\overline{L_{Li}}\tilde{\phi}N_{j}$$
Kinetic term Majorana mass term Yukawa coupling
Seesaw mechanism:
$$\mathcal{V} = (\nu_{Li}, N_{j}) - \mathcal{L}_{M} = \frac{1}{-\overline{\mathcal{V}}M_{\mathcal{V}}\mathcal{V}} + h.c$$
if $M_{N} \gg M_{D}$:

$$M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix} \quad \lambda_{\pm} = \frac{M_N \pm \sqrt{M_N^2 + 4M_D^2}}{2} \qquad \qquad \lambda_{\perp} \sim \frac{M_D^2}{M_N} \\ \lambda_{\pm} \sim M_N$$

The see-saw mechanism

Seesaw formula $m_D \sim Y_{I\alpha} < \phi >$ and $m_\nu = \frac{m_D^2}{M}$

- Assuming $m_{\nu} = 0.1 \text{eV}$
- if $Y \sim 1$ implies $M \sim 10^{14} {\rm GeV}$
- if $M_N \sim 1 {
 m GeV}$ implies $Y_{\nu} \sim 10^{-7}$

remember $Y_{top} \sim 1$. and $Y_e \sim 10^{-6}$

If we want to explain the smallness of neutrino masses (in a natural way) the mass of sterile neutrinos should be at least at the GeV scale

Resulting mass ranges

 Sterile neutrinos could have masses and couplings similar to those of the ordinary charged leptons

The vMSSM

T.Asaka, M.Shaposhnikov, PL B620 (2005) 17 M.Shaposhnikov Nucl. Phys. B763 (2007) 49

Particle content of SM made symmetric by adding 3 HNL: N₁, N₂, N₃

- With M(N) ~ few KeV, it is a good DM candidate (or DM can be generated outside of this model through decay of inflaton)
- With M(N , N) ~ GeV, could explain Barion Asymmetry of Universe (via leptogenesis), and generate neutrino masses through see-saw.

HNL production mechanism

- Interaction with Higgs vev leads to a mixing with active neutrinos
- Several past searches; PS191 used
- neutrinos from K decays, while other experiments not sensitive to mixings of
- cosmological interest.
- Latest result: LHCb with B decays
- obtained U2≈10-4, arXiv:1401.5361
- Further exploration needed of the
- region with higher masses and smaller 👟 mixings

HNL decay modes

Interaction with Higgs vev would make it oscillate back into a virtual neutrino, that produces a muon and a W (→ hadrons, eg pions) Exact branching fractions depend n flavor mixing Due to small couplings, ms lifetimes, decay paths O(km)

Decay mode	Branching ratio
$N_{2,3} \rightarrow \mu/e + \pi$	0.1 - 50 %
$N_{2,3} \rightarrow \mu^{-}/e^{-} + \rho^{+}$	0.5 - 20 %
$N_{23} \rightarrow v + \mu + e$	1 - 10 %

Constraints on N₁ mass

DM sterile neutrinos decay subdominantly as $N_1 \rightarrow \nu \gamma$ with a branching ration $\mathcal{B}(N_1 \rightarrow \gamma \nu) \sim \frac{1}{123}$

Constraints on N₂, N₃ masses

High-mass searches at the LHC

- Explore HNL mass range above 10 GeV
- Search for two same-sign leptons and no MET
- ATLAS paper JHEP 10(2019) 265 uses both prompt and displaced signatures

Searches in the cosmologicallyinteresting region

...

Model-independent experimental considerations

We have to look for very weakly interacting particles:

- Production BR O(1E-10)
- Lifetimes O(km)
- Can travel through ordinary matter

Cosmologically interesting masses O(GeV)

- Produced through decays of mesons
- Can decay to mesons or charged leptons
- Full final-state reconstruction and particle ID

To have high intensities:

- fixed-target against a beam dump
- followed by a long decay tunnel and a spectrometer at the end

An experiment in practice

Use protons from CERN's SPS: 500 kW is 4x1E13 protons/7 s ->2E20 in 5y

- Slow (ms \rightarrow 1s) and uniform extraction to reduce detector occupancy and combinatorics
- HS particles produced by mesons (mainly charm) decays; need to absorb all SM decay products to minimise BG → heavy material thick target, with wide beam to dilute energy deposition (different from neutrino facility)
- Muons cannot be absorbed by target: muon shield, possibly magnetised
- Long decay tunnel away from external walls to minimise rescattering of muons and neutrons close to detector
- Vacuum in decay tunnel to reduce neutrino interactions
- Far-away detector with good PID and resolutions

Schematically...

The SHiP experiment

Dedicated detector for weakly coupled long-lived particles, plus tau neutrino and LDM scattering, to be run at future beam-dump facility at CERN.

The spectrometer is located ~100m downstream of the target, after a magnetised muon shield, the scattering and neutrino detector and a long decay volume

Aim for a 0-BG experiment (2 events \rightarrow discovery)

2016 Jan: Recommendation by CERN SPSC to proceed to 3-year CDS 2016 Apr: CERN management launch of Beyond Collider Physics study group SHiP experimental facility included under PBC as <u>Beam Dump Facility</u> 2018: EPPSU contribution submitted by SHiP and BDF 2019 Dec: CDS submitted: CERN-SPSC-2019-049 ; SPSC-SR-263 SHiP Collaboration: **290 authors, 52 Institutes, 17 countries**

Status of Beam Dump Facility

3-year Comprehensive Design Study completed by BDF team

- In-depth feasibility study with prototypes of key elements
 - SPS extraction and proton delivery
 - · Target system and target complex, including remote handling
 - · Underground experimental area, layout of surface buildings for construction/installation and operation
 - · Evaluations of the radiological aspects and safety
 - First iteration of detailed integration and civil engineering studies
 - Updated realistic schedule and cost, detailed project plan and resources for TDR phase
 - → Documented in 580-page Yellow Report
 - ➔ BDF ready for 3-year TDR phase

A few high-lights:

Crystal shadowing of extraction septum wires combined with improvements of beam dynamics and automated alignment achieved factor 3-4 less losses in SPS extraction, validating the SHiP requirements

Current status of the experiment

- Collaboration completed Comprehensive Design Study, then we expect to be requested a TDR
- Phase-1 prototypes for all sub-detectors built and tested on a beam in summer 2018
- From the summer 2019 ECFA newsletter:
 - Amongthem, the SPS Beam Dump Facility with the SHiP and (possibly) the TauFV experiment has been identified as having unique potential in the worldwide landscape for dark photon and heavy neutral lepton searches, as well as for third flavour physics (ντ interactions and τ rare decays). It is now mature and ready for an implementation decision pending the Strategy guidelines.
- Phase-2 prototypes under construction, to be tested on beam in 2019-21.

Target and shielding

- heavy target to absorbe π s before decay
- magnetized hadron stopper: immediately separate µ[±]
- ideal muon shield configuration optimised with machine learning
 ⇒ µ rate reduced to ~ 25 kHz

• μ spectrum validated with dedicated experiment in 2018

[JINST 12(2017)05 P05011]

Magnetisation of hadron stopper

Surface contours: B 2.231024E+0

- 2.000000E+0

1.500000E+0

- 1.000000E+0

- 5.000000E-1

3.226410E-4

Detailed design study completed by RAL (V. Bayliss, J. Boehm, G. Gilley) through Collaboration Agreement with CERN

- Optimisation of the magnetic circuit
 - Simulated field maps for use in physics simulations and for optimisation of the subsequent free-standing muon shield
 - Hysteresis effects after multiple powering cycles;
 - Magnetic forces of the entire magnetized assembly and target shielding
 - Stray fields

- Preliminary engineering design compatible with the target complex and radiation environment

- Power requirements
- Thermal management (consideration of water and gas cooling)
- Technical solution for connections of power cables, cooling, sensors etc.
- Technical solution for the integration of magnetic iron blocks and remote handling of blocks and coils

Magnetic Shield for SHiP (UK-Russia responsibility)

- obout 600 individual modules (one block in the figure is 10 modules)
- total weight of about 10000 tons
- \diamond modules up to 6.5×4 m² in size
- about 2000 km of sheet cutting length

Magnet prototypes

- Two 50kg magnet prototypes have been constructed with different assembly techniques by UK companies using UK Grain Oriented Steel
 - Complementary approach to welding of laminations
 - Target field of ~1.8T with stacking factor >0.95
 - Test for loses of magnetic flux around the loop due to the different types of connections between laminations
- Awaiting delivery to CERN for testing

The muon filter

7 (m)

ž (m)

Bonus intermezzo: the v_{\pm} detector

The vacuum vessel

Veto tagger located just after v_{τ} detector to tag indirectly neutral K produced by v and μ interactions in the passive material of the v_{τ} detector and μ entering the vessel from the front

- 10⁻⁶ mbar vacuum needed suppress the neutrino interactions
- Double-wall structure, space filled with **liquid scintillator** to tag background entering **from the sides**
- Elliptical structure to avoid the large μ flux deflected horizon-

tally by the μ

5m

shield

10m

tracking detector to reject residual charged background in the forward region (K_s⁰,..)

50m

The spectrometer

background rejection: warm magnet (LHCb) with 0.65Tm bending power; tracker (NA62) with horizontal straws and stereo angle

Veto anti-coincidence from combinatorial : timing detector (50ps resolution)

e/ γ identification, π^0 and η reconstruction: ECAL (Shashlik technique, LHCb)

 π/μ separation : hadronic calorimeter (similar technology as ECAL), muon detector (WLS fiber bars, MINOS) 9

Muon Detector

Trigger and DAQ

- Trigger andEvent building on all data and trigger decision at EF
- TFC system generates the clock
- All sub-systems send data through ethernet links (no need for radiation hardness) to Event Filter Farm via a switch
- Fraction of data sent to Monitoring
- Farm to evaluate performance
- Smallest time slice that could potentially contain all data from one pot (100 ns)
- Since some events spread over more than one frame, 100 frames are combined into a "package", with 1 overlap

Background rejection: upstream neutrino interactions

- Impact parameter to the target
- 75% selection efficiency for signal

After selections: ≤ 0.1 bkg / 5 y
Background rejection: interactions with experimental hall

- Impact parameter to the target
- 75% selection efficiency for signal

After selections: ≤ 0.1 bkg / 5 y

Background rejection: cosmics

- Impact parameter to the target
- 75% selection efficiency for signal

After selections: ≤ 0.1 bkg / 5 y

Backgrounds: summary

Background source	Decay modes
$\nu \text{ or } \mu + \text{nucleon} \rightarrow X + K_L$	$K_L \to \pi e \nu, \pi \mu \nu, \pi^+ \pi^-, \pi^+ \pi^- \pi^0$
$\nu \text{ or } \mu + \text{nucleon} \rightarrow X + K_S$	$K_S \to \pi^0 \pi^0, \pi^+ \pi^-$
$\nu \text{ or } \mu + \text{nucleon} \to X + \Lambda$	$\Lambda o p\pi^-$
$n \text{ or } p + \text{nucleon} \to X + K_L, \text{ etc}$	as above

Background summary: no evidence for any irreducible background

No events selected in MC → Expected background UL @ 90% CL

Background source	Stat. weight	Expected background (UL 90% CL)
v-induced	0	1 0 (, , , ,
2.0	1.4	1.6
4.0	2.5	0.9
$p > 10 { m ~GeV/c}$	3.0	0.8
$\overline{\nu}$ -induced		
2.0	2.4	1.0
4.0	2.8	0.8
$p > 10 { m ~GeV/c}$	6.8	0.3
Muon inelastic	0.5	4.6
Muon combinatorial	_	<0.1
Cosmics		
$p < 100 { m ~GeV/c}$	2.0	1.2
$p > 100 { m ~GeV/c}$	1600	0.002

Sensitivity to HNL

- Visible decays = At least two tracks crossing the spectrometer
 - Ex. For $m_N = 1$ GeV with $U^2 = 10^{-8}$ and $\mathcal{BR}(N \to \mu \pi) = 20\%$, expect ~330 signal events

Scenarios for which baryogenesis was numerically proven

 $U_e^2: U_{\mu}^2: U_{\tau}^2 \sim 1: 11: 11$, normal hierarchy

Sensitivity to dark photons

Production

- Decays of π⁰ → Vγ, η → Vγ, ω → Vπ⁰
- Proton bremsstrahlung and parton bremsstrahlung above AQCD
- Decay into pair of SM particles

Updated physics reach

from top left: HNL (heavy meson decays), dark photon (decays + bremsstrahlung + QCD), scalar (*K* and *B* decays), ALPs coupled to fermions, ALPs coupled to photons

Hidden scalars Production from B and K decays Decay into fermion or meson pairs

Axion portal

- Axion Like Particles, pseudo-scalars pNGB, axial vectors a
 - Appear in extended Higgs, SUSY breaking, motivated by coupling with dark sector, possibility of inflaton, etc
 - Generically light pseudo-scalars arise in spontaneous breaking of approximate symmetries at a high mass scale F
 - \rightarrow Couplings suppressed by the breaking scale F and masses are light $\sim \Lambda/F^2$
 - SM portal through mixing with gauge bosons and fermions

$$\mathcal{L} = \frac{a}{F} G_{\mu\nu} \tilde{G}^{\mu\nu}, \frac{\partial_{\mu}a}{F} \bar{\psi} \gamma_{\mu} \gamma_{5} \psi$$
, etc

Production

- Resonant production from Drell-Yan photons
- Production from mixing with pions and heavy meson decays
- Decays
 - Decays to e^+e^- , $\mu^+\mu^-$, hadrons above 1 GeV
 - Decays to photon pair

Tau neutrino physics

Charged current neutrino nucleon scattering

Structure functions

F₁
 F₂
 F₂
 F₃
 F₃
 F₄
 F₅
 More precise estimation from other experiments
 Opposite sign for v and anti-v
 F₄
 Dependent on the lepton mass. Suppressed in case of v_µ interactions, becomes relevant

for v_{τ} interactions

- Evaluation of F₃
- First evaluation of F₄ and F₅, not accessible with lighter neutrinos

Some tau neutrino numbers

Current status of tau neutrino observations:

- DONUT observed 9 events (from charm) with a background of 1.5
- OPERA observed 4 events (from oscillations)
- No tau antineutrino has been even observed
- Ship can increase by 200 the current tau neutrino sample, and discover tau antineutrinos
- Measurement of tau neutrino differential cross-section in CC interactions
- Measurement of charm production for muon neutrinos and antineutrino (factor of
- 100 increase wrt CHORUS)
- A good fraction of the old OPERA collaborators are joining SHiP to build the neutrino sub-detector and analyse its data.

Muon flux measurement in 2018

 To validate simulations for the fundamental muon BG, a prototype target and hadron absorber have been exposed to the SPS beam

Reasonable agreement with simulation, but tails not well modeled (on 1% of SHiP spill)

Double Charm production (preliminary)

- Used Emulsion Cloud Chambers to identify charm decay topology
- Pixel + SciFi + drift tubes to measure momentum, RPCs to identify muons

Multivariate techniques used to suppress background in vertex identification; charm analysis in emulsions still ongoing.

SND@LHC: arXiV 2002.08722

• A Scattering and Neutrino Detector to measure $pp \rightarrow v X$ at the LHC, to search for feebly interactive particles in an unexplored domain, using a prototype of the SHiP neutrino system in a LHC service tunnel covering 7.2 < η < 8.7.

SND@LHC Neutrino physics

Neutrino flavour	$\langle E \rangle$ GeV (incident)	Neutrino Flux	$\langle E \rangle$ GeV (interacting)	CC Interactions Initial config	CC Interactions Updated config
	(incident) 150	4.6×10^{11}	460	62	975
$rac{ u_{\mu}}{ u_{e}}$	390	4.0×10^{10} 5.9×10^{10}	400 710	21	332
ν_{τ}	420	3.0×10^9	720	1	18
$\bar{ u}_{\mu}$	150	$4.0 imes 10^{11}$	480	27	429
$\bar{\nu}_e$	390	$6.2 imes 10^{10}$	740	11	174
$\bar{\nu}_{ au}$	360	2.9×10^9	720	0	7
TOT		9.87×10^{11}		122	1935

Tau identification efficiency about 50%, with BG (about 3 events) coming from charmed hadrons produced by other neutrino species. Neutrino energies can be reconstructed with 20% resolution.

Light dark matter: Dark Photon

- Dark photons of ~ 1 GeV mass could be produced by meson decays or photon bremsstrahlung
- Decay mode into a pair of LDM candidates A' $\rightarrow \chi\chi'$ followed by scattering in the emulsion target $\chi e \rightarrow \chi e \rightarrow$

Limits in a 0-BG scenario, with m(A') = 3 m(χ) and coupling α (D) = 0.1

Very aggressive schedule, with installation of services already this summer!

Conclusions

- LHC Run 2 results geve no positive evidence for new physics
- We need an alternative approach to a next big brute-force, general-purpose high-energy collider
- Particle physics could reinvent itself in becoming smaller and smarter, designing experiments that target specific problems (dark matter, neutrinos, etc.)
- A detector like ShiP perfectly fits this philosophy
- Very positive feedback so far from CERN, we have just submitted a CDR and were a major player in the Physics Without Colliders initiative as well as in the European Strategy.
- Waiting for experiment approval, already interesting results from muon flux measurement, charm production, and tau neutrino physics from the proposed SND installation at the LHC