The **TORCH** Detector at the LHCb experiment

Birmingham Particle Physics Seminars 12th of October 2022

Luis Miguel Garcia Martin

Outline

• Introduction

- Importance of Particle Identification
- Particle Identification at LHCb

• Torch detector

- Principle and design
- Pattern reconstruction
- Performance and timing
- Test beam
- Summary and conclusions

- Searches for New Physics via the **precision study** of
 - CP violation
 - Rare decays of heavy quarks

0

- Particle detectors aim to measure properties of particles
 - Long-lived particles can be measured directly
 - Short-lived particles are "reconstructed" through their decay products
- Require accurate information about momentum, charge and mass

- Tracking devices:
 - Reveal the paths of charged particles as they pass through
 - Low interaction with the particles (conservative measurement)
 - Allow to measure the momentum if used with a magnetic field

• Calorimeters:

- Measure the energy a particle
 loses as it passes through
- Usually completely stop the (destructive measurement)

- Elementary particles give different characteristic signatures in detectors
- Tracking and calorimeter information provide some level of particle identification
- Allow to combine particles to "recover" their "origin" (vertexing)

- Different charged hadrons (p, π, K) has similar signal track + hadronic shower
- This makes difficult distinguishing between final states with the same topology
- Making all two-track combinations in an event and calculating their invariant mass is expensive huge combinatoric background
- Hadron identification is a key ingredient in b-physics & hadron spectroscopy

many different modes overlap

LHCb simulation

- Different charged hadrons (p, π, K) has similar signal track + hadronic shower
- This makes difficult distinguishing between final states with the same topology
- Making all two-track combinations in an event and calculating their invariant mass is expensive huge combinatoric background
- Hadron identification is a key ingredient in b-physics & hadron spectroscopy

mainly pions from other sources

- Exploiting charge hadron rest mass for particle identification
 - Momentum (p) provided by the tracking system
 - Mass (m) can be **determined from their velocity** ($p = \gamma mv$)
- Processes that depend on the particle velocity :
 - Time Of Flight (TOF) of the particles over a fixed distance

- Exploiting charge hadron rest mass for particle identification
 - Momentum (p) provided by the tracking system
 - Mass (m) can be **determined from their velocity** ($p = \gamma mv$)
- Processes that depend on the particle velocity :
 - Time Of Flight (TOF) of the particles over a fixed distance
 - \circ Interaction with matter: energy loss via **lonization** (dE/dx)

- Exploiting charge hadron rest mass for particle identification
 - Momentum (p) provided by the tracking system
 - Mass (m) can be **determined from their velocity** ($p = \gamma mv$)
- Processes that depend on the particle velocity :
 - Time Of Flight (TOF) of the particles over a fixed distance
 - $_{\circ}$ Interaction with matter: energy loss via **lonization** (dE/dx)
 - **Transition Radiation**: relativistic charged particle change of medium

- Exploiting charge hadron rest mass for particle identification
 - Momentum (p) provided by the tracking system
 - Mass (m) can be **determined from their velocity** ($p = \gamma mv$)
- Processes that depend on the particle velocity :
 - Time Of Flight (TOF) of the particles over a fixed distance
 - $_{\circ}$ Interaction with matter: energy loss via **lonization** (dE/dx)
 - Transition Radiation: relativistic charged particle change of medium
 - Cherenkov Radiation: particle travels faster than the local speed of light

- Exploiting charge hadron rest mass for particle identification
 - Momentum (p) provided by the tracking system
 - Mass (m) can be **determined from their velocity** ($p = \gamma mv$)
- Processes that depend on the particle velocity :

- RICH well established for hadron identification
- TRD useful for e[±] identification at higher momentum
- dE/dx & TOF work mainly in low momentum region
 - TOF extending upwards due to novel techniques

- Dedicated study to b- and c-hadrons (produced in the forward direction)
- Single arm forward spectrometer

Calorimeters

Distinguishing between final states with the same topology

b-hadrons two-body decays into charmless charged hadrons at LHCb

 \rightarrow with PID

\downarrow without PID

PID at LHCb

- PID at LHCb currently provided by 2 RICH detectors
- No positive kaon identification below 10 GeV/c
- No positive proton identification below 20 GeV/c

TORCH

TORCH: Time **O**f internally **R**eflected **CH**erenkov light

- Proposed solution to enhance low momentum (2-20 GeV/c) particle identification at LHCb:
 - Covers region where kaons are below threshold in the LHCb RICH detectors
 - Cover a large area

• Exploit time-of-flight (ToF) for particle ID:

- $_{\circ}$ $\Delta ToF(K-\pi)$ ~ 35ps for a 10m flight path
- $_{\circ}$ $\,$ Aim for ~10-15ps per track for 3 $K\!/\pi$ separation
- Expect ~30 detected photons per track
- Need $\sigma_t = 70 \text{ps}$ per photon

The TORCH principle

- Charged particles passing through a quartz plate
 generate prompt Cherenkov photons
- Photons are propagated via total internal reflection to the periphery of the detector
- A cylindrical focusing block focuses the photons onto an array of photon detectors
 MCP position maps to A
 - MCP position maps to θ_z
- Photon arrival time and position is measured to derive:
 - Cherenkov angle and path length
 - Photon propagation time
- Method is related to that used by the BaBar DIRC and Belle II TOP

TORCH design

- 18 identical modules $250 \times 66 \times 1 \text{ cm}^3$ (covering and area of ~ 5x6 m²)
- 11 photon detectors per module (18 x 11 = 198 photon detectors)
- Reflective lower edge (photon detector required only at top edge)
- Full TORCH implementation now planned for future LHCb upgrade at the HL-LHC (LHCb upgrade II framework TDR [LHCB-TDR-023])

TORCH design

- Proposal to install TORCH in front of RICH2, in LS4 (for ~2033)
- TORCH will be located at 9.5m of the interaction point
- Need to cover a wide area

The TORCH principle

• Time-of-flight derived from:

Photon arrival time (measured)
$$t_{arrival} = t_0 + \frac{d_{track}}{\beta c} + \frac{d_{prop}}{v_{group}}$$

- **Production time**: Derived from TORCH
 - Expected to have timing from VELO: Fast timing in a small region around the vertex (LHCb Upgrade II)
- **Time-of-flight:** Test different mass hypotheses (β)
 - Determine the path length of the track by spline interpolation between track measurements
 - Extrapolate tracks to TORCH radiator (equation of motion considering mult. scat.)
- Photon propagation: Affected by chromatic dispersion, $n_{aroup}(E_v)$
 - d_{prop} is the photon path length
 - v_{group} is derived from θ_{c}

The TORCH principle

Cherenkov angle used to correct for chromatic dispersion

• Time of propagation (ToP) in quartz depends on the photon energy:

$$t = L/v_{group} = Ln_{group}/c$$

- Cherenkov angle (θ_{c}) and arrival time ($t_{arrival}$) measured at the top of a bar radiator
- Derive n_{phase} from θ_c for K, π , p hypotheses $\cos \theta_c = (\beta n_{phase})^{-1}$
- Use dispersion relation for to get n_{group}
- Determine the ToP from the reconstructed

photon path length and n_{group}

TORCH angular measurements

- Need accurate measurements of the photon to compute photon path-length (~ 1mrad to have a 50ps time resolution)
- θ_x typical lever arm ~ 2 m (Need 6mm pixels)
- θ_{τ} (focusing direction): Cherenkov angular range = 0.4 rad (need 128 pixels)

Photon detectors

- Pads with 64x64 pixels in active area of 53x53 mm²
 - Ganged in group of 8 for θ_x : 8 pixels of 6.4 mm
 - Exploiting charge sharing for θ_{z} : 128 effective pixels of 0.4 mm
 - Achieved effective granularity of 128x8 via charge-sharing
 [JINST 10 (2015) C05003]
- 70ps Per-photon time resolution
 - Arrival time resolution: ~ 50ps (Electronics)
 - Propagation time precision ~ 50ps (photon detector granularity)

Micro-channel plate

- Micro-channel plate (MCP) photon detectors used for fast timing of single photons in TORCH
- R&D program with a commercial partner (PHOTI, UK) to develop tubes with a long lifetime and high granularity
- Charge spread over multiple pixels:
 - Can achieve finer effective granularity (clusters)

Read-out electronics

- Readout electronics are crucial to achieve desired resolution
- Suitable front-end chip has been developed for the ALICE TOF:

Detector Signals

NINO Output

- NINO:
 - Provides time-over-threshold (correct time walk)
 - Amplify the signal
- HPTDC: time-tag leading edge
- Future versions based on picoTDC and fastIC

Threshold

Read-out electronics

- Readout electronics are crucial to achieve desired rev
- Suitable front-end chip has been developed for the A
 NINO:
 - Provides time-over-threshold (correct time walk)
 - Charge measurement
 - **HPTDC:** time-tag leading edge
- Future versions based on picoTDC and fastIC

Simulation

- TORCH detector simulated using GEANT4 in the LHCb framework
- Simple simulation of the quartz radiator and focussing block:
 - Free-standing (no support structure)
- Simulation includes processes for:
 - Cherenkov emission
 - Reflection and refraction
 - Rayleigh scattering
 - Surface roughness

Simulation

- TORCH detector simulated using GEANT4 in the LHCb framework
- Simple simulation of the quartz radiator and focussing block:
 - Free-standing (no support structure)
- Simulation includes processes for:
 - Cherenkov emission
 - Reflection and refraction
 - Rayleigh scattering
 - Surface roughness
- 25ns time window (some photons will arrive out of time)

Reconstruction

- Each hit (photon in the MCP) is back-propagated and associated to a track
 - Analytical photon back-propagation
 - Considering several reflections (sides/bottom)
 ambiguity
 - Most combinations (order reflections) discarded do not give a valid solution (hit position not compatible with measured time)

front-back reflections not visible here (no ambiguity for them)

Reconstruction

- Each hit (photon in the MCP) is back-propagated and associated to a track
 - Analytical photon back-propagation
 - Considering several reflections (sides/bottom)
 ambiguity
 - Most combinations (order reflections)
 discarded do not give a valid solution
 (hit position not compatible with measured time)
- Cherenkov cone results in hyperbola-like patterns (folded by reflections) in x-y plane

Color codes the time or arrival of the photon:

- Early arriving (~15ns)
- Late arriving (~25ns)

Reconstruction

- Each hit (photon in the MCP) is back-propagated and associated to a track
 - Analytical photon back-propagation
 - Considering several reflections (sides/bottom)
 ambiguity
 - Most combinations (order reflections)
 discarded do not give a valid solution
 (hit position not compatible with measured time)
- Cherenkov cone results in hyperbola-like patterns (folded by reflections) in x-y plane
- Chromatic dispersion spreads line into band

Photons at the MCP from a single (repeated) track

y_{det} [mm]

Reconstruction: Assumptions

- Assume each photon:
 - $_{\circ}$ $\,$ Emitted in the centre of the radiator $\,$

Reconstruction: Assumptions

- Assume each photon:
 - Emitted in the centre of the radiator
- Results in a smearing in time due to the incorrect path length assumptions of O(20ps)

path length difference [mm]

Reconstruction: Photon resolution

Reconstruction: resolution

- See (expected) linear dependence on path length due to chromatic dispersion and finite pixel size.
- Limited resolution is due to:
 - The unknown emission
 point and entrance point to the focusing block.
 - Resolution on the track
 slope and multiple
 scattering in the radiator.

Resolution from the MCP and readout electronics is not included here

Background

• Significant fraction of photons are **not associated to reconstructible particles**

• The log-likelihood for a given track/hypothesis combination is given by:

$$\log L = \sum_{\text{pixel } i} \log \left(\sum_{\substack{\text{track } j \\ j \neq t}} \frac{N_j}{N_{\text{tot}}} P_j(\vec{x}_i'' | h_j^{\text{best}}) + \frac{N_t}{N_{\text{tot}}} P_t(\vec{x}_i'' | h_t) + \frac{N_{\text{bkg}}}{N_{\text{tot}}} P_{\text{bkg}}(\vec{x}_i'') \right)$$
PDF for "best" PDF for Background

PDF for "best" hypothesis assignment for other tracks PDF for considered track Background contribution (assumed flat)

Reconstruction: Unbinned

• The log-likelihood for a given track/hypothesis combination is given by:

$$\log L = \sum_{\text{pixel } i} \log \left(\sum_{\substack{\text{track } j \\ j \neq t}} \frac{N_j}{N_{\text{tot}}} P_j(\overrightarrow{x_i''} | h_j^{\text{best}}) + \frac{N_t}{N_{\text{tot}}} P_t(\overrightarrow{x_i''} | h_t) + \frac{N_{\text{bkg}}}{N_{\text{tot}}} P_{\text{bkg}}(\overrightarrow{x_i''}) \right)$$

- Best hypothesis determined by iteration
 - Initially assigned the pion hypothesis
 - In n-iteration, assigned best hypothesis from (n-1)-iteration
- Converges after 3-4 iterations

• The log-likelihood for a given track/hypothesis combination is given by:

$$\log L = \sum_{\text{pixel } i} \log \left(\sum_{\substack{\text{track } j \\ j \neq t}} \frac{N_j}{N_{\text{tot}}} P_j(\vec{x}_i'' | h_j^{\text{best}}) + \frac{N_t}{N_{\text{tot}}} P_t(\vec{x}_i'' | h_t) + \frac{N_{\text{bkg}}}{N_{\text{tot}}} P_{\text{bkg}}(\vec{x}_i'') \right)$$

Component fractions are fixed

Estimate N_i by forward propagating 1000 photons through the optics

J

- Position computed analytically (no need to ray-trace)
- Can't afford to find the yields in a fit (fractions fixed)

• Need to assume
$$N_{\rm bkg} = N_{\rm tot} - \sum_{i} N_{j}$$

• The log-likelihood for a given track/hypothesis combination is given by:

$$\log L = \sum_{\text{pixel } i} \log \left(\sum_{\substack{\text{track } j \\ j \neq t}} \frac{N_j}{N_{\text{tot}}} P_j(\overrightarrow{x_i''} | h_j^{\text{best}}) + \frac{N_t}{N_{\text{tot}}} P_t(\overrightarrow{x_i''} | h_t) + \frac{N_{\text{bkg}}}{N_{\text{tot}}} P_{\text{bkg}}(\overrightarrow{x_i''}) \right)$$

• Determine the PDF for a given track/hypothesis combination from:

$$P(\overrightarrow{x}''|h) = |J|P(E_{\gamma}, \phi_c, t_0)$$

• Initial PDF factorizes

$$P(E_{\gamma}, \phi_c, t_0) = P(E_{\gamma}) \frac{P(\phi)}{P(t_0)} P(t_0)$$

 $1/2\pi$

Frank-Tamm + efficiency

Normal distribution with experimental time resolution

• The log-likelihood for a given track/hypothesis combination is given by:

$$\log L = \sum_{\text{pixel } i} \log \left(\sum_{\substack{\text{track } j \\ j \neq t}} \frac{N_j}{N_{\text{tot}}} P_j(\overrightarrow{x_i''} | h_j^{\text{best}}) + \frac{N_t}{N_{\text{tot}}} P_t(\overrightarrow{x_i''} | h_t) + \frac{N_{\text{bkg}}}{N_{\text{tot}}} P_{\text{bkg}}(\overrightarrow{x_i''}) \right)$$

• Determine the PDF for a given track/hypothesis combination from:

$$P(\overrightarrow{x}''|h) = |J|P(E_{\gamma}, \phi_c, t_0)$$

with
$$J = \left| \frac{\partial y_d''}{\partial E_{\gamma}} \frac{\partial x_d''}{\partial \phi c} - \frac{\partial x_d''}{\partial E_{\gamma}} \frac{\partial y_d''}{\partial \phi c} \right|$$

- It is possible to check the correctness of the reconstructed PDF:
 - Propagate (simulate) a large number of photons (~10⁶) for each track
 - Compare simulation and analytical PDF
- Good agreement (even able to replicate complex structures)

CPU timing

- Current reconstruction takes ~1 second per event (Intel Core i5-10500 3.10GHz)
- Effort to optimise the algorithm:
 - Compiler optimisation options (-O).
 - Vectorisation
 - Change storage to avoid cache misses.
 - Look-up tables instead of expensive calculations
- Further optimisation can be possible
 - Using explicit SIMD data types
 - Use *const* functions and avoid control-flow (allow compiler optimisation)
 - Remove redundant calculations
 - "local" likelihood

CPU timing

- The "local" approach of the likelihood:
 - Consider each track in isolation

$$\log L = \sum_{\text{pixel } i} \log \left(\frac{N_t}{N_{\text{tot}}} P_t(\overrightarrow{x_i''} | h_t) + \frac{N_{\text{bkg}}}{N_{\text{tot}}} P_{\text{bkg}}(\overrightarrow{x_i''}) \right)$$

- no need to iterate in the likelihood calculation
- less optimal treatment of the background
 - However, performance is not significantly worse than in the global approach because there are backgrounds from e.g. γ conversions that do not have associated tracks
- Better suited to running on hardware accelerators than the nominal approach

Developments for IPUs/GPUs

- Significant speed-up could be possible using hardware accelerators (IPUs and GPUs)
- TORCH likelihood calculation is well suited to parallelisation:
 - Modules are independent
 - Probabilities for given hit/track/hypothesis combinations could be determined independently
- Memory access could be a bottleneck
- Development of TORCH photon mapping as proof-of-principle

IPU: Graphcore m2000

GPU: NVIDIA RTX A5000

Instantaneous luminosity in Upgrade II

- Approximate the luminosity profile with an exponential function.
 - Luminosity decays quickly with time
- Virtual peak luminosity: 1.8x10³⁴ cm⁻²s⁻¹(FTDR)
- Fill duration: 8 hours (FTDR)
- Average luminosity is 1.01x10³⁴ cm⁻²s⁻¹
- We can only produce sample in multiples of 2.0x10³³ cm²s⁻¹
- Approximate a fill using 2.6 hours at $1.4x10^{34}$, 1.6 hours at $1.0x10^{34}$, 1.8 hours at $8.0x10^{33}$ and 1.8 hours at $6.0x10^{33}$ cm²s⁻¹

Performance versus luminosity

K-π separation

p-K separation

Performance with weighting

LHCb Upgrade II luminosity

 Combining samples to realistic LHCb Upgrade II instantaneous luminosity profile

Performance versus module

- The performance is worst in module 5 (central, highest occupancy)
- Rapidly improves towards the periphery of the detector (module 1)

p-K separation

Performance versus module

- Reduced performance due to high occupancy in:
 - central modules
 - bottom region of the MCP-PMTs

- We are trying to optimize the optical layout to reduce occupancy
 - Changing focusing block's radius of curvature
 - Increasing granularity
 - Other options to be studied

- Developed a TORCH prototype (proto-TORCH):
 - Full width, half height radiators
 - Full size focusing optics
 - Equipped with two MCP-PMTs

- Exposed to beam at six positions
- Reached 70ps time resolution goal for beam position close to MCP
- Time resolution degrades with distance from MCP
- Reconstruction strongly impacted by small readout effects
- Improving calibrations further should significantly improve this issue

Resolution expected to improve with better electronics calibration

• Testbeam planned on 31 October – 28 November

- Testbeam planned on 31 October 28 November
- Fully instrumented detector
 - 10 MCP-PMTs with 8x64 channels
 - Fully equipped with NINO + HPTDC
- Calibration of boards ongoing in dedicated test setup
- New DAQ for streamlined data taking

Outlook

- TORCH is a novel concept for a DIRC-type detector to achieve high-precision time-of-flight over large areas.
- The TORCH detector provides particle identification in the 2-20 GeV/c momentum range
- Good performance is seen for LHCb Upgrade II conditions
 [CERN-LHCb-PUB-2022-006]
- Reconstruction algorithms developed and tested [CERN-LHCb-PUB-2022-004] [CERN-LHCb-PUB-2022-007]
- Testbeam results very promising (~100ps time resolution)
- New Testbeam planned this November

Thanks for your attention

t_0 reconstruction

- Obtain likelihood profile for each track (under different PID hypothesis) as a function of t_0 .
- Combine likelihoods for all tracks assigned to vertex.
 - Choose the hypothesis for each track which fits best with the other tracks.
- Core of the distribution has width of about 22 ps.
- Time resolution of 70 ps per photon should translate to 10-15 ps per track with 20-30 photons.

Per track t_0 resolution

Upgrade Ib conditions

- Determine track level t_0 using true PID hypothesis.
- Resolution of 37.6 ps with little dependence on $N_{\rm photons}$.
- Significant variation seen across modules. Suggests that:
 - Likelihood is dominated by background hits.
 - → Occupancy is driving t_0 resolution.

Per track t₀ resolution Upgrade Ib conditions

- Test occupancy issue by reconstructing t₀ when removing all photons except those from given track.
- Use true track entry position/angle.
- Use correct PID hypothesis.
- Fit with Gaussian in ±3*expected resolution.
- Dependence of per-track resolution described by: $p_0 + p_1/\sqrt{N_{
 m photons}}$

Track reconstruction effect on t_{0}

- When using the reconstructed track entry position and angle, the resolution gets worse:
 - Precision on the track parameters decreases the resolution by about 20 ps per photon.
- The MC true tracking is still affected by:
 - Multiple scattering in the radiator bar.
 - Surface scattering due to surface roughness.
 - Photon pathlength dependence/pixel size.

Performance in the FTDR

- Uses an 8-by-128 effective pixelation in outer modules and 16-by-128 effective pixelation in the central region.
- No charge-sharing or deadtime is used.

Pixelisation

- Also checked to see if we can go beyond the 8-by-128 by using charge weighting.
- The conclusion strongly depends on the gain-to-threshold ratio and the point spread.

Using standard 650k gain, 30fC threshold and 0.8mm point spread.

8-by-64 pixel Naive cluster centre Charge weighted cluster centre

LHC Schedule

Ions

Shutdown/Technical stop

Protons physics

Commissioning with beam

Hardware commissioning/magnet training

Test beam results

Resolution expected to improve with better electronics calibration

Comparison with RICH

Similarities:

- Reconstruction uses a similar approach to the RICH detectors
 - Optimisation from RICH reconstruction can be imported to TORCH
- A 3D image (x,y,t) image is measured
 - Ring (RICH) and Hyperbola (TORCH)

Differences:

- Photons from a track spread over 25ns window in TORCH
 - Narrow time window for RICH

- Use two different algorithms to compute hit/track/hypothesis probabilities:
 - **Binned**: Based on simulating large numbers of photons (ray-tracing)
 - **Unbinned**: Semi-analytic approach based on back-propagation
- The semi-analytic approach is faster and works with either pixel hits (integrating over the pixel size) or clusters.
- Two different approaches to consider the likelihood:
 - Local: Consider each track in isolation
 - **Global**: Consider all track hypothesis together
Impact of TORCH material

• Placing TORCH in front of RICH 2 slightly increases the material budget

Material in terms of radiation length from start of FT to entry to RICH2 volume:

Impact of TORCH material

- Placing TORCH in front of RICH 2 slightly increases the material budget
- Effect on RICH2 PID performance is negligible

RICH2 PID performance with and without TORCH

Track resolution

Track resolution using LHCb Upgrade I

Effect of the focussing block

- However, the path length in the focus is not unique for a given hit position.
- The path length depends on the photon position in *z* at the top of the bar and whether or not the photon is forward or backward going.

pathlength in y-z

 Assume photons are at the middle of the radiator in z and average the forward- and backward-going path lengths. Y_{hit}