

Heavy Ions at LHC

R. Lietava The University of Birmingham

Outlook

Event characterisation

Soft probes

- Interferometry
- Multiplicity, Transverse energy, Energy density
- Flow and correlations

Hard Probes

- Quarkonia
- Jet quenching
 - **•** High pt suppression ($h^{-}, D0, J/\psi, \gamma, Z, ...$)
 - Reconstructed jets

Summary

Quantum ChromoDynamics (QCD)

 $\mathcal{J} = \frac{1}{4g^2} G_{\mu\nu} G_{\mu\nu} + \frac{5}{7} \overline{g}_i (i \mathcal{F}^{\mu} \mathcal{D}_{\mu} + m_i) g_i$ where Guy = Zu A, - Z, A, + for A, A, and DuE du + it An That's it!

QCD confinement – free quarks never observed ! QCD vacuum not well understood. Heavy ions – study QCD at high temperature and density

Quark Gluon Plasma

Latice QCD: transition hadrons -> quarks and gluons

QGP is not ideal gas !

$$p = \frac{\varepsilon}{3} = \left(g_B + \frac{7}{8}g_F\right) \frac{\pi^2 T^4}{90}$$

$$g_B = 8_c * 2_s = 16$$

$$g_F = 3_f * 3_c * 2_s * 2_a = 36$$

Relativistic Heavy Ion Collider (RHIC):

- Macroscopic liquid:
 - System size > mean free path
 - System lifetime > relaxation time
- Perfect: shear viscosity/entropy ~ 0

□ LHC :

- System is bigger, denser, hotter
- Abundant production of hard probes

LHC Heavy Ion Program

LHC Heavy Ion Data-taking

Design: Pb + Pb at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$

(1 month per year)

Nov. 2010: *Pb* + *Pb* at $\sqrt{s_{NN}} = 2.76$ TeV

LHC Collider Detectors

- ATLAS
- CMS
- ALICE

Pb–Pb Luminosity

Delivered integrated luminosity ~ 9 μ b⁻¹

Luminosity achieved L = $2-3 \times 10^{25} \text{ cm}^{-2}\text{s}^{-1}$

ATLAS very similar to CMS

ALICE recorded ~ 50% due to TPC dead time

Heavy Ion Collision Centrality

Controls the volume and shape of the system

Multiplicity and energy of produced particles are correlated with geometry of collisions.

Measured distribution:

- Track multiplicity
- Transverse energy
- Forward energy

Variables:

- impact parameter
- participants
- collisions

x

• percentile of x section

Centrality selection

Soft Probes

- Interferometry of identical particles
- \blacksquare Charged particle multiplicity , $\mathsf{E}_{\mathsf{T}},\ \pmb{\epsilon}$
- Transverse momentum spectra
- Radial flow
- Anisotropic flow

System size

side .

long

out

 p_2

 $m_{\pi} = \sqrt{k_{\pi}^2 + m}$

- Spatial extent of the particle emitting source extracted from interferometry of identical bosons
 - Two-particle momentum correlations in 3 orthogonal directions -> HBT radii (R_{long}, R_{side}, R_{out})
 - Size: twice w.r.t. RHIC
 - Lifetime: 40% higher w.r.t. RHIC

Multiplicity, E_T and ε

- Particle Production and Energy density ε:
 - Produced Particles: dN_{ch}/dη ≈ 1600 ± 76 (syst)
 - □ \approx 30,000 particles in total, \approx 400 times pp !
 - somewhat on high side of expectations (tuned to RHIC)
 - growth with energy faster in AA
 - Energy density $\varepsilon > 3 \times \text{RHIC}$ (fixed τ_0)

Temperature + 30%

Charged particle spectra Radial Flow

Anisotropic Flow

Fourier expansion in azimuthal distribution:

 $\frac{dN}{p_T dp_T dy d\varphi} = \frac{1}{2\pi} \frac{dN}{p_T dp_T dy} \left(1 + 2v_1 \cos(\varphi - \psi_1) + 2v_2 \cos(2(\varphi - \psi_2)) + \dots \right)$

 $\Box \varphi$ – azimuthal angle

In non-central collisions participant area is not azimuthally symmetric: system evolution transfer this anisotropy from

coordinate space to momentum space

 v_1 - direct flow

Collision Plane :

- Defined by Beam and Impact Parameter

 v_2 - elliptic flow, dominant for system symmetric wrt Collision Plane₁₂

Elliptic flow - v_2

Adopted from R.Snellings

Physics of elliptic flow

Elliptic flow depends on:

- Initial conditions
- Fluid properties
 - Equation of state
 - Shear viscosity

Shear viscosity: $\eta = n \lambda = / \sigma$

Small viscosity $\eta =$ large cross section σ => strongly interacting fluid

The Perfect Liquid

The system produced at the LHC behaves as a very low viscosity fluid (a perfect fluid)

Hydrodynamics and v_2

comparison of identified particles v₂(p_T) with hydro prediction – mass splitting described

ALI-PREL-2448

- (calculation by C Shen et al.: arXiv:1105.3226 [nucl-th])
- Protons are to be understood

Fluctuations $\rightarrow v_3$

- "ideal" shape of participants' overlap is ~ elliptic
 - in particular: no odd harmonics expected
 - participants' plane coincides with event plane

but fluctuations in initial conditions:

- participants plane != event plane
- → v₃ ("triangular") harmonic appears
 [B Alver & G Roland, PRC81
 (2010) 054905]
- and indeed, v3 != 0 !
- v₃ has weaker centrality dependence ^c than v₂

Higher harmonics

2 Particle Correlations and Flow

Fourier expansion in azimuthal distribution:

Flow vs Non-Flow Correlations

- Compare single calculated values with global fit
- To some extent, a good fit suggests flow-type correlations, while a poor fit implies nonflow effects
- v₂ to v₅ factorize until p_T ~ 3-4 GeV/c, then jet-like correlations dominate
- v₁ factorization problematic (influence of awayside jet)

Anisotropic Flow Summary

- Centrality and p_t dependences of various v_n constraint
 - initial conditions (CGC vs Glauber)
 - viscosity η/s
- There is no hydro calculation (yet) describing simultaneously data on v₂ and v₃,....
- 2 particle correlations consistent with flow for p_T<3-4 GeV/c</p>

Speaking of which...

analyze this

YOU try telling him his 50 minutes are up.

nd Lisa Kudrow

ALAN MEN A CEREMON VILLE EMBERY/CHERANY BERIANNY - AN MEN YOK TOR CHER YOLD / ALL / RED. NAME A AMERIKANYA BERIANN BUTATAL IN COMPANYA ANTANA ANTANA

Full Fourier decomposition of the CMS pp ridge?

The nuclear modification factor

quantify departure from binary scaling in AA
 ratio of yield in AA versus reference collisions

□ e.g.: reference is pp \rightarrow R_{AA}

$$R_{AA} = \frac{\text{Yield}_{AA}}{\text{Yield}_{pp}} \cdot \frac{1}{\langle Nbin \rangle_{AA}}$$

□ ...or peripheral AA \rightarrow R_{CP} ("central to peripheral")

$$R_{\rm cp} = \frac{{\rm Yield}_{\rm AA,\,central}}{{\rm Yield}_{\rm AA,\,periph}} \cdot \frac{\left< Nbin \right>_{\rm AA,\,periph}}{\left< Nbin \right>_{\rm AA,\,central}}$$

Quarkonia suppression

- □ In the plasma phase the interaction potential is expected to be screened beyond the Debye length λ_D (analogous to e.m. Debye screening):
- Charmonium (cc) and bottonium (bb) states with r > λ_D will not bind; their production will be suppressed
- Recombination of cc and bb regenerates quarkonia

24

J/ ψ @ LHC: forward y, low p_T

- **LHC:** 2.5 < y < 4, $p_T > 0$ (ALICE)
- Less suppression than RHIC:
 - $1.2 < y < 2.2, p_T > 0$ (PHENIX)
- As suppressed as RHIC: |y| < 0.35. pT > 0 (PHENIX)

J/ψ @ LHC: central y, high p_T

LHC: |y| < 2.4, $p_T > 6.5$ GeV/c (CMS) prompt J/ ψ

 $R_{\rm AA} = \frac{\rm Yield_{AA}}{\rm Yield_{m}}$

 $\langle Nbin \rangle$

- → more suppressed than RHIC:
- → |y| < 1. pT > 5 GeV/c (STAR) inclusive J/ ψ

23/11/2011 Birmingham

- STAR Υ (1+2+3S) R_{AA}(0-60) = 0.56 ± 0.11 + 0.02 -0.10
- CMS Y(1S) R_{AA}(0-100) = 0.62 ± 0.11 ± 0.10

Y(1S) suppression

Y(2S+3S) suppression

additional suppression for \Upsilon(2S+3S) w.r.t. \Upsilon(1S)?

$$\frac{\Upsilon(2S+3S)/\Upsilon(1S)|_{Pb-Pb}}{\Upsilon(2S+3S)/\Upsilon(1S)|_{pp}} = 0.31^{+0.19}_{-0.15}(\text{stat}) \pm 0.03(\text{syst})$$

Quarkonia Summary

- \square Y and J/ ψ suppressed by same amount ?
- Suppression depends on y and pt
- the future runs should allow us to establish quantitatively the complete quarkonium suppression(/recombination?) pattern
 - high statistic measurements
 - open flavour baseline / contamination
 - pA baseline

Jets in medium

J.D. Bjorken Fermilab preprint PUB-82/59-THY (August 1982). X.-N. Wang and M. Gyulassy, *Phys. Rev. Lett.* **68** (1992) 1480 $R_{AA} = \frac{\text{Yield}_{AA}}{\text{Yield}_{pp}} \cdot \frac{1}{\langle Nbin \rangle_{AA}}$

R_{AA}(p_T) for charged particles produced in 0-5% centrality range

• minimum (~ 0.14) for $p_T \sim 6-7$ GeV/c

K_{AA} at LHC

then slow increase at high p_T

essential quantitative constraint for parton energy loss models!

Non colour probes

Jet quenching

- Jet quenching = Energy loss of fast parton in matter
 - jet(parton) E -> jet E' (=E-∆E) + soft gluons (∆E)
 - modified jet fragmentation function f(z) (= number & energy distribution of hadrons) via matter induced gluon radiation/scattering
- QCD energy loss $\Delta E = f(m) \times c_q \times q \times L^2 \times f(E)$ depends on:
 - q : 'transport coefficient ' = property of medium (QGP >> nuclear matter)
 - L: size of medium (~ L²)
 - c_q: parton type (gluon > quark)
 - f(m) : quark mass (light q > heavy Q)
 - f(E) : jet energy (∆E = constant or ~ ln(E))

 How much energy is lost ? measure 'hard' fragments
 Where (and how) is it lost ?
 Shows expected scaling ?

23/11/2011 Birmingham

How much is lost ?

imbalance quantified by the di-jet asymmetry variable A_1 :

م 2011) 162302 كانا، Muleer: Phys.Rev.Lett. 106 (2011) 162302

Where is it lost ?

No visible angular decorrelation in $\Delta \phi$ wrt pp collisions!

→ large imbalance effect on jet energy, but very little effect on jet direction!

How is it lost ?

Jet fragmentation function

distribution of the momenta of the fragments along the jet axis

$$z = \frac{p_T^{hadron} \cdot \cos(\Delta R)}{E_T^{jet}}$$

- distribution is very similar in central and peripheral events
 - although quenching is very different...
- apparently no effect
 from quenching inside
 the jet cone...

Jet "quenching": what have we learned so far?

EPIC@LHC, July 7, 2011

Mass & Colour Charge Dependence

- R_{AA} prompt charm $\approx R_{AA}$ pions for $p_T > 5-6$ GeV expected difference factor 2 @ 8 GeV

- R_{AA} charm > $R_{AA} \pi$ for $p_T < 5$ GeV ?

jet quenching $\Delta E \sim f(m) \times c_q \times q \times L^2 \times f(E)$

Needs better statistics & quantitative comparison with other models

23/11/2011 Birmingham

Summary

Journey started ~35 years ago: QGP was presumed

□ QGP Observed Saperdense Matter: Neutrons or Asymptotically Free Quarks?

Our basic nicture then is that matter at densities higher than nuclear consists of a quark soup. J. C. Collins and M. J. Perry The quarks become free at sufficiently high den *Mathematica* and *Regatical Physics K Sniversity of Cambridge*, sity. A specific realization is an asymptotically **Cambridge** *CB3 9EW*, *England* **Cambridge** *CB3 9EW*, *England* **Cambridge** *CB3 9EW*, *England* **Cambridge** *CB3 9EW*, *England*

- Jet quenching
 - Back to back jets strongly suppressed

Dynamic of quenching ?

- Quarkonia dissolution versus recombination ?
- Heavy flavour: Are heavy quarks really suppressed as much as light quarks and gluons ?

HI SM Model describing simultaneously all observables !

The journey to terra incognita of heavy ions continues!

Back up

Energy density

Transverse energy density per participant pair: 2.5 x RHIC Consistent with 20% increase in <pt>

Energy dependence

^{23/11/2011} Birmingham

Charged Particle Multiplicity Density at mid-Rapidity

 $\left. \frac{dN_{ch}^{AA}}{d\eta} \right|_{\eta=0}$

At RHIC the low charge particle multiplicity was a surprise and ruled out most of the models ...

No wonder, predictions for LHC were a little bit on the low side ...

RHIC: PHOBOS Au-Au (0.2 TeV)

compilation by N.Armesto

LHC: ALICE Pb-Pb (2.76 TeV) Phys. Rev. Lett. 106, 032301 (2011)

Andreas Morsch, Physics at LHC 2011, June 7, Perugia, Italy

Particle ratios

In general well described (~10%) by statistical (thermal) model

Thermal model at LHC

pp: 900 GeV & 7 TeV

pp:-Thermal fit rather poorPb-Pb:

- **K**/ π grows slightly from pp value

 $-\mathbf{p}/\pi \approx \text{like pp}$ $-\mathbf{p}/\pi \text{ off by factor > 1.5}$ from thermal predictions ! but very compatible with RHIC !!

Before we can conclude anything we need more particle species..

Physics of elliptic flow

16

14

12 10

8

c_s^{2 0.35}

Elliptic flow v₂ depends on fluid properties: the EoS via $c_s^2 = \frac{\partial p}{\partial \varepsilon}$, shear viscosity over entropy ratio η/s but also on: initial conditions: particular initial spatial eccentricity ε_2

Adopted from R.Snellings

750

T [MeV]

ε_{SB}/T

T [MeV]

600

100 150 200 250 300 350 400 450 500 550

Direct flow

G. Eyyubova QM2011

Structures in $(\Delta \eta, \Delta \phi)$

Fourier analysis at large $\Delta \eta$, moderate p_T

Near side jet excluded by $|\Delta \eta| > 0.8$ gap Ridge at $\Delta \phi = 0$ remains

2-particle Fourier coeffs. Extract directly from $C(\Delta \phi)$:

$$\langle \cos n\Delta\phi\rangle = \frac{\int d\Delta\phi \, C(\Delta\phi) \cos n\Delta\phi}{\int d\Delta\phi \, C(\Delta\phi)}$$

Here, the first 5 moments describe shape at per-mille level.

Di-jet imbalance

Pb-Pb events with large di-jet imbalance observed at the LHC

recoiling jet strongly quenched!

CMS: arXiv:1102.1957

Jet nuclear modification factor

$$R_{CP} = \frac{\langle Nbin \rangle_{Central} \text{ Yield}_{Central}}{\langle Nbin \rangle_{Peripheral} \text{ Yield}_{Peripheral}}$$

- substantial suppression of jet production
 - in central Pb-Pb wrt binary-scaled peripheral
- → out to very large jet energies!

Brian Cole – ATLAS (QM2011)

Where does the energy end up?

nice analysis by CMS using reconstructed tracks: in-cone

 \rightarrow momentum difference is balanced by low momentum particles outside of the jet cone

23/11/2011 Birmingham

Z and W from ATLAS

S.White, ATLAS, EPIC 2011

AdS / CFT in a Picture

The Perfect Liquid?

model calculations suggest that the RHIC v₂ results are close to the ideal hydrodynamical limit.

these calculations place an upper limit on η /s which is smaller than ~ 4 x AdS/ CFT bound

main uncertainties on η /s due to uncertainties in the initial conditions and the unknown dependence of η /s versus temperature

Heavy Ion Program

