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Outlook 
 QGP 
 Event characterisation 
 Soft probes 

 Interferometry 
 Multiplicity, Transverse energy, Energy density 
 Flow and correlations 

  Hard Probes 
 Quarkonia 
 Jet quenching 

 High pt suppression (h-,D0,J/ψ,γ,Z,...) 
 Reconstructed jets 

  Summary 
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Quantum ChromoDynamics (QCD) 

QCD confinement – free quarks never observed ! 
QCD vacuum not well understood. 
Heavy ions – study QCD at high temperature and density 
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Quark Gluon Plasma 
 Latice QCD: transition hadrons -> quarks and gluons 

          QGP is not ideal gas ! 

 
 
 
 

 
 Relativistic Heavy Ion Collider (RHIC): 

 Macroscopic liquid:  
 System size > mean free path 

 System lifetime > relaxation time 

 Perfect: shear viscosity/entropy ~ 0 

 LHC :  
 System is bigger, denser, hotter 

 Abundant production of hard probes 
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• LHC Collider Detectors 
- ATLAS 
- CMS 
- ALICE 

LHC Heavy Ion Program 
LHC Heavy Ion Data-taking  

Design: Pb + Pb at √sNN = 5.5 TeV 
(1 month per year) 

Nov. 2010: Pb + Pb at √sNN = 2.76 TeV 
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Pb–Pb Luminosity 

B.Wyslouch, CMS, EPIC2011 

Delivered integrated  
luminosity ~ 9 µb-1 

 
Luminosity achieved 
L = 2–3 x 1025 cm-2s-1 

 
ATLAS very similar to CMS 
 
ALICE recorded ~ 50%  
due to TPC dead time 
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Heavy Ion Collision Centrality 

Multiplicity and energy of produced particles 
are correlated with geometry of collisions.  

Measured distribution:  
•Track multiplicity 
• Transverse energy 
• Forward energy 
 
Variables: 
• impact parameter 
• participants 
• collisions 
• percentile of x section 

Controls the volume and shape of the system 

Plane perpendicular  
to beam direction   Beam direction   

x   

y   

Participants 
(10) 

=> Collisions 
(18) 
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Centrality selection 

ALICE 

S.White, ATLAS, EPIC2011 

B.Wyslouch, CMS,EPIC2011 
M.Nicassio, ALICE, EPIC2011 
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Soft Probes 

 Interferometry of identical particles 
 Charged particle multiplicity , ET, ε 
 Transverse momentum spectra 
 Radial flow 
 Anisotropic flow 
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 Spatial extent of the particle emitting source 
extracted from interferometry of identical bosons 
 Two-particle momentum correlations in 3 

orthogonal directions -> HBT radii (Rlong, Rside, 
Rout) 

 Size: twice w.r.t. RHIC 

 Lifetime: 40% higher w.r.t. RHIC 

ALICE: PLB696 (2011) 328 ALICE: PLB696 (2011) 328 

F.Prino,SQM2011 

System size 
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Multiplicity, ET and ε 
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 Particle Production and Energy density ε: 
  Produced Particles:dNch/dη ≈ 1600 ± 76 (syst)  

 ≈ 30,000 particles in total, ≈ 400 times pp !   
 somewhat on high side of expectations  (tuned to RHIC) 

 growth with energy faster in AA  
  Energy density ε > 3 x RHIC (fixed τ0,) 

  Temperature + 30%   
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Charged particle spectra 
Radial Flow 

• K, π, p spectra 0-5% central collisions 
• Very clear flattening and higher tails at 
√sNN=2.76 TeV 
• Quantify with blastwave parameter 
studies: radial flow β=v0/c and freezout 
temperature Tfo 

L.Barnby , ALICE, EPIC2011 

β= 0.66 
Tfo~110 MeV 
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 Fourier expansion in azimuthal distribution: 

 
 

 φ – azimuthal angle 

Anisotropic Flow 
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In non-central collisions  
participant  area is not azimuthally  
symmetric: system evolution transfer  
this anisotropy from  
coordinate space to momentum space  

v1 - direct flow 
v2 - elliptic flow, dominant for system 
       symmetric wrt Collision Plane Collision Plane : 

- Defined by Beam and Impact Parameter 
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Elliptic flow - v2 

Adopted from R.Snellings 
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Physics of elliptic flow 
Elliptic flow depends on: 
 Initial conditions  
 Fluid properties 

 Equation of state  
 Shear viscosity 

Shear viscosity: 
Small viscosity η => large cross section σ 

=> strongly interacting fluid 
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R.Snellings, ALICE 
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Hydrodynamics and v2 

 comparison of identified particles v2(pT) with hydro 
prediction – mass splitting described  

 

 

 

 

 

 

 

 

 
 (calculation by C Shen et al.: arXiv:1105.3226 [nucl-th]) 

 Protons are to be understood 
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Fluctuations  v3 
 “ideal” shape of participants’ overlap 

is ~ elliptic 

 in particular: no odd harmonics 
expected 

 participants’ plane coincides with 
event plane 

 but fluctuations in initial conditions: 

 participants plane != event plane  

 v3  (“triangular”) harmonic appears 

 [B Alver & G Roland, PRC81 
(2010) 054905] 

 and indeed, v3 != 0 ! 

 v3 has weaker centrality dependence 
than v2 

Matt Luzum  (QM 2011) 

ALICE: PRL 107 (2011) 032301 

v2 

v3 
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Higher harmonics 

M.Issah, CMS, EPIC2011 

S.White, ATLAS, EPIC2011 

• vn+1 < vn 
• vn+1 less centrality  
  dependent than vn  
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vn – information on viscosity, n > 2 
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2 Particle Correlations and Flow 
 Fourier expansion in azimuthal distribution: 

 
 

 If flow dominates than:  
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Flow vs Non-Flow Correlations 

 Compare single 
calculated values 
with global fit 

 To some extent, a 
good fit suggests 
flow-type 
correlations, while a 
poor fit implies non-
flow effects 

 v2 to v5 factorize 
until pT ~ 3-4 
GeV/c, then jet-like 
correlations 
dominate 

 v1 factorization 
problematic 
(influence of away-
side jet) 

Jan Fiete Grosse-Oetringhaus – ALICE 
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Anisotropic Flow Summary 
 Centrality and pt dependences of various vn 

constraint  
 initial conditions (CGC vs Glauber) 
 viscosity – η/s 

 
 There is no hydro calculation (yet) describing 

simultaneously data on v2 and  v3 ,…. 
 

 2 particle correlations consistent with flow for  
pT<3-4 GeV/c  
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Speaking of which… 

Full Fourier decomposition of the CMS pp ridge? 

http://upload.wikimedia.org/wikipedia/en/d/d1/Analyze_this.jpg
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The nuclear modification factor 
 quantify departure from binary scaling in AA 

 ratio of yield in AA versus reference collisions 

 e.g.: reference is pp  RAA 

 
 

 
 …or peripheral AA  RCP (“central to peripheral”) 

AApp

AA
AA

1
Yield
Yield

Nbin
R ⋅=

central AA,

periphAA,

periph AA,

central AA,
cp Yield

Yield
Nbin

Nbin
R ⋅=
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Quarkonia suppression 

 In the plasma phase the interaction potential is 
expected to be screened beyond the Debye length λD 
(analogous to e.m. Debye screening): 

 Charmonium (cc) and bottonium (bb) states with 
r > λD will not bind; their production will be 
suppressed  

 Recombination of cc and bb regenerates 
quarkonia  
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J/ψ @ LHC: forward y, low pT 

Ginés Martínez – ALICE (QM2011) 

 LHC: 2.5 < y < 4, pT > 0 (ALICE) 

 Less suppression than RHIC:  

    1.2 < y < 2.2, pT > 0 (PHENIX) 

 As suppressed as RHIC: |y| < 0.35. pT >  0 (PHENIX) 
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AA
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1
Yield
Yield

Nbin
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Recombination ? 
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 LHC: |y| < 2.4, pT > 6.5 GeV/c (CMS) prompt J/ψ  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 more suppressed than RHIC:  

 |y| < 1. pT > 5 GeV/c (STAR)  

     inclusive J/ ψ 

 

J/ψ @ LHC: central y, high pT 

CMS: PAS HIN-10-006  
ATLAS: PLB 697 (2011) 294 

AApp

AA
AA

1
Yield
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Υ(1S) suppression 
CMS: PAS HIN-10-006  
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Υ(2S+3S) suppression 
 additional suppression for Υ(2S+3S)  w.r.t. Υ(1S) ?  

CMS: arXiv: 1105.4894 
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Quarkonia Summary 
 Υ and J/ψ suppressed by same amount ? 
 Suppression depends on y and pt 
 the future runs should allow us to 

establish quantitatively the complete 
quarkonium suppression(/recombination?) 
pattern  
 high statistic measurements 
 open flavour baseline / contamination 
 pA baseline 
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Jets in medium 

Fragmentation Leading hadron 

Key prediction: jets are quenched 
• collisional energy loss (Bjorken) 
• radiative energy loss (Wang and Gyulassy) 
J.D. Bjorken Fermilab preprint PUB-82/59-THY (August 1982). 
X.-N. Wang and M. Gyulassy, Phys. Rev. Lett. 68 (1992) 1480 

heavy nucleus 

radiated 
gluons 

pa = xa P 

pb = –xb P 

a 

b 

c 

d 

h 

heavy nucleus 

radiated 
gluons 
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 RAA(pT) for charged particles  

    produced in 0-5% centrality range  
 minimum (~ 0.14) for pT ~ 6-7 GeV/c 

 then slow increase at high pT  

 still significant suppression  

pT ~ 100 GeV/c ! 

 

 

 

 

 

 

 

 essential quantitative constraint for 

    parton energy loss models! 

RAA at LHC Non colour probes 

NOT suppressed 

AApp

AA
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1
Yield
Yield

Nbin
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Jet quenching 
 Jet quenching = Energy loss of fast parton in matter 

 jet(parton) E -> jet E’ (=E-∆E) + soft gluons (∆E) 

 modified jet fragmentation function f(z) (= number & 
energy distribution of hadrons) via matter induced gluon 
radiation/scattering 

 QCD energy loss ∆E =f(m) x cq x q x L2 x f(E) depends on: 
 q : 'transport coefficient ' = property of medium (QGP >> 

nuclear matter) 

 L: size of medium (~ L2) 

 cq: parton type (gluon > quark) 

 f(m) : quark mass (light q > heavy Q) 

 f(E) : jet energy (∆E = constant or ~ ln(E)) 
 

beams of  
hard probes 

QGP  
  

1) How much energy is lost ? 
measure 'hard' fragments 
2) Where (and how) is it lost ? 
3) Shows expected scaling ? 
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 imbalance quantified by the di-jet asymmetry variable AJ : 

 with increasing centrality:  

 enhancement of asymmetric 
di-jets with respect to pp 

 & HIJING + PYTHIA simulation 

 ΔE~20 GeV 

 Consistent with RHIC  

8.2       4.0 <= ηR

ATLAS: PRL105 (2010) 252303 

How much is lost ? 
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No visible angular decorrelation in Δφ wrt pp collisions! 

 

 

 

 

 

 

 

 

 

 

 

 large imbalance effect on jet energy, but very little effect on jet 
direction! 

Where is it lost ? 

CMS: arXiv:1102.1957 

ΔΦ12 
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 distribution of the momenta of the fragments along the jet 
axis 

jet
T

hadron
T

E
Rpz )cos(∆⋅

=

peripheral 
central 

 distribution is very 
similar in central and 
peripheral events 
 although quenching is 

very different… 
 apparently no effect 

from quenching inside 
the jet cone… 

Brian Cole – ATLAS (QM2011) 

How is it lost ? 
Jet fragmentation function 
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B.Wyslouch, CMS, EPIC2011 
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(π+ + π−) RAA  

Mass & Colour Charge Dependence 
  Measure Heavy Quarks (c,b) versus π (gluon fragmentation dominates π at LHC) 

jet quenching  
∆E ~  f(m) x cq x q x L2 x f(E) ^ 

N Armesto et al., PRD 71 (2005) 054027 

D-Meson suppression / π suppression 

Colour Charge 

Colour Charge + Mass 

- RAA prompt charm ≈ RAA pions for pT > 5-6 GeV 
 expected difference factor 2 @ 8 GeV 
- RAA charm > RAA π for pT < 5 GeV ? 

Needs better statistics & quantitative comparison with other models 

Charm Mesons RAA  



 
 

38 

Summary 

The journey to terra incognita of heavy ions continues! 

 Journey started ~35 years ago: QGP was presumed  

 QGP observed at LHC: 
 Collective flow  

 Strongly interacting liquid – hydro works  
 Estimate of viscosity ?  

 Jet quenching  
 Back to back jets strongly suppressed 
 Dynamic of quenching ? 

 Quarkonia dissolution versus recombination ? 
 Heavy flavour: Are heavy quarks really suppressed as much as 

light quarks and gluons ?  
 HI SM Model describing simultaneously all observables ! 
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Back up 
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Energy density 

CMS, QM2011 

Transverse energy density per participant pair: 2.5 x RHIC 
Consistent with 20% increase in <pt> 

Bjorken energy density x time: 2.8 x 
for 5% of most central collisions 

B.Wyslouch, CMS, EPIC2011 

J.Harris, ALICE, EPIC2011 
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Energy dependence 
 growing faster then pp 
-2.2 compared to RHIC 
-1.9 compared to pp 

Agreement among experiments 

S.White, ATLAS,EPIC2011 

M.Nicassio, ALICE, EPIC2011 
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RHIC pp 

Particle ratios 
In general well described (~10%) by statistical (thermal) model 

  P(m) ~ e-(m/T)   
T  Temperature  
µb Baryo-chemical potential 
γs  Strangeness suppression 

43 

RHIC Au-Au SPS Pb-Pb 

Tch: 160-170 MeV      γs :  0.9-1 (AA), 0.5-0.6 (pp) 
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Thermal model at LHC 

44 

pp:  
-Thermal fit rather poor 
Pb-Pb: 
- K/π grows slightly from pp 
value 
-p/π ≈ like pp 
-p/π off by factor > 1.5  
from thermal predictions ! 
but very compatible with 
RHIC !! 

pp: 900 GeV & 7 TeV 

Before we can conclude anything 
we need more particle species.. 
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Physics of elliptic flow 

Adopted from R.Snellings 
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Direct flow 

QM2011 
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Structures in (Δη,Δφ) 

near side jet peak 

long range structure  
in η on near side 
aka “the ridge” 

two shoulders  
on away side 

(at 120° and 240 °) 
aka “the Mach cone”  

ATLAS-CONF-2011-074 
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Andrew Adare – ALICE 
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Di-jet imbalance 
 Pb-Pb events with large di-jet imbalance observed at the LHC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 recoiling jet strongly quenched! 

 

CMS: arXiv:1102.1957 
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Jet nuclear modification factor 

 substantial suppression of jet 
production  
 in central Pb-Pb wrt binary-scaled 

peripheral 

 

 out to very large jet energies! 

 

PeripheralPeripheral

CentralCentral
CP Nbin

NbinR
Yield
Yield

><
><

=

Brian Cole – ATLAS (QM2011) 
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Where does the energy end up? 
 nice analysis by CMS using reconstructed 

tracks: 
 
 
 
 
 
 

 
 momentum difference is balanced by low 

momentum particles outside of the jet 
cone 

CMS: arXiv:1102.1957 
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Z and W from ATLAS 
 
 

S.White, ATLAS, EPIC 2011 

Z and W yields consistent with binary collision scaling 
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AdS / CFT in a Picture 
 

Graviton with  
5-momentum  k  in bulk 
satisfies k•k = 0 → 

described by 4 numbers 

Those 4  numbers describe 

virtual gauge quanta on 4-
d  boundary 

( Adopted from S. Brodsky figure ) 

http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.0514v1.pdf
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Heavy Ion Program 
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