

Novel silicon detector technologies for the HL-LHC and beyond

L. Gonella Particle Physics Seminar, Uni Birmingham 24 November 2021

Outline

- □ Introduction to silicon detectors with examples from state-of-the-art technology
- □ Challenges for future tracking detectors and R&D roadmap
- □ Timing detectors
- CMOS sensors
- Conclusion

Segmented silicon detectors

- Highly segmented silicon detectors are the technology of choice for vertex and tracking detectors at collider experiments
- □ They detect the passage of ionizing radiation with good spatial resolution and efficiency in the harsh experimental conditions close to the interaction point
- Different types of silicon detectors exists to satisfy a range of requirements in terms of spatial resolution, radiation hardness, data rate, area, material budget, etc. at different experimental conditions
- □ Technologies for high occupancy, high radiation environments
 - Example: hybrid pixel detectors and strip detectors for the ATLAS ITk
- □ Technologies for extremely precise tracking systems
 - Example: monolithic active pixel sensors for ALICE ITS2

ATLAS Inner Tracker at HL-LHC*

- The ATLAS ITk should have the same or better performance as the current detector but in the harsher environment of the HL-LHC
 - $\langle \mu \rangle \sim 200$ at 7.5x10³⁴ cm⁻²s⁻¹ peak luminosity
 - 4000 fb^{-1} integrated luminosity, fluences up to $2x10^{16}$ MeV n_{eq} /cm², TID up to 1 Grad

- New all-silicon detector designed using state-of-the-art silicon technologies optimised for operation in a high rate, high radiation environment
 - 13 m² of hybrid pixel sensors, 165 m² of strip sensors, 1-2% x/X_0 per layer

*The ATLAS and CMS experiments have completed R&D for their HL-LHC trackers upgrade and are starting detector production. Their upgraded trackers are thus considered state-of-the-art in this talk

https://cds.cern.ch/record/2285585 https://cds.cern.ch/record/2257755

ITk strip detector

Module = sensor + hybrid + powerboard

- Strip pitch 75 μm, thickness 300 μm
- Three dedicated 130 nm CMOS FE: ABCStar (readout), HCCStar (data aggregator), AMAC (power and T monitoring)
- Design compatible with multi-level trigger scheme
- Lower data rate and radiation levels but more challenging large area production
 - Modularity of components for mass production
 - Assembly and testing at multiple sites
 - Industrialised production flow (common tooling and assembly procedures)
 - Extensive QC/QA to assure reliability in extreme experimental conditions, monitor rate and quality of production
 - Database to store QC/QA results and track components

https://cds.cern.ch/record/2257755

ALICE Inner Tracking System Upgrade (ITS2)

First large-area silicon vertex detector based on the

Requirements for future trackers

	HL-LHC LHCb	HL-LHC ALICE 3	EIC	ILC	FCC-ee	CLIC 3TeV	FCC-hh
Fluence (n _{eq} /cm ²)	5x10 ¹³ - 6x10 ¹⁶	10 ¹² -10 ¹⁴	<10 ¹¹	<10 ¹⁰	<10 ¹⁰	<1011	10 ¹⁷ -10 ¹⁸
Max hit rate (cm ⁻² s ⁻¹)					20 M	240 k	20 G
Surface vertex (m ²)			< 1		1	1	15
Surface tracker (m ²)	26		5 - 10	150	200	140	400
Material budget per detection layer (X_0) (vertex/tracker)	≈1% ≈1%	≈0.05% ≈0.5%	≈0.05% ≈1%	≤0.2% 1 - 2%	≈0.05% ≈1%	≤0.2% ≈1%	≈1% ≤2 %
Position resolution vertex (µm)	≤10	≤3	≤3	≈3	≤3	≤3	≈ 7
Position resolution tracker (µm)	≈ 5	≈ 5	≈ 5	≈ 7	≈ 6	≈ 7	≈ 10
Timing resolution vertex (ns)	≤ 0.05	25		≤5	25	≈ 5	≤ 0.02
Timing resolution tracker (ns)	≤ 25	25		≤5	≤ 0.1	≤ 0.1	≤ 0.02

https://cds.cern.ch/record/2649646 https://indico.cern.ch/event/994685/

Silicon R&D for future pixel trackers

Timing detectors

Why adding timing to 3D trackers?

- □ At the HL-LHC, 150-200 pile-up events per bunch crossing
 - Average distance between vertices = 500 um
 - Timing RMS spread = 150 ps
- □ Typical vertex separation resolution along the beam pipe 250 300 um
- \rightarrow 10-15% of the vertices will be composed of overlapping events

The effect of timing information

- \Box Timing in the event reconstruction \rightarrow Timing layers
 - Timing associated to each crossing track
 - Easiest implementation, only one timing layer needed
 - Overlapping events can be separated by means of an extra dimension
- □ Timing in track reconstruction \rightarrow 4D tracking
 - Timing associated to each point along the track
 - Massive simplification of patter recognition, faster algorithms in very dense environments but massive increase of power consumption
 - Electronics needs to accurately measure timing in each pixel

Laura Gonella | UoB seminar | 24 November 2021

У

Time-tagging detectors

- The time resolution depends on multiple factors coming from the way the signal is generated in the sensor and then processed in the electronics
 - Time is set when the signal crosses the comparator threshold
 - A key element to good timing is uniformity of the signal

Time resolution

$$\sigma_{t}^{2} = \sigma_{Land. TW}^{2} + \sigma_{Land.noise}^{2} + \sigma_{distorsion}^{2} + \sigma_{jitter}^{2} + \sigma_{TDC}^{2}$$

- Terms depending on the physics governing the energy deposition
 - The charge distribution created by a MIP in the sensor varies event-by-event (Landau distribution)
- □ Overall change in signal magnitude → correctable time walk
 - Appropriate electronic circuit (ToT/ToA, CDF)
 - $\sigma_{Land. TW}^2$ can be ignored
- □ Irregular current signal → non-correctable time walk
 - $\sigma^2_{Land.noise}$ = physical limit to the time resolution

Time resolution

$$\sigma_{t}^{2} = \sigma_{La}^{2} \chi_{t.TW} + \sigma_{Land.noise}^{2} + \sigma_{distorsion}^{2} + \sigma_{jitter}^{2} + \sigma_{TDC}^{2}$$

- □ Term depending on sensor design
- Induced current signal on the electrode given by Ramo's theorem

$$i(t) \propto q v_d E_w$$

- □ The drift velocity, v_d , needs to be constant in the sensor volume, otherwise variation in signal shape depending in hit position → High E-filed = saturated drift velocity
- □ To have uniform weighting field, E_w , width ~ pitch >> thickness
- \Box Parallel plate sensor geometry is required for uniform v_d and E_w

Time-tagging detectors

$$\sigma_{t}^{2} = \sigma_{La}^{2} \chi_{l.TW} + \sigma_{Land.noise}^{2} + \sigma_{distorsion}^{2} + \sigma_{jitter}^{2} + \phi_{C}^{2}$$

- □ Term depending on electronics
- σ²_{TDC}: term coming from TDC binning (analogue-to-digital conversion), typically small contribution, can be ignored
- \Box σ_{jitter}^2 : mostly due to noise and the amplifier slew rate
 - Large, uniform signals
 - Low noise
 - Fast rise time

$$\sigma_{\text{jitter}} \propto \frac{Noise}{dV/dT} = \frac{t_{rise}}{S/N}$$

Low Gain Avalanche Detectors (LGAD) design

- 1. Take a planar n-in-p sensor \rightarrow Parallel plate geometry, uniform v_d and E_w
- 2. Add a charge multiplication layer tuned to achieve low gain \rightarrow Higher S/N
- 3. Make the sensor thin \rightarrow uniform signal, fast rise time

 \rightarrow LGAD sensors produce uniform signals with low jitter

State-of-the-art LGAD for ATLAS and CMS

- Pitch: 1.3 x 1.3 mm²
- Thickness: 50 µm
- Time resolution: ~25 ps (sensor)
- Radiation tolerance: ~ 2x10¹⁵ neutrons/cm²

Established LGAD producers: FBK, CNM, Hamamatsu More recent additions/upcoming: BNL, IHEP, micron, Te2V

Timing layers at ATLAS and CMS at the HL-LHC

The ATLAS and CMS timing layers will be instrumented with LGAD sensors bump bonded to dedicated readout ASICs and associated infrastructure

<u>ATLAS</u>

- 2 double-instrumented disks/end-cap
- □ Approx. 2.0 2.4 2.6 points/track
- □ 2.4 < |eta| < 4
- □ 120 mm < r < 640 mm , z = 350 cm
- □ 3.6M channels, 6.4 m²

<u>CMS</u>

- 2 double-instrumented disks/end-cap
- □ Approx. 2 points/track
- □ 1.6 < |eta| < 3

BTL

□ 315 mm < r < 1200 mm

□ 8.5 M channels, 14 m²

https://cds.cern.ch/record/2719855 https://cds.cern.ch/record/2667167/

LGAD performance

□ Intrinsic temporal resolution (25-30 ps) reached for thickness \leq 50 um

UK development with Te2v

Collaboration between the University of Birmingham, University of Oxford, RAL

ith the UK foundry at Teledyne e2v

as a maior producer of CCDs for space

ects

- □ First batch of 22 wafers produced this year
 - 8 wafer flavours with different dose and energy of the gain implant
 - 4/2/1 mm size LGADs and PIN, 2x2 2 mm matrix LGAD and PIN

Breakdown and depletion voltages

□ Extracted from IV and CV measured on wafers before dicing

https://indico.cern.ch/event/797047/contributions/4455947/

Example CV curves Wafer A, 4 and 1 mm devices

Wafer F
Wafer D
Wafer A

0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.11
1.12
1.13
1.14
1.15

Implant Energy

Gain and timing results before irradiation

 Gain measured with laser injection setup (1064nm IR laser)

Time resolution measured with bsource setup

- Preliminary gain and timing performance measured on one wafer split before irradiation give results in line with those from other manufacturers
- Systematic study across wafer flavours and device size ongoing

https://indico.cern.ch/event/1074989/contributions/4602008/

Towards 4D trackers

- LGAD shortcomings
 - Large no-gain area between pads
 - Poor spatial resolution
- Some small pitch developments:

AC-pads

CMOS sensors

Monolithic active pixel sensors

- Traditional MAPS sensors deliver high spatial resolution through small pixel pitch and low material budget (i.e. low power consumption) and provide a simplified module concept wrt hybrids
- □ The ALPIDE has brought a breakthrough wrt to previous generations
 - It collects charge in part by drift \rightarrow moderate rad-hard charge collection
 - It integrates full CMOS electronics \rightarrow more in-pixel logic

Depleted MAPS

- Fast and radiation hard charge collection requires a fully depleted sensor volume in which charges move by drift
- □ Need high resistivity substrates and/or being able to apply a high voltage to the sensor → This can be achieved with a number of CMOS imaging processes in particular TowerJazz and LFoundry
- □ Need to achieve uniform depletion = uniform electric field → requires a change in the sensor design

DMAPS prototypes

~ 10 years of developments led to mature prototypes of both structures that have demonstrated radiation hardness up to a few 10¹⁵ MeV n_{eq}/cm²

Modified small collection electrode:

MALTA and TJ-MONOPIX 180 nm TowerJazz

... and many more, see also ARCADIA project and RD50 developments

Small collection electrode development

- □ The small collection electrode design has a very small detector capacitance that allows to design a compact, low power FE → small pixels and low material
 - <5fC for small electrode vs. a few hundred fC for large electrode</p>

Estimated power consumption of ITk full scale 2x2 cm² DMAPS

Architecture	TJ Asynch.	TJ Synch.	LF Synch.	
Coll. Elect.	Small	Small	Large	
Pixel size	$36.4 \times 36.4 \mu\text{m}^2$	$36.4 \times 40 \mu m^2$	$50 \times 150 \mu m^2$	
Number of pixels	512×512	512×512	400×132	
Matrix Analog Power	238 mW	238 mW	1000 mW	
	$(\sim 0.9\mu W/pixel)$	$(\sim 0.9\mu W/pixel)$	$(\sim 18\mu W/pixel)$	
Matrix Digital Power	12 mW	240 mW	80 mW	
	$(\sim 0.05\mu W/pixel)$	$(\sim 0.9\mu W/pixel)$	$(\sim 1.5\mu W/pixel)$	
Periphery Digital Power	267 mW	225 mW	225 mW	
Total Expected Power	514 mW	703 mW	1305 mW	

MALTA TJ-MONOPIX LF-MONOPIX

https://doi.org/10.1088/1748-0221/14/06/C06019

- Radiation-hardness is challenging, significant effort to develop process modifications (CERN/TJ collaboration)
- Different readout architectures explored for low power readout at high rate
 - MALTA: novel asynchronous architecture
 - TJ-MONOPIX: synchronous column drain architecture

Modifications of small collection electrode design

Standard TJ 180 nm process (as in ALPIDE)

Add low dose n-implant to improve depletion under deep p-well

Modified TJ 180 nm process

Results on pixel test structures (TJ investigator) indicated larger depletion

http://dx.doi.org/10.1016/j.nima.2017.07.046 https://doi.org/10.1088/1748-0221/14/05/C05013 https://doi.org/10.1016/j.nima.2019.162404 Efficiency for the first MALTA prototype measured in a 180 GeV proton beam (2018) – Degradation at pixel edges after $10^{14} n_{eq}/cm^2$

Modifications of small collection electrode design

□ Further modifications needed to improve lateral field strength

Mini-MALTA pixel sectors with different sensor modifications tested with a x-ray beam at the Diamon Light Source (2019) demonstrate improved response at pixel edges after 1x10¹⁵ n_{eq}/cm²

Modifications of small collection electrode design

One of the most recent MALTA verse as been implemented on high resistivity Czochralski substrate

- Resistivity and bias voltage higher than for epitaxial layer in previous prototypes
- Implemented with modified, n-gap, deep p-well modifications
- Higher charge collection, time resolution, radiation hardness expected
- MALTA Cz sensors allow further depletion than epitaxial layers
 - Corner efficiency after 2x10¹⁵ n_{eq}/cm² fully recovered with extra process modification measured at DESY test beam 4 GeV electron beam (2019)

Next generation MAPS: 65 nm CMOS sensors

- DMAPS in 150/180nm CMOS imaging processes are approaching HL-LHC rate capability and radiation hardness
 - Candidates for ATLAS inner vertex layers replacement after 2030
- □ Future facilities present bigger challenges → explore smaller feature size technology
- R&D is starting to develop MAPS in 65 nm CMOS imaging process for use at future collider facilities
 - Higher logic density (increased performance/area, higher granularity)
 - Lower power
 - Higher speed (logic, data transmission...)
 - Process availability
 - Higher NRE costs and complexity, but lower price per area

Ongoing 65 nm R&D for ALICE ITS3 vertex detector

- New generation MAPS sensor at the 65 nm node to design a truly cylindrical, П extremely low mass (0.05% x/X0) vertex detector (~0.12m²) for the HL-LHC (after 2030)
 - Exploit stitching over large area to design wafer scale sensors

Residual in X

- Thin sensors bent around the beam pipe
- Lower power in 65 nm allows air cooling
- Minimal support needed and services outside active area

Parameter	ALPIDE (existing)	Wafer-scale sensor (this proposal		
Technology node	180 nm	65 nm		
Silicon thickness	50 µm	20-40 µm		
Pixel size	27 x 29 μm	O(10 x 10 µm)		
Chip dimensions	1.5 x 3.0 cm	scalable up to 28 x 10 cm		
Front-end pulse duration	~ 5 µs	~ 200 ns		
Time resolution	~ 1 µs	< 100 ns (option: <10ns)		
Max particle fluence	100 MHz/cm ²	100 MHz/cm ²		
Max particle readout rate	10 MHz/cm ²	100 MHz/cm ²		
Power Consumption	40 mW/cm ²	< 20 mW/cm ² (pixel matrix)		
Detection efficiency	> 99%	> 99%		
Fake hit rate	< 10 ⁻⁷ event/pixel	< 10 ⁻⁷ event/pixel		
NIEL radiation tolerance	~3 x 10 ¹³ 1 MeV n _{eq} /cm ²	10 ¹⁴ 1 MeV n _{eq} /cm ²		
TID radiation tolerance	3 MRad	10 MRad		

First submission in TJ 65 nm within CERN EP R&D WP1.2

The EIC plans to use the same sensor for its vertex and tracking detector

https://cds.cern.ch/record/2644611 https://arxiv.org/abs/2105.13000 https://indico.cern

σ = 6.52 μm

Cylindrical Structural Shel

Half Barrels

ALPIDE (test beam data)

17025

Conclusion

- Silicon detectors are the only technology that can satisfy the requirements of vertex and tracking detectors at collider experiments
- A large R&D programme is ongoing to further improve their performance to match the challenges of future applications
- The addition of high time precision to the fine granularity of pixel detectors is the key innovation for tracking at high luminosity colliders
- Recent and new developments in CMOS sensors will provide the breakthrough technology for future vertex and tracking matching the requirements of most applications

