

NOvA and DUNE: Neutrino Oscillations

Jeff Hartnell

University of Sussex

Birmingham Seminar

24th January 2018

Introduction

- Why study neutrinos?
- Neutrino oscillations

- NOvA experiment and physics goals
 - NuMI beam
 - NOvA detectors

- Muon neutrino disappearance
- NC analysis
- Electron neutrino appearance

Why study neutrinos?

The Particle Universe

Two Major Questions

Why is the matter – antimatter asymmetry of the universe so large?

Neutrinos
 leptogenesis

- Neutrino oscillations can test CP
 - NOvA has some sensitivity, DUNE/Hyper-K much more

Is there a pattern to the masses?

Is there a pattern to the masses?

Theory Overview

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Subdominant term

 $\Delta m_{31}^2 = m_3^2 - m_1^2$, L/E=500 km/GeV $\Delta m_{32}^2 = m_3^2 - m_2^2$, L/E=500 km/GeV (=0.5 km/MeV)

Δm²₂₁ = m₂² – m₁², L/E≅15000 km/GeV

Jeff Hartnell, B'ham Seminar Jan/18

How does the mass hierarchy come into play?

 Δm^2_{31} and Δm^2_{32} differ by 3%

Small effect

JUNO's planned measurement involves this

Matter Effect & Mass Hierarchy

- Neutrinos (and antineutrinos) travel through matter not antimatter
 - electron density causes asymmetry (fake CPv!)
 - via specifically CC coherent forward elastic scattering
 - different Feynman diagrams for v_e and $\overline{v_e}$ interactions with electrons so different amplitudes

Where have we got to?

It's hard to overstate...

- The past ~5 years saw a major breakthrough in neutrino physics
 - Measurement of θ_{13} has gone from just an upper limit to one of the best measured angles
- A new door has been opened to probing CP violation, mass hierarchy and octant of θ_{23}

Reactor Experiments Provided Breakthrough on θ_{13}

Daya Bay, RENO and Double Chooz

What we know and don't know

[Ferruccio Feruglio, NOW]

Starting with v_{μ}

Long-baseline neutrino oscillations

ν_{μ} disappearance:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 (\Delta m_{32}^2 L/4E)$$
 ... to leading order

experimental data are **consistent with unity** ("maximal mixing")

Need a leap in precision on θ_{23} (and Δm_{32}^2)

ν_e appearance:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}(\Delta m_{32}^{2}L/4E)$$
 ...plus potentially large CPv and matter effect modifications!

Long-baseline $\nu_{\mu} \rightarrow \nu_{e}$

A more quantitative sketch...

At right:

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$$
 vs. $P(\nu_{\mu} \rightarrow \nu_{e})$

plotted for a single neutrino energy and baseline

Long-baseline $\nu_{\mu} \rightarrow \nu_{e}$

A more quantitative sketch...

At right:

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$$
 vs. $P(\nu_{\mu} \rightarrow \nu_{e})$

plotted for a single neutrino energy and baseline

Measure these probabilities

(an example measurement of each shown)

Also:

Both probabilities $\propto \sin^2 \theta_{23}$

Non-maximal mixing scenario

- If θ_{23} non-maximal then effect of octant is important
- Big effect, +/- 20%

1 and 2 σ Contours for Starred Point

Effect of Increasing Energy

Increasing Energy

(→ bigger matter effect and hence bigger fake CP violation)

T2K v_e Appearance

	Predicted Rates				Observed
Sample	δ_{cp} =- $\pi/2$	$\delta_{cp} = 0$	$\delta_{cp} = \pi/2$	$\delta_{cp} {=} \pi$	Rates
CCQE 1-Ring e-like FHC	73.5	61.5	49.9	62.0	74
CC1 π 1-Ring e-like FHC	6.92	6.01	4.87	5.78	15
CCQE 1-Ring e-like RHC	7.93	9.04	10.04	8.93	7
CCQE 1-Ring μ-like FHC	267.8	267.4	267.7	268.2	240
CCQE 1-Ring μ-like RHC	63.1	62.9	63.1	63.1	68

NOvA Overview

- "Conventional" beam
- Two-detector experiment:
- Near detector
 - measure beam composition
 - energy spectrum
- Far detector
 - measure oscillations and search for new physics

The NOvA Collaboration

Physics Goals

Results from 3 different oscillation analyses

- Disappearance of
 - ν_{μ} CC events
 - clear suppression as a function of energy
 - 2016 analysis resultsPRL 118.151802

$$|\Delta m_{32}^2| \sin^2(2\theta_{23})$$

- Deficit of NC events?
 - suppression of NCs could be evidence of oscillations involving a sterile neutrino
 - Fit to 3+1model
 - lacksquare new! $\Delta m_{41}^2, heta_{34}, heta_{24}$

Appearance of v_e CC events

 $\theta_{13}, \theta_{23}, \delta_{CP},$ and Mass Hierarchy

- 2 GeV neutrinos enhances matter effects
- ±30% effect
- 2016 analysis results in PRL 118.231801.

Beam Performance

- 8.85x10²⁰ POT in 14 kton equivalent detector
 - 50% more than previous result
- Beam operating steadily at 700 kW for 1 year now
- 5x10²⁰ POT antineutrinos so far (to be shown in June)

NOvA detectors

A NOνA cell

To APD

Extruded PVC cells filled with 11M liters of scintillator instrumented with λ -shifting fiber and APDs

Far Detector 14 kton 896 layers

14-kton, fine-grained, low-Z, highly-active tracking calorimeter

→ 344,000 channels

Near detector:

0.3-kton version of the same

→ **20,000** channels

m 9.

Fiber pairs from 32 cells

Near Detector

 $4 \text{ cm} \times 6 \text{ cm}$

1560 cm

Event Types

What's new?

- More data: 50%
- Improved analysis
 - continued use of deep learning tools: now also for disappearance measurements.
 - Bin in energy resolution
- Retuned cross section model & systematics
 - Includes empirical multi-nucleon model, QE RPA
- Detector simulation improvements
 - Substantially reduces associated systematic uncertainty
- Data driven flux estimates: PPFX

Event Classification

- This analysis features an event selection technique based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Event Classification

- This analysis features an event selection technique based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improvement in $\nu_{\rm e}$ sensitivity from CVN equivalent to 30% more exposure

ν_{μ} disappearance

- Identify contained ν_{μ} CC events in each detector
- Measure their energies
- Extract oscillation information from differences between the Far and Near energy spectra

ν_{μ} Near Detector Data

• Final reconstructed energy combines E_{had} and E_{μ} via a piecewise linear fit.

NOvA Preliminary

Simulated Selected Events
Simulated Background
Data
Shape-only 1- σ syst. range
ND area norm., 8.09 × 10²⁰ POT
Data mean: 0.77 GeV

MC mean: 0.77 GeV

Eres 30%

0.1

Hadronic Energy (GeV)

• Observed ND spectrum is converted to true energy using MC expectation, extrapolated to FD using a Far/Near flux ratio, and then converted to an expected reconstructed energy spectra.

[A. Radovic, JTEP seminar 12th January 2018]

Resolution Bins

Four bins of equal populations in FD, split in hadronic energy fraction as a function of reconstructed neutrino energy.

Resolution Bins

v_{μ} Systematics

ν_μ Far Detector Data

NOvA Preliminary

- 126 events observed in FD
 - 763±30 with no oscillation
 - 129 at best oscillation fit
 - 3.5 beam BG +5.8 cosmic

Best --> Worst Energy Resolution

v_{μ} Result

- Full joint fit with appearance analysis
- Feldman-Cousins corrections in 2D and 1D limits
- All systematics & pull terms shared
- Constrain θ_{13} using PDG world average: $\sin^2 2\theta_{13} = 0.082$

v_{μ} Result

Best fit:

 $\Delta m^2_{32} =$ 2.444+0.079_{-0.077} x 10-3 eV²

UO preferred at 0.2σ

 $\sin^2\theta_{23} =$

UO: 0.558+0.041-0.033

LO: 0.475+0.036-0.044

Comparison to other experiments

Neutral Current & v_e Results

Neutral Current Result

NC Far Detector Data & Results

Observed **214** NC candidates Prediction 191.16 ± 13.82(stat.)±21.99 (syst.)

No depletion of NC events observed

NOvA sees no evidence for v_s mixing

	θ_{24}	θ_{34}	$ U_{\mu 4} ^2$	$ U_{\tau 4} ^2$
NOvA 2016	20.8°	31.2°	0.126	0.268
NOvA 2017	16.2°	29.8°	0.078	0.228
MINOS	7.3°	26.6°	0.016	0.20
SuperK	11.7°	25.1°	0.041	0.18
IceCube	4.1°	-	0.005	-
IceCube-DeepCore	19.4°	22.8°	0.11	0.15

v_e appearance

- Identify contained ν_e CC candidates in each detector
- Use Near Det. candidates to predict beam backgrounds in the Far Detector
- Interpret any Far Det. excess over predicted backgrounds as ν_e appearance

v_e Near Detector Data

- Use ND data to predict background in FD
 - NC, ν_{μ} CC, beam ν_{e} each propagate differently
 - constrain beam v_e using selected v_μ CC spectrum
 - constrain v_{μ} CC using Michel Electron distribution

beam $\nu_{\rm e}$ up by 1% NC up by 20% $\nu_{\rm \mu}$ CC up by 10%

FD Predicted Events

New "peripheral" sample

Events that fail standard pre-selection or cosmic cuts but are very electron-like

New BDT to reject cosmics in the peripheral sample (still the largest background but measured in beamoff)

Systematics

- As in v_{μ} systematics were assessed by generating sets of shifted MC.
- Those shifted datasets were used instead of our nominal MC to assess the impact on our final result.

Predicted events

- Extrapolate each component in bins of energy and CVN output.
- Expected event counts depend on oscillation parameters.

Signal events $(\pm 9\%$ systematic uncertainty):

NH, 3π/2,	IH, π/2,
48	20

 $(\pm 10\%)$ systematic uncertainty):

Total BG	NC	Beam v _e	v_{μ} CC	$v_{ au}$ CC	Cosmics
20.5	6.6	<i>7</i> .1	1.1	0.3	4.9

v_e Far Detector Data

- Observe 66 events in FD
 - background20.5±2.5

$\nu_{\rm e}$ + ν_{μ} Results

- Full joint fit of $v_e + v_\mu$
- Feldman-Cousins corrections in 2D and 1D limits
- All systematics & pull terms shared
- Constrain θ_{13} using PDG world average: $\sin^2 2\theta_{13} = 0.082$

• Inverted hierarchy at $\delta_{\rm CP}$ = $\pi/2$ disfavoured at >3 σ

$\nu_{\rm e}$ + ν_{μ} Results

Approaching inverted hierarchy rejection at 2σ

Future Sensitivity

NOvA Summary

With 8.85x10²⁰ POT, NOvA finds:

- Muon neutrinos disappear
 - Competitive measurement of Δm_{32}^2
 - Best fit is near maximal
- Neutral current event rate shows no evidence of steriles
 - With more data, expect strong limits on θ_{34}
- Electron neutrinos appear
 - At the upper end of expectations
 - Approaching 2 σ inverted hierarchy rejection
 - IH at $\delta_{\rm CP}$ = $\pi/2$ region excluded at >3 σ
- Antineutrino run well underway
 - Results expected this summer

DUNE Overview

- Approved expt., under construction (\$50M in FY17)
- UK commitment of £65M for detectors and beam
- Due to take beam data in 2026 with
 - new MW-scale neutrino beamline (LBNF)
 - 4x10-kilotonne (fiducial) liquid argon far detector
 - high-resolution, high-rate near detector
- CERN providing cryostat for first 1x10kt

Liquid Argon Time Projection Chamber

Exquisite imaging

Liquid Argon Time Projection Chamber

Detector schematics

DUNE Sensitivity

Wide-band and higher energy beam: => CP, MH, BSM physics in a single expt.

Furthermore, huge, deep, high precision detectors provide abundant non-accelerator physics: proton-decay, supernova neutrinos, ...

ProtoDUNE-SP

CERN Neutrino Platform

- Large-scale prototyping/calibration
- UK building 3 (of 6) anode wire planes
 - 6 m tall x 2.3 m wide

Data taking this year

DUNE UK Long-term Objectives

Leading partner in DUNE far detector construction

- ~15% UK core contribution to DUNE
- TPC readout wire planes (APAs) and the DAQ

Construction phase objectives

- Construction of 150 of the 300 APAs for the first for 1st 2x10kt
- UK leadership of the FD DAQ, with UK providing the majority of the back-end DAQ for 1st 2x10kt
- Continued UK leadership in software/reconstruction
- Cement leading UK role in preparation for physics exploitation

Plan to secure long-term UK leadership in DUNE

lonization collection → data readout → reconstruction → physics

Conclusions

Measurement of θ_{13} has opened a door to probing CP violation, mass hierarchy and octant of θ_{23}

NOvA and T2K both see electron neutrino appearance at the upper end of expectations

- NOvA is approaching 2 σ inverted hierarchy rejection
- $-\delta_{\rm CP} = \pi/2$ region is strongly disfavoured by T2K

Antineutrino results expected this summer

Stay tuned!

- Real possibility of a breakthrough on mass hierarchy soon
- Exciting times ahead, multiple discoveries to be made

Backup slides

Improved Detector Simulation

- Previously detector response uncertainties were some of our largest. Reduced by an order of magnitude in new detector simulation, driven by addition of cherenkov light.
- Absorbed and re-emitted Cherenkov light is a small but important in modeling the detector response to hadronic activity.
- Expected energy resolution for v_{μ} CC events moves from 7% to 9%.

New simulation

ν_μ Event Selection

- Goal: Isolate a pure sample of v_{μ} CC events less than 5 GeV
- Use CVN in 2 ways:
 - muon event PID, also cosmic event PID used in BDT to reject cosmics

Far Detector Cosmic Background

Measure cosmic background using beam-off data

Comparison to previous result

Comparison to previous result

*Feldman-cousins corrected significance.

