

Kaon experiments at CERN: recent results & prospects

Evgueni Goudzovski

(University of Birmingham)

Outline:

- 1) K^{\pm} decay experiments at CERN: NA48/2, NA62-R_K, NA62
- 2) NA62 status and data quality
- 3) Recent results from Birmingham-led analyses
- 4) Conclusions

Particle physics seminar University of Birmingham • 2 November 2016

Energy & precision frontiers

Discovery of a Higgs boson: success of the Standard Model (SM) No roadmap and "guaranteed discoveries" any longer: a data-driven era

Limitations of the SM: SM matter \approx 5% of total mass-energy "New physics" extensions: undiscovered particles

Searches for New physics: two complementary approaches

Energy frontier (LHC)

Direct production of new particles in high-energy collisions.

Precision (intensity) frontier

Low-energy observables: tests of precise SM predictions for <u>rare or forbidden processes</u>.

A collective effort

The precision frontier: kaon physics

The kaon:

- ✤ One of the lightest unstable particles (discovered in 1947); the "minimal flavour laboratory".
- High production rates: high statistical precision. An example of rare K decay measurement: $BR(K_1 \rightarrow e^+e^-) = (9\pm 5) \times 10^{-12}$. (BNL E871)
- Essential in establishing the foundations of particle physics (quark mixing, CPV).
- Current focus: searches for new physics with rare and forbidden decays.

Tree-level process: $\frac{\Gamma_X}{\Gamma_{SM}} \sim \left(\frac{g_X}{g_W} \cdot \frac{M_W}{M_X}\right)^{4}$

For $g_X \approx g_W$ and $\mathcal{B} \sim 10^{-12}$, $M_X \sim 100 {
m ~TeV}$

Kaon physics facilities

A variety of experimental techniques: K decay-in-flight (e.g. at CERN), stopped K^+ , ϕ factory

Kaon experiments at CERN

Kaon programme at CERN

K[±] decay experiments at CERN

Experiment	NA48/2	NA62 (R _K phase)	NA62
	(K [±])	(K [±])	(K ⁺)
Data taking period	2003–2004	2007–2008	2015–2018
Beam momentum, GeV/c	60	74	75
RMS momentum bite, GeV/c	2.2	1.4	0.8
Spectrometer thickness, X ₀	2.8%	2.8%	1.8%
Spectrometer P _T kick, MeV/c	120	265	270
$M(K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-})$ resolution, MeV/c ²	1.7	1.2	0.8
K decays in fiducial volume	2×10 ¹¹	2×10 ¹⁰	1.2×10 ¹³
Main trigger	multi-track;	Min.bias +	$K_{\pi\nu\nu}$ +
	$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$	e±	
The NA62 experiment	The NA48 detector		New detector
★ Main goal: collect 100 SM K ⁺ →π ⁺ νν decays, BR _{SM} =(9.11±0.72)×10 ⁻¹¹ . Buras et al., JHEP 1511 (2015) 033			
\therefore Current Vt \rightarrow two events in ortal status $DD = (1, 72, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10$			

• Current $K^+ \rightarrow \pi^+ \nu \nu$ experimental status: BR = $(1./3 \pm 1.05) \times 10^{-10}$ from 7 candidates with expected background of 2.6 observed by BNL-E949.

6

PRL101 (2008) 191802

NA48/2 and NA62-R_k experiments

2003–2007: charged kaon beams, the NA48 detector

Narrow momentum band K[±] beams: P_K= 60 (74) GeV/c, $\delta P_K/P_K \sim 1\%$ (rms).

- ✤ Maximum K[±] decay rate ~100 kHz;
- * NA48/2: six months in 2003–04;
- ✤ NA62-R_K: four months in 2007.

Principal subdetectors:

- ★ Magnetic spectrometer (4 DCHs) 4 views/DCH: redundancy ⇒ efficiency; $\delta p/p = 0.48\% \oplus 0.009\% p$ [GeV/c] (in 2007)
- Scintillator hodoscope (HOD)
 Fast trigger, time measurement (150ps).

 Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogeneous;

 $\sigma_{E}/E = 3.2\%/E^{1/2} \oplus 9\%/E \oplus 0.42\%$ [GeV]; $\sigma_{x} = \sigma_{v} = 4.2 \text{mm}/E^{1/2} \oplus 0.6 \text{mm}$ (1.5 mm@10GeV).

The NA62 experiment

- ↔ Expected single event sensitivities: ~ 10^{-12} for K[±] decays, ~ 10^{-11} for π^0 decays.
- ★ Kinematic rejection factors (limited by beam pileup and tails of MCS): 5×10³ for K⁺→π⁺π⁰, 1.5×10⁴ for K→μ⁺ν.
- ♦ Hermetic photon veto: ~10⁸ suppression of $\pi^0 \rightarrow \gamma\gamma$.
- ✤ Particle ID (RICH+LKr+MUV): ~10⁷ muon suppression.

Rare kaon decays: $K \rightarrow \pi v \overline{v}$

SM: box and penguin diagrams

Ultra-rare decays with the highest CKM suppression: $A \sim (m_t/m_w)^2 |V_{ts}^*V_{td}| \sim \lambda^5$

- Hadronic matrix element is related to a measured quantity $(\mathbf{K}^+ \rightarrow \pi^0 \mathbf{e}^+ \mathbf{v})$.
- SM precision surpasses any other FCNC process involving quarks.
- ✤ Measurement of |V_{td}| complementary to those from $B-\overline{B}$ mixing or $B^0 \rightarrow \rho \gamma$.

 $BR_{SM} \times 10^{11}$ K^+ → $\pi^+\nu\overline{\nu}(\gamma)$ 9.11±0.72

Mode

 $K_{I} \rightarrow \pi^{0} \nu \overline{\nu}$ 3.00±0.31 The uncertainties are largely

SM branching ratios

Buras et al., JHEP 1511 (2015) 033

parametric (CKM)

Theoretically clean, almost unexplored, sensitive to new physics.

$K \rightarrow \pi v \overline{v}$: experiment vs theory

NA62 aim: collect O(100) SM $K^+ \rightarrow \pi^+ v \overline{v}$ decays with <20% background in 3 years of data taking using a novel decay-in-flight technique.

<u>Signature</u>: high momentum K⁺ (75GeV/c) → low momentum π^+ (15–35 GeV/c).

<u>Advantages:</u> max detected K⁺ decays/proton (p_K/p₀≈0.2); efficient photon veto (>40 GeV missing energy)

Un-separated beam (6% kaons) \rightarrow high rates, additional background sources.

NA62 physics programme

- ♦ NA62 Run 2 (2015–2018): focused on the "golden mode" $K^+ \rightarrow \pi^+ \nu \nu$.
 - \checkmark Trigger bandwidth for other physics is limited.
 - ✓ Several measurements at nominal SES~10⁻¹²: K⁺→ π^+ A', π^0 → $\nu\nu$.
 - ✓ A few measurements do not require extreme SES: $K^+ \rightarrow \ell^+ \nu_H$, ...
 - ✓ In general, limited sensitivities to rare/forbidden decays (SES~10⁻¹⁰ to ~10⁻¹¹, similar to NA48/2 and BNL-E865).
 - \checkmark A proof of principle for a broad rare/forbidden decay programme.
- NA62 Run 3 (2021–2024): programme is under discussion. [Presented at "Physics Beyond Colliders" workshop, CERN, Sep 2016]
 - ✓ Existing apparatus, different trigger logic: no capital investment.
 - ✓ Rare/forbidden K⁺ and π^0 decays at SES~10⁻¹²: K⁺ physics: K⁺→ $\pi^+\ell^+\ell^-$, K⁺→ $\pi^+\gamma\ell^+\ell^-$, K⁺→ $\ell^+\nu\gamma$, K⁺→ $\pi^+\gamma\gamma$, ... π^0 physics: π^0 → e^+e^- , π^0 → $e^+e^-e^+e^-$, π^0 → 3γ , π^0 → 4γ , ... Searches for LFV/LNV: K⁺→ $\pi^-\ell^+\ell^+$, K⁺→ $\pi^+\mu e$, π^0 → μe , ...
 - ✓ Possibly K_L rare decays (SES~10⁻¹¹), including $K_L \rightarrow \pi^0 \ell^+ \ell^-$ [CPV].
 - Dump mode: hidden sector searches (long-lived HNL, DP, ALP).

The lepton programme

Neutrino oscillations discovery (1998)

1) Lepton Flavour Violation;

2) non-zero neutrino mass.

First non-SM phenomenon:

Neutrino source

Neutrino detector

New physics scenarios involving LFV:

- ✓ Neutrino is a Majorana fermion (identical to antineutrino)
- \checkmark Heavy (possibly sterile) neutrino states

Astrophysical consequences:

 \checkmark Dark matter, nucleosynthesis, Supernova evolution, ...

Sirmingham-led programme (supported by ERC starting grant): search for forbidden states with lepton pair (ee, μμ, μe)

 $egin{aligned} & K^+
ightarrow \pi^+ \mu^+ e^- \ & K^+
ightarrow \pi^+ \mu^- e^+ \ & K^+
ightarrow \pi^- \mu^+ e^+ \ & K^+
ightarrow \pi^- e^+ e^+ \ & K^+
ightarrow \pi^- \mu^+ \mu^+ \end{aligned}$

 $egin{array}{lll} K^+ &
ightarrow \mu^-
u e^+ e^+ \ K^+ &
ightarrow e^-
u \mu^+ \mu^+ \ K^+ &
ightarrow \pi^+ \pi^0, \ \pi^0 &
ightarrow \mu^+ e^- \ K^+ &
ightarrow \pi^+ \pi^0, \ \pi^0 &
ightarrow \mu^- e^+ \end{array}$

NA62 status & data quality

Data collection

↔ Minimum bias (~1% intensity) and $K_{\pi\nu\nu}$ test data collected in 2015 ✓ Most systems commissioned and meet the design requirements

Beam time in 2016: 3 May – 14 November.

✓ running at ~35% of the nominal intensity now (limited by SPS capability)

Long (~6 months) runs scheduled in 2017 and 2018.

Expect to reach a few SM $K_{\pi\nu\nu}$ events sensitivity with 2016 data

$K^+ \rightarrow \pi^+ \nu \nu$ kinematics

92% of total BR(K⁺):

- Outside the signal kinematic region.
- ✤ Signal region is split into Region I and Region II by the K⁺→ $\pi^+\pi^0$ peak.

8% of total **BR(K**⁺) including multi-body:

Span across the signal region (not rejected by kinematic criteria).
Rejection relies on hermetic photon system, PID, sub-ns timing.

Kinematics: 2015 data

Kaon identification: KTAG

Beam tracker: the Gigatracker

- Three Si pixel stations on the beam.
- Operation at beam rates up to 800 MHz.
- In total, 54k pixels (300×300 μm²).
- Thickness: <0.5% X₀ per station.
- Cooling using microchannel technique.
- On-sensor TDC readout chip.
- Commissioned in 2015–2016.

Downstream particle identification

- ✤ PID technique: RICH, EM & hadronic calorimeters.
- ♦ Goal: O(10⁷) muon mis-ID suppression to reduce $K^+ \rightarrow \mu^+ \nu$ background to $K^+ \rightarrow \pi^+ \nu \nu$.
- ✤ RICH provides optimal µ/π separation at 15 GeV/c<p<35 GeV/c: measured µ suppression ≈10² at π ID efficiency of ~90%.
- Calorimeters: EM (LKr), hadronic (MUV1+MUV2);
 additional (10⁴÷10⁶) μ suppression at (90%÷40%) π⁺ ID efficiency.

Photon rejection

- ✤ Technique: EM calorimetry exploiting correlations between photons from $\pi^0 \rightarrow \gamma \gamma$ decays.
- ★ Goal: O(10⁸) rejection of π⁰ from K⁺→π⁺π⁰ decays.
- ★ Signal region: $p(\pi^+) < 35 \text{ GeV/c}$, therefore $p(\pi^0) > 40 \text{ GeV/c}$.
- ★ Rejection factor measured with 2015 data from K⁺→ $\pi^{+}\pi^{0}$ decays: 0(10⁶) rejection achieved; analysis of large 2016 sample on-going.

Birmingham-led analyses

The Birmingham NA62 group has produced >50% of the physics output of the "old" CERN K[±] experiments

Recent results with 2003-2007 data:

- * Search for lepton number violation and resonances in $K^{\pm} \rightarrow \pi \mu \mu$ decays [presented at 2016 conferences; to be published in early 2017]
- * π^0 transition form factor measurement [presented at 2016 conferences; to be published in early 2017]
- * Search for dark photon production: $\pi^0 \rightarrow \gamma A'$ [published in 2015]

Near-future prospects:

Searches for heavy neutral leptons: K⁺→ℓ⁺v_H [expect to presented at the 2017 winter conferences]

E. Goudzovski / Birmingham, 2 November 2016

[Factor 13 improvement; final result; paper in preparation]

Search for $K^{\pm} \rightarrow \mu^{\pm} N$, $N \rightarrow \pi^{\mp} \mu^{\pm}$

- Interpretation of the LNV result in terms of Majorana neutrino (N) production and decay. [Atre et al, JHEP 0905 (2009) 030]
- * A scan in the parameter space: m_N and τ_N .
- ↔ Due to the 3-track vertex selection constraint, acceptance falls as $\sim 1/\tau_N$ for $\tau_N > 1$ ns.
- ♦ Limits of ~10⁻¹⁰ set for τ_N < 100 ps.

Assumed N₄ mass, MeV/c²

Assumed X mass, MeV/c²

π^0 physics: π^0 transition form factor; search for dark photon ($\pi^0 \rightarrow \gamma A'$)

NA62-R_K: $\pi^0_D \rightarrow \gamma e^+ e^-$ sample

- NA62-R_K data: $\sim 2 \times 10^{10}$ K[±] decays in the fiducial decay region.
- ↔ Reconstructed π_{D}^{0} decay candidates, $x=(m_{ee}/m_{\pi})^{2}>0.01$: $N(K_{2\pi D})=1.05\times10^{6}$.
- Despite ~10 times smaller sample wrt NA48/2, good for spectrum study:
 - ✓ minimum bias trigger: low systematics due to trigger efficiency;
 - \checkmark low beam intensity: low systematics due to accidentals.
- ♦ Source of π^0 considered: K[±]→ $\pi^{\pm}\pi^0$ decay (BR=20.7%).

TFF slope measurement: result

E. Goudzovski / Birmingham, 2 November 2016

NA48/2: $\pi^0_D \rightarrow \gamma e^+e^-$ sample

Two exclusive selections

- $K^{\pm} \rightarrow \pi^{\pm} \pi^0_{D}$ selection:
- |m_{πγee}-m_K| <20 MeV/c²;
- $|m_{\gamma ee} m_{\pi 0}| < 8 \text{ MeV/c}^2;$
- no missing momentum.

K[±]→ $\pi^0_D \mu^\pm \nu$ selection: • $m_{miss}^2 = (P_K - P_\mu - P_{\pi 0})^2$ compatible with zero;

• $|m_{\gamma ee} - m_{\pi 0}| < 8 \text{ MeV/c}^2;$

• missing total and transverse momentum.

Reconstructed π^0_{D} decay candidates:

- $N(K_{2\pi D}) = 1.38 \times 10^7$,
- $N(K_{\mu 3D}) = 0.31 \times 10^7$,
- total = 1.69×10^7 .

 K^{\pm} decays in fiducial region: N_K = (1.57±0.05) ×10¹¹.

NA48/2: search for DP signal

DP mass scan:

- range: 9 MeV/c²≤m_A, <120 MeV/c²;
- mass step $0.5\sigma_m$, signal window $\pm 1.5\sigma_m$;
- DP mass hypotheses tested: 404;
- global fit for the background shape.

- ✓ Local signal significance never exceeds 3_σ: no DP signal observed.
- ✓ The obtained limits are background limited: 2−3 orders of magnitude above single event sensitivity. 30

NA48/2: dark photon exclusion

Final result: PLB746 (2015) 178

- Improvement on the existing limits in the m_{A'} range 9–70 MeV/c².
- Most stringent limits are at low m_A, (kinematic suppression is weak).
- Sensitivity limited by irreducible π⁰_D background: upper limit on ε² scales as ~(1/N_K)^{1/2}, modest improvement with larger data samples.
- ✤ If DP couples to quarks and decays mainly to SM fermions, it is ruled out as the explanation for the anomalous (g-2)_µ.
 - Sensitivity to smaller e² with displaced vertex analysis: to be investigated.

Heavy neutral leptons

Constraints on the vMSM

HNL: global limits

HNL: status of production searches

Peak search for $K^+ \rightarrow \mu^+ N$ at NA62-R_K (2007 data):

- Three months of data with downscaled trigger: ~10⁸ K⁺ decays in fiducial volume.
- * Background-limited; sensitive above $m_N = 300 \text{ MeV/c}^2$ unlike BNL E949 (decay at rest).

Peak search for $K^+ \rightarrow \mu^+ N$ at NA62 (2015 data):

- Integrated 2007 K⁺ flux reached with 1 week of minimum bias data in 2015;
- * Low background (hermetic veto, K^+ tagger); search region extends into lower m_N ;

Summary

* NA62 run 2015–2018:

- ✓ The run is focused on the $K_{\pi\nu\nu}$ measurement (SES~10⁻¹²)
- $\checkmark\,$ All subdetectors installed and commissioned by 2015
- $\checkmark\,$ Detector performances are close to the design ones
- ✓ Collecting data at 35% intensity now
- \checkmark Expect a few SM K_{nvv} events sensitivity with the 2016 data

* NA62 run 2021–2024:

✓ An extensive $K^+/K_L/\pi^0$ rare decay and beam dump programme with existing detector is being developed

Physics outputs:

- ✓ First NA62 results with 2015 data relying on hermetic veto rather than high statistics are expected in 2017
- ✓ The recent measurement with "old" data (2003–2007) are a training ground and a proof of concept

TFF measurement with π^0_D decay

DP production in \pi^0 \rightarrow \gamma A' decay

Batell, Pospelov and Ritz, PRD80 (2009) 095024

$${\cal B}(\pi^0 o \gamma A') = 2 arepsilon^2 \left(1 - rac{m_{A'}^2}{m_{\pi^0}^2}
ight)^3 {\cal B}(\pi^0 o \gamma \gamma)$$

- Probing the Dark Sector.
- Two unknown parameters:
 mass (m_{A'}) and mixing (ε²).
- Sensitivity to DP for $m_{A'} < m_{\pi 0}$.
- ★ Loss of sensitivity to ε² as m_{A'} approaches m_{π0}, due to kinematical suppression of the π⁰→γA' decay.

DP decays into SM fermions

Prospects for $K^{\pm} \rightarrow \pi^{\pm}A'$, $A' \rightarrow l^{+}l^{-}$

Comparison of $(K^{\pm} \rightarrow \pi^{\pm}A', A' \rightarrow e^{+}e^{-}, m_{A'} > m_{\pi 0})$ vs $(\pi^{0} \rightarrow \gamma A', A' \rightarrow e^{+}e^{-}, m_{A'} < m_{\pi 0})$:

- ★ Lower irreducible background: $BR(K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}) \sim 10^{-7} \text{ vs } BR(\pi^{0}_{D}) \sim 10^{-2}$.
- ↔ Higher acceptance (×4), favourable K/π^0 flux ratio (×4).
- ★ Therefore the expected BR limits: $BR(K^{\pm} \rightarrow \pi^{\pm}A') \sim 10^{-9}$ vs $BR(\pi^{0} \rightarrow \gamma A') \sim 10^{-6}$.
- However BR(K[±] \rightarrow π[±]A')/BR(π⁰ \rightarrow γA')~10⁻⁴, expected ε² limits are ε²~10⁻⁵.

$\pi^0 \rightarrow e^+e^-$: state of the art

★ SM prediction: loop-induced and helicity-suppressed decay.
Naïve estimate:
BR(π^0_{ee}) ~ ($\alpha m_e/m_{\pi 0}$)² ~ 10⁻⁹.
Detailed calculations:
BR(π^0_{ee}) = (6.23±0.09)×10⁻⁸.
[Dorokhov et al., PRD75 (2007) 114007,
Husek et al., EPJ C74 (2014) 3010]

• Experiment vs theory: $\sim 3\sigma$ discrepancy.

NA48/2 data: $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$, $\pi^{0} \rightarrow e^{+}e^{-}$

$K^{\pm} \rightarrow \pi^{\pm} A', A' \rightarrow invisible$

Kaons at CERN beyond 2024

- ♦ Need to measure both $BR(K^+ \rightarrow \pi^+ \nu \nu)$ vs $BR(K_L \rightarrow \pi^0 \nu \nu)$: affected differently by NP.
- In the next few years, we expect:
 - ✓ NA62 @ CERN to measure **BR**(K⁺→ $\pi^+\nu\nu$) to **10%**;
 - ✓ KOTO @ J-PARC to observe a few $K_L \rightarrow \pi^0 v v$ events.
- ★ A new, possibly multi-purpose, K_L experiment at CERN focussed on K_L→ π^0 νν, with SES~0.5×10⁻¹² is under consideration for Run 4 (2026–2029).

KLEVER @ CERN:

- ✤ 30 GeV protons (300 kW); <p_{KL}>=2 GeV/c;
- Proposal: SES=8×10⁻¹² (~4 SM evts) with S/B=1.4 in three years.
- ✤ Short (100h) run in 2013: SES=1.3×10⁻⁸;
- Observed 1 event, expected 0.36; [CKM2014]
- Collected ×20 more data in 2015;
- Intention (no proposal): upgrade to 100 SM evts. E. Goudzovski / Birmingham, 2 November 2016

- ✤ 400 GeV protons; <p_{KL}>~100 GeV/c: complementary approach to KOTO.
- ♦ 60 SM events in 5 years with S/B≈1.
- Protons required: 5×10¹⁹ (NA62×10): target area & transfer line upgrade.
- Re-use NA62 infrastructure and parts of detector (LKr calorimeter; muon system).