Towards NNLO Event Generators for LHC

Emanuele Re Rudolf Peierls Centre for Theoretical Physics, University of Oxford

University of Birmingham, 28 May 2014

Status after LHC "run I"

Scalar at 125 GeV found, study of properties begun

Status after LHC "run I"

Scalar at 125 GeV found, study of properties begun

In general no smoking-gun signal of new-physics

Status after LHC "run I"

Scalar at 125 GeV found, study of properties begun

In general no smoking-gun signal of new-physics

Situation will (hopefully) change at 13-14 TeV. If not, then we have to look in small deviations wrt SM: "precision physics".

Search strategies and theory inputs

examples of strategies to find new-physics / isolate SM processes:

- Higgs discovery belongs to 1, but Higgs characterization requires theory inputs (rates,shapes,binned x-sections,...)
- For 2 and 3, we need to control as much as possible QCD effects (i.e. rates and shapes, and also uncertainties!)
- Some analysis techniques (e.g. 3) heavily relies on using MC event generators to separate signal and backgrounds

Search strategies and theory inputs

examples of strategies to find new-physics / isolate SM processes:

- at some level, MC event generators enter in almost all experimental analyses

precise tools \Rightarrow smaller uncertainties on measured quantities \preceip "small" deviations from SM accessible

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

- collide non-elementary particles
- we detect e, μ, γ , hadrons, "missing energy
- we want to predict final state
 - realistically
 - precisely
 - from first principles

[sherpa's artistic view]

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

- collide non-elementary particles
- we detect e, μ, γ , hadrons, "missing energy
- we want to predict final state
 - realistically
 - precisely
 - from first principles
- ⇒ full event simulation needed to:
 - compare theory and data
 - estimate how backgrounds affect signal region
 - test analysis strategies

[sherpa's artistic view]

Event generators: what's the output?

• in practice: momenta of all outgoing leptons and hadrons:

IHEP	ID	IDPDG	IST	MO1	MO2	DA1	DA2	P-X	P-Y	P-Z	ENERGY
31	NU_E	12	1	29	22	0	0	60.53	37.24	-1185.0	1187.1
32	E+	-11	1	30	22	0	0	-22.80	2.59	-232.4	233.6
148	K+	321	1	109	9	0	0	-1.66	1.26	1.3	2.5
151	PIO	111	1	111	9	0	0	-0.01	0.05	11.4	11.4
152	PI+	211	1	111	9	0	0	-0.19	-0.13	2.0	2.0
153	PI-	-211	1	112	9	0	0	0.84	-1.07	1626.0	1626.0
154	K+	321	1	112	9	0	0	0.48	-0.63	945.7	945.7
155	PIO	111	1	113	9	0	0	-0.37	-1.16	64.8	64.8
156	PI-	-211	1	113	9	0	0	-0.20	-0.02	3.1	3.1
158	PIO	111	1	114	9	0	0	-0.17	-0.11	0.2	0.3
159	PIO	111	1	115	18	0	0	0.18	-0.74	-267.8	267.8
160	PI-	-211	1	115	18	0	0	-0.21	-0.13	-259.4	259.4
161	N	2112	1	116	23	0	0	-8.45	-27.55	-394.6	395.7
162	NBAR	-2112	1	116	23	0	0	-2.49	-11.05	-154.0	154.4
163	PIO	111	1	117	23	0	0	-0.45	-2.04	-26.6	26.6
164	PIO	111	1	117	23	0	0	0.00	-3.70	-56.0	56.1
167	K+	321	1	119	23	0	0	-0.40	-0.19	-8.1	8.1
186	PBAR	-2212	1	130	9	0	0	0.10	0.17	-0.3	1.0

Plan of the talk

- review how these tools work
 - parton showers (LOPS)
 - fixed-order (NLO)
- 2. discuss how their accuracy can be improved
 - matching NLO and PS (NLOPS): POWHEG
 - NLOPS merging & MiNLO
- explain how to build an event generator that is NNLO accurate (NNLOPS)
 - Higgs production at NNLOPS

Plan of the talk

Why going NNLO?

Plan of the talk

Why going NNLO?

- "just" NLO sometimes not enough:
 - large NLO/LO "K-factor"
 [perturbative expansion "not (yet) stable"]
 - very high precision needed
- NNLO is the frontier: first 2 → 2 NNLO computations in 2012-13!
- paramount example: Higgs production

- the approach I'll discuss here works for "color-singlet" production processes at the LHC
- we used it for Higgs production

[Hamilton, Nason, Zanderighi, ER '13]

parton showers and fixed order

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\rm QCD}$)
- need to simulate production of many quarks and gluons

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\rm QCD}$)
- need to simulate production of many quarks and gluons
- 1. start from low multiplicity at high Q^2

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{QCD}$)
- need to simulate production of many quarks and gluons
 - 1. start from low multiplicity at high Q^2
 - 2. quarks and gluons are color-charged ⇒ they radiate

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{QCD}$)
- need to simulate production of many quarks and gluons
 - 1. start from low multiplicity at high Q^2
- 2. quarks and gluons are color-charged ⇒ they radiate

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{QCD}$)
- need to simulate production of many quarks and gluons
 - 1. start from low multiplicity at high Q^2
- 2. quarks and gluons are color-charged ⇒ they radiate

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{QCD}$)
- need to simulate production of many quarks and gluons
 - 1. start from low multiplicity at high Q^2
- 2. quarks and gluons are color-charged ⇒ they radiate

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\rm QCD}$)
- need to simulate production of many quarks and gluons
 - 1. start from low multiplicity at high Q^2
- 2. quarks and gluons are color-charged ⇒ they radiate

(like photons off electrons)

3. soft-collinear emissions are ennhanced:

$$\frac{1}{(p_1 + p_2)^2} = \frac{1}{2E_1 E_2 (1 - \cos \theta)}$$

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\rm QCD}$)
- need to simulate production of many quarks and gluons
 - 1. start from low multiplicity at high Q^2
 - quarks and gluons are color-charged ⇒ they radiate

(like photons off electrons)

3. soft-collinear emissions are ennhanced:

$$\frac{1}{(p_1+p_2)^2} = \frac{1}{2E_1E_2(1-\cos\theta)}$$

4. factorization properties of QCD amplitudes

$$\begin{split} |\mathcal{M}_{n+1}|^2 d\Phi_{n+1} & \rightarrow |\mathcal{M}_n|^2 d\Phi_n \quad \frac{\alpha_{\mathrm{S}}}{2\pi} \, \frac{dt}{t} P_{q,qg}(z) dz \, \frac{d\varphi}{2\pi} \\ & z = k^0/(k^0 + l^0) \qquad \qquad \text{quark energy fraction} \\ & t = \left\{ (k+l)^2, l_T^2, E^2 \theta^2 \right\} \qquad \text{splitting hardness} \end{split}$$

$$=\left\{\left(k+l\right)^2,l_T^2,E^2\theta^2\right\}$$
 splitting hardness
$$P_{q,qg}(z)=C_{\rm F}\frac{1+z^2}{1-z}$$
 AP splitting function

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{QCD}$)
- need to simulate production of many quarks and gluons
 - 1. start from low multiplicity at high Q^2
 - quarks and gluons are color-charged ⇒ they radiate

(like photons off electrons)

soft-collinear emissions are ennhanced:

$$\frac{1}{(p_1+p_2)^2} = \frac{1}{2E_1E_2(1-\cos\theta)}$$

4. factorization properties of QCD amplitudes

$$\begin{split} |\mathcal{M}_{n+1}|^2 d\Phi_{n+1} &\to |\mathcal{M}_n|^2 d\Phi_n \quad \frac{\alpha_{\mathrm{S}}}{2\pi} \, \frac{dt}{t} P_{q,qg}(z) dz \frac{d\varphi}{2\pi} \\ &z = k^0/(k^0 + l^0) \qquad \qquad \text{quark energy fraction} \\ &t = \left\{ (k+l)^2, l_T^2, E^2 \theta^2 \right\} \qquad \text{splitting hardness} \end{split}$$

$$P_{q,qg}(z) = C_{\rm F} \frac{1+z^2}{1-z}$$

quark energy fraction

AP splitting function

→ probabilistic interpretation!

5. dominant contributions: strongly ordered emissions

$$t_1 > t_2 > t_3...$$

6. we also have virtual corrections: for consistency we should include them with the same approximation

- LL virtual contributions included by assigning to each internal line a Sudakov form factor:

$$\Delta_a(t_i, t_{i+1}) = \exp\left[-\sum_{(bc)} \int_{t_{i+1}}^{t_i} \frac{dt'}{t'} \int \frac{\alpha_s(t')}{2\pi} P_{a,bc}(z) dz\right]$$

- Δ_a corresponds to the probability of having no resolved emission between t_i and t_{i+1} off a line of flavour a
- resummation of collinear logarithms
- 7. At scales $\mu \approx \Lambda_{\rm QCD}$, hadrons form: non-perturbative effect, simulated with models fitted to data.

$$d\sigma_{\text{SMC}} = \underbrace{\left|\mathcal{M}_B\right|^2 d\Phi_B}_{d\sigma_B} \left\{ \right.$$

$$d\sigma_{ extsf{SMC}} = \underbrace{|\mathcal{M}_B|^2 d\Phi_B}_{d\sigma_B} \left\{ \Delta(t_{ ext{max}}, t_0) \right\}$$

$$d\sigma_{\text{SMC}} = \underbrace{\left|\mathcal{M}_{B}\right|^{2} d\Phi_{B}}_{d\sigma_{B}} \left\{ \Delta(t_{\text{max}}, t_{0}) + \Delta(t_{\text{max}}, t) \underbrace{\frac{d\mathcal{P}_{\text{emis}}(t)}{\frac{\alpha_{S}}{2} + \frac{1}{4}P(z)}}_{\frac{\alpha_{S}}{2} + \frac{1}{4}P(z)} \underbrace{\frac{d\Phi_{P}}{d\Phi_{P}}}_{t} \right\}$$

$$d\sigma_{\mathrm{SMC}} = \underbrace{|\mathcal{M}_B|^2 d\Phi_B}_{d\sigma_B} \left\{ \Delta(t_{\mathrm{max}}, t_0) + \Delta(t_{\mathrm{max}}, t) \underbrace{d\mathcal{P}_{\mathrm{emis}}(t)}_{\frac{\alpha_s}{2\pi} \frac{1}{t} P(z) \ d\Phi_r} \left\{ \underbrace{\Delta(t, t_0) + \Delta(t, t') d\mathcal{P}_{\mathrm{emis}}(t')}_{t' < t} \right\} \right\}$$

$$d\sigma_{\mathrm{SMC}} = \underbrace{|\mathcal{M}_B|^2 d\Phi_B}_{d\sigma_B} \left\{ \Delta(t_{\mathrm{max}}, t_0) + \Delta(t_{\mathrm{max}}, t) \underbrace{d\mathcal{P}_{\mathrm{emis}}(t)}_{\frac{\alpha_s}{2\pi} \frac{1}{t} P(z) \ d\Phi_r} \left\{ \underbrace{\Delta(t, t_0) + \Delta(t, t') d\mathcal{P}_{\mathrm{emis}}(t')}_{t' < t} \right\} \right\}$$

$$d\sigma_{\mathrm{SMC}} = \underbrace{|\mathcal{M}_B|^2 d\Phi_B}_{d\sigma_B} \left\{ \Delta(t_{\mathrm{max}}, t_0) + \Delta(t_{\mathrm{max}}, t) \underbrace{d\mathcal{P}_{\mathrm{emis}}(t)}_{\frac{\alpha_s}{2\pi} \frac{1}{t} P(z) \ d\Phi_r} \left\{ \underbrace{\Delta(t, t_0) + \Delta(t, t') d\mathcal{P}_{\mathrm{emis}}(t')}_{t' < t} \right\} \right\}$$

$$d\sigma_{\mathbf{SMC}} = \underbrace{|\mathcal{M}_B|^2 d\Phi_B}_{d\sigma_B} \left\{ \Delta(t_{\max}, t_0) + \Delta(t_{\max}, t) \underbrace{d\mathcal{P}_{\mathbf{emis}}(t)}_{\frac{\alpha_s}{2\pi}} \underbrace{\{\Delta(t, t_0) + \Delta(t, t') d\mathcal{P}_{\mathbf{emis}}(t')\}}_{t' < t} \right\}$$

- A parton shower changes shapes, not the overall normalization, which stays LO (unitarity)

Do they work?

- ✓ ok when observables dominated by soft-collinear radiation
- X Not surprisingly, they fail when looking for hard multijet kinematics
- they are only LO+LL accurate (whereas we can compute up to (N)NLO QCD corrections)
 - ⇒ Not enough if interested in precision (10% or less), or in multijet regions

Next-to-Leading Order I

 $\alpha_{\rm S} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$d\sigma = \frac{d\sigma_{\text{LO}}}{d\sigma} + \left(\frac{\alpha_{\text{S}}}{2\pi}\right) d\sigma_{\text{NLO}} + \left(\frac{\alpha_{\text{S}}}{2\pi}\right)^2 d\sigma_{\text{NNLO}} + \dots$$

LO: Leading Order NLO: Next-to-Leading Order ... $\alpha_{\rm S} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$d\sigma = \frac{d\sigma_{\text{LO}}}{d\sigma} + \left(\frac{\alpha_{\text{S}}}{2\pi}\right) d\sigma_{\text{NLO}} + \left(\frac{\alpha_{\text{S}}}{2\pi}\right)^2 d\sigma_{\text{NNLO}} + \dots$$

LO: Leading Order NLO: Next-to-Leading Order ...

Why NLO is important?

- first order where rates are reliable
- shapes are, in general, better described
- possible to attach sensible theoretical uncertainties

NNLO W* $\frac{100}{400}$ $\frac{100}{400$

when NLO corrections large (or high-precision needed),
NNLO is desirable

Next-to-Leading Order II

NLO how-to

- Inputs: tree-level n-partons (B), 1-loop n-partons (V), tree-level n+1 partons (R)
- truncated series ⇒ result depends on "unphysical" scales (can be used to estimate theoretical uncertainties)

Limitations:

- Results are at the parton level only (5 6 final-state partons is the frontier)
- You don't really have events!
- In regions where collinear emissions are important, they fail (no resummation)
- Choice of scale is an issue when multijets in the final states

matching NLO and PS

▶ POWHEG (Positive Weight Hardest Emission Generator)

- ✓ precision
- √ nowadays this is the standard
- limited multiplicity
- (fail when resummation needed)

parton showers

- √ realistic + flexible tools
- √ widely used by experimental coll's
- Iimited precision (LO)
- (fail when multiple hard jets)

© can merge them and build an NLOPS generator? Problem:

- ✓ precision
- √ nowadays this is the standard
- limited multiplicity
- (fail when resummation needed)

parton showers

- √ realistic + flexible tools
 - √ widely used by experimental coll's
 - Iimited precision (LO)
 - (fail when multiple hard jets)

© can merge them and build an NLOPS generator? Problem: overlapping regions!

- ✓ precision
- √ nowadays this is the standard
- limited multiplicity
- (fail when resummation needed)

parton showers

- √ realistic + flexible tools
 - √ widely used by experimental coll's
- limited precision (LO)
- (fail when multiple hard jets)

© can merge them and build an NLOPS generator? Problem: overlapping regions!

NLO:

- ✓ precision
- nowadays this is the standard
- limited multiplicity
- (fail when resummation needed)

parton showers

- √ realistic + flexible tools
- √ widely used by experimental coll's
- limited precision (LO)
- (fail when multiple hard jets)

© can merge them and build an NLOPS generator? Problem: overlapping regions!

✓ 2 methods available to solve this problem: MC@NLO and POWHEG

[Frixione-Webber '03, Nason '04]

NLOPS: POWHEG I

$$d\sigma_{\text{POW}} = d\Phi_n \quad \bar{B}(\Phi_n) \quad \left\{ \Delta(\Phi_n; k_{\text{T}}^{\text{min}}) + \Delta(\Phi_n; k_{\text{T}}) \frac{\alpha_s}{2\pi} \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} \ d\Phi_r \right\}$$

NLOPS: POWHEG I

$$B(\Phi_n) \Rightarrow \bar{B}(\Phi_n) = B(\Phi_n) + \frac{\alpha_s}{2\pi} \Big[V(\Phi_n) + \int R(\Phi_{n+1}) \ d\Phi_r \Big]$$

$$d\sigma_{\text{POW}} = d\Phi_n \quad \bar{B}(\Phi_n) \quad \Big\{ \Delta(\Phi_n; k_{\text{T}}^{\text{min}}) + \Delta(\Phi_n; k_{\text{T}}) \frac{\alpha_s}{2\pi} \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} \ d\Phi_r \Big\}$$

$$B(\Phi_{n}) \Rightarrow \overline{B}(\Phi_{n}) = B(\Phi_{n}) + \frac{\alpha_{s}}{2\pi} \left[V(\Phi_{n}) + \int R(\Phi_{n+1}) d\Phi_{r} \right]$$

$$d\sigma_{POW} = d\Phi_{n} \quad \overline{B}(\Phi_{n}) \quad \left\{ \Delta(\Phi_{n}; k_{T}^{min}) + \Delta(\Phi_{n}; k_{T}) \frac{\alpha_{s}}{2\pi} \frac{R(\Phi_{n}, \Phi_{r})}{B(\Phi_{n})} d\Phi_{r} \right\}$$

$$\Delta(t_{m}, t) \Rightarrow \Delta(\Phi_{n}; k_{T}) = \exp\left\{ -\frac{\alpha_{s}}{2\pi} \int \frac{R(\Phi_{n}, \Phi_{r}')}{B(\Phi_{n})} \theta(k_{T}' - k_{T}) d\Phi_{r}' \right\}$$

NLOPS: POWHEG II

$$d\sigma_{\text{POW}} = d\Phi_n \; \bar{B}(\Phi_n) \left\{ \Delta(\Phi_n; k_{\text{T}}^{\text{min}}) + \Delta(\Phi_n; k_{\text{T}}) \frac{\alpha_s}{2\pi} \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} \; d\Phi_r \right\}$$

[+ p_{T} -vetoing subsequent emissions, to avoid double-counting]

- inclusive observables: @NLO
- first hard emission: full tree level ME
- (N)LL resummation of collinear/soft logs
- extra jets in the shower approximation

This is "NLOPS"

NLOPS: POWHEG II

$$d\sigma_{\text{POW}} = d\Phi_n \; \bar{B}(\Phi_n) \left\{ \Delta(\Phi_n; k_{\text{T}}^{\text{min}}) + \Delta(\Phi_n; k_{\text{T}}) \frac{\alpha_s}{2\pi} \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} \; d\Phi_r \right\}$$

[+ p_{T} -vetoing subsequent emissions, to avoid double-counting]

- inclusive observables: @NLO
- first hard emission: full tree level ME
- (N)LL resummation of collinear/soft logs
- extra jets in the shower approximation

This is "NLOPS"

POWHEG BOX

[Alioli,Nason,Oleari,ER '10]

- large library of SM processes, (largely) automated
- widely used by LHC collaborations
- continuos improvements, some BSM processes too, soon an "official" V2.

http://powhegbox.mib.infn.it/

NLOPS: H+j

 $\bullet \ \ \, H\!+\!j \ @ \ \ \text{NLO}, \ \ H\!+\!j j \ @ \ \ \text{LO} \ \, \text{are needed for inclusive} \ \, H \ @ \ \ \text{NNLO} \\ \to \ \, \text{start from} \ \, H\!+\!j \ @ \ \ \text{NLOPS} \ (\texttt{POWHEG})$

NLOPS: H+i

H+j @ NLO, H+jj @ LO are needed for inclusive H @ NNLO
 ⇒ start from H+j @ NLOPS (POWHEG)

$$\bar{B}(\boldsymbol{\Phi}_n) \; d\boldsymbol{\Phi}_n = \alpha_{\mathrm{S}}^3(\mu_R) \Big[B + \alpha_{\mathrm{S}} V(\mu_R) + \alpha_{\mathrm{S}} \int d\boldsymbol{\Phi}_{\mathrm{rad}} R \Big] \, d\boldsymbol{\Phi}_n$$

when doing X+ jet(s) @ NLO, $\bar{B}(\Phi_n)$ is not finite! \rightarrow need of a generation cut on Φ_n (or variants thereof)

NLOPS: H+i

H+j @ NLO, H+jj @ LO are needed for inclusive H @ NNLO
 ⇒ start from H+j @ NLOPS (POWHEG)

$$\bar{B}(\boldsymbol{\Phi}_n) d\boldsymbol{\Phi}_n = \alpha_{\mathrm{S}}^3(\mu_R) \Big[B + \alpha_{\mathrm{S}} V(\mu_R) + \alpha_{\mathrm{S}} \int d\boldsymbol{\Phi}_{\mathrm{rad}} R \Big] d\boldsymbol{\Phi}_n$$

- when doing X+ jet(s) @ NLO, $\bar{B}(\Phi_n)$ is not finite! \rightarrow need of a generation cut on Φ_n (or variants thereof)
- want to reach NNLO accuracy for e.g. y_H , i.e. when fully inclusive over QCD radiation
 - need to allow the 1st jet to become unresolved
 - above approach needs to be modified
 - notice: H+j is a 2-scales problem (\rightarrow choice of μ not unique!)

NLOPS merging

MiNLO (Multiscale Improved NLO)

MiNLO: intro

- for processes with widely different scales (e.g. X+ jets close to Sudakov regions) choice of scales is not straightforward
- scale often chosen a posteriori, requiring typically
 - NLO corrections to be small
 - sensitivity upon scale choice to be minimal (\rightarrow plateau in $\sigma(\mu)$ vs. μ)

MiNLO: intro

- for processes with widely different scales (e.g. X+ jets close to Sudakov regions) choice of scales is not straightforward
- scale often chosen a posteriori, requiring typically
 - NLO corrections to be small
 - sensitivity upon scale choice to be minimal (\rightarrow plateau in $\sigma(\mu)$ vs. μ)

[Berger et al., '09]

MiNLO: intro

- for processes with widely different scales (e.g. X+ jets close to Sudakov regions) choice of scales is not straightforward
- scale often chosen a posteriori, requiring typically
 - NLO corrections to be small
 - sensitivity upon scale choice to be minimal (\rightarrow plateau in $\sigma(\mu)$ vs. μ)

MiNLO: Multiscale Improved NLO

[Hamilton, Nason, Zanderighi, 1206.3572]

- <u>aim</u>: method to <u>a-priori</u> choose scales in NLO computation
- idea: at LO, the CKKW procedure allows to take these effects into account: modify the LO weight $B(\Phi_n)$ in order to include (N)LL effects.
 - ⇒ "Use CKKW" on top of NLO computation that potentially involves many scales

Next-to-Leading Order accuracy needs to be preserved

ullet Find "most-likely" shower history (via k_T -algo): $Q>q_3>q_2>q_1\equiv Q_0$

 \bullet Find "most-likely" shower history (via k_T -algo): $Q>q_3>q_2>q_1\equiv Q_0$

• Find "most-likely" shower history (via k_T -algo): $Q > q_3 > q_2 > q_1 \equiv Q_0$

• Evaluate $\alpha_{\rm S}$ at nodal scales

$$\alpha_{\rm S}^n(\mu_R)B(\mathbf{\Phi}_n) \Rightarrow \alpha_{\rm S}(q_1)\alpha_{\rm S}(q_2)...\alpha_{\rm S}(q_n)B(\mathbf{\Phi}_n)$$

scale compensation: use $ar{\mu}_R^2 = \left(q_1q_2...q_n
ight)^{2/n}$ in V

• Find "most-likely" shower history (via k_T -algo): $Q > q_3 > q_2 > q_1 \equiv Q_0$

• Evaluate $\alpha_{\rm S}$ at nodal scales

$$\alpha_{\rm S}^n(\mu_R)B(\Phi_n) \Rightarrow \alpha_{\rm S}(q_1)\alpha_{\rm S}(q_2)...\alpha_{\rm S}(q_n)B(\Phi_n)$$
scale compensation: use $\bar{\mu}_R^2 = (q_1q_2...q_n)^{2/n}$ in V

Sudakov FFs in internal and external lines of Born "skeleton"

$$B(\mathbf{\Phi}_n) \Rightarrow B(\mathbf{\Phi}_n) \times \{\Delta(Q_0, Q)\Delta(Q_0, q_i)...\}$$

recover NLO exactly: remove $\mathcal{O}(\alpha_{\mathrm{S}}^{n+1})$ (log) terms generated upon expansion

$$B(\Phi_n) \Rightarrow B(\Phi_n) \Big(1 - \Delta^{(1)}(Q_0, Q) - \Delta^{(1)}(Q_0, q_i) + \ldots \Big)$$

Example, in 1 line: H + 1 jet

Pure NLO:

$$d\sigma = \bar{B} \ d\Phi_n = \alpha_{\rm S}^3(\mu_R) \Big[B + \alpha_{\rm S}^{\rm (NLO)} V(\mu_R) + \alpha_{\rm S}^{\rm (NLO)} \int d\Phi_{\rm rad} R \Big] d\Phi_n$$

Example, in 1 line: H + 1 jet

Pure NLO:

$$d\sigma = \bar{B} \ d\Phi_n = \alpha_{\rm S}^3(\mu_R) \Big[B + \alpha_{\rm S}^{\rm (NLO)} V(\mu_R) + \alpha_{\rm S}^{\rm (NLO)} \int d\Phi_{\rm rad} R \Big] \ d\Phi_n$$

MiNLO:

$$\bar{B} = \alpha_{\rm S}^2(m_h)\alpha_{\rm S}(q_T)\Delta_g^2(q_T,m_h) \Big[B \Big(1 - 2\Delta_g^{(1)}(q_T,m_h) \Big) + \alpha_{\rm S}^{({\rm NLO})}V(\bar{\mu}_R) + \alpha_{\rm S}^{({\rm NLO})} \int d\Phi_{\rm rad}R \Big] \Big] \\ \frac{1}{2} \Delta(q_T,m_h) \\ \frac{q_T}{m_h} \Delta(q_T,q_T) \Big]$$

Example, in 1 line: H + 1 jet

Pure NLO:

$$d\sigma = \bar{B} \ d\Phi_n = \alpha_{\rm S}^3(\mu_R) \Big[B + \alpha_{\rm S}^{\rm (NLO)} V(\mu_R) + \alpha_{\rm S}^{\rm (NLO)} \int d\Phi_{\rm rad} R \Big] \ d\Phi_n$$

MiNLO:

$$\bar{B} = \alpha_{\rm S}^2(m_h)\alpha_{\rm S}(q_T)\Delta_g^2(q_T,m_h) \Big[B\left(1 - 2\Delta_g^{(1)}(q_T,m_h)\right) + \alpha_{\rm S}^{(\rm NLO)}V(\bar{\mu}_R) + \alpha_{\rm S}^{(\rm NLO)} \int d\Phi_{\rm rad}R \Big]$$

$$\begin{array}{c|c} & \Delta(q_T,m_h) \\ & q_T & \Delta(q_T,q_T) \\ \hline & m_h & & \\ \Delta(q_T,m_h) & & & \\ & & & \\ \Delta(q_T,q_T) & & & \\ \end{array}$$

*
$$\bar{\mu}_R = (m_h^2 q_T)^{1/3}$$

*
$$\log \Delta_f(q_T, Q) = -\int_{q_T^2}^{Q^2} \frac{dq^2}{q^2} \frac{\alpha_S(q^2)}{2\pi} \left[A_f \log \frac{Q^2}{q^2} + B_f \right]$$

*
$$\Delta_{\rm f}^{(1)}(q_T, Q) = -\alpha_{\rm S}^{({\rm NLO})} \frac{1}{2\pi} \left[\frac{1}{2} A_{1,{\rm f}} \log^2 \frac{Q^2}{q_T^2} + B_{1,{\rm f}} \log \frac{Q^2}{q_T^2} \right]$$

 $^{\star}\,\mu_F=Q_0(=q_T)$

Sudakov FF included on Born kinematics

Example, in 1 line: H + 1 jet

Pure NLO:

$$d\sigma = \bar{B} \ d\Phi_n = \alpha_{\rm S}^3(\mu_R) \Big[B + \alpha_{\rm S}^{\rm (NLO)} V(\mu_R) + \alpha_{\rm S}^{\rm (NLO)} \int d\Phi_{\rm rad} R \Big] \ d\Phi_n$$

MiNLO:

$$\bar{B} = \alpha_{\mathrm{S}}^{2}(m_{h})\alpha_{\mathrm{S}}(q_{T})\Delta_{g}^{2}(q_{T},m_{h}) \Big[B \Big(1 - 2\Delta_{g}^{(1)}(q_{T},m_{h}) \Big) + \alpha_{\mathrm{S}}^{(\mathrm{NLO})}V(\bar{\mu}_{R}) + \alpha_{\mathrm{S}}^{(\mathrm{NLO})} \int d\Phi_{\mathrm{rad}}R \Big] \Big] \\ \downarrow \Delta(q_{T},m_{h}) \\ \downarrow q_{T} \Delta(q_{T},q_{T}) \\ \downarrow m_{h} \\ \mathcal{E}_{\Lambda}(q_{T},q_{T}) \\ \downarrow \Delta(q_{T},q_{T}) \\ \downarrow \alpha_{\mathrm{S}}^{(\mathrm{NLO})} \int d\Phi_{\mathrm{rad}}R \Big]$$

 \mathbb{R}^{n} X+ jets cross-section finite without generation cuts

 $ightarrow ar{B}$ with Minlo prescription: ideal starting point for NLOPS (POWHEG) for X+ jets

 \hookrightarrow can be used to extend validity of H+j POWHEG when jet becomes unresolved

"Improved" MiNLO & NLOPS merging

• so far, no statements on the accuracy for fully-inclusive quantities

"Improved" MiNLO & NLOPS merging

- so far, no statements on the accuracy for fully-inclusive quantities
- Carefully addressed for HJ-Minlo

[Hamilton et al., 1212.4504]

- HJ-MiNLO describes inclusive observables at order $\alpha_{\rm S}$ (relative to inclusive H @ LO)
- ullet to reach genuine NLO when inclusive, "spurious" terms must be of <u>relative</u> order $lpha_{
 m S}^2$

$$O_{\mathrm{HJ-MiNLO}} = O_{\mathrm{H@NLO}} + \mathcal{O}(\alpha_{\mathrm{S}}^{b+2})$$
 $(b = 2 \text{ for } gg \to H)$

if O is inclusive (H@LO ~ $\alpha_{\rm S}^b$).

• "Original MiNLO" contains ambiguous $\mathcal{O}(\alpha_{\mathrm{S}}^{b+3/2})$ terms.

"Improved" MiNLO & NLOPS merging

- so far, no statements on the accuracy for fully-inclusive quantities
- Carefully addressed for HJ-Minlo

[Hamilton et al., 1212.4504]

- HJ-Minlo describes inclusive observables at order $\alpha_{\rm S}$ (relative to inclusive H @ LO)
- \bullet to reach genuine NLO when inclusive, "spurious" terms must be of <code>relative</code> order $\alpha_{\rm S}^2$

$$O_{\mathrm{HJ-MiNLO}} = O_{\mathrm{H@NLO}} + \mathcal{O}(\alpha_{\mathrm{S}}^{b+2})$$
 ($b = 2 \text{ for } gg \to H$)

if O is inclusive (H@LO ~ $\alpha_{\rm S}^b$).

- "Original MiNLO" contains ambiguous $\mathcal{O}(\alpha_{\mathrm{S}}^{b+3/2})$ terms.
- Possible to improve HJ-MiNLO such that H @ NLO is recovered (NLO⁽⁰⁾), without spoiling NLO accuracy of H+j (NLO⁽¹⁾).

Effectively as merging $NLO^{(0)}$ and $NLO^{(1)}$ samples, without merging different samples (no merging scale used: there is just one sample).

Other NLOPS-merging approaches: [Hoeche, Krauss, et al., 1207.5030] [Frederix, Frixione, 1209.6215] [Lonnblad, Prestel, 1211.7278 - Platzer, 1211.5467] [Alioli, Bauer, et al., 1211.7049] [Hartgring, Laenen, Skands, 1303.4974]

[Hamilton et al., 1212.4504]

- "H+Pythia": standalone POWHEG (gg o H) + PYTHIA (PS level) [7pts band, μ = m_H]
- "HJ+Pythia": HJ-Minlo* + PYTHIA (PS level) [7pts band, μ from Minlo]
- √ very good agreement (both value and band)

Notice: band is $\sim 20 - 30\%$

matching NNLO with PS

Higgs production at NNLOPS

NNLO+PS I

ullet HJ-MiNLO* differential cross section $(d\sigma/dy)_{
m HJ-MiNLO}$ is NLO accurate

$$W(y) = \frac{\left(\frac{d\sigma}{dy}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{dy}\right)_{\text{HJ-MiNLO}}} = \frac{c_2\alpha_{\text{S}}^2 + c_3\alpha_{\text{S}}^3 + c_4\alpha_{\text{S}}^4}{c_2\alpha_{\text{S}}^2 + c_3\alpha_{\text{S}}^3 + d_4\alpha_{\text{S}}^4} \simeq 1 + \frac{c_4 - d_4}{c_2}\alpha_{\text{S}}^2 + \mathcal{O}(\alpha_{\text{S}}^3)$$

- thus, reweighting each event with this factor, we get NNLO+PS
 - obvious for y_H , by construction
 - α_{S}^4 accuracy of <code>HJ-MiNLO*</code> in 1-jet region not spoiled, because W(y) = $1 + \mathcal{O}(\alpha_{\mathrm{S}}^2)$
 - if we had NLO⁽⁰⁾ + $\mathcal{O}(\alpha_{\rm S}^{2+3/2})$, 1-jet region spoiled because

$$[\mathsf{NLO}^{(1)}]_{\mathsf{NNLOPS}} = \mathsf{NLO}^{(1)} + \mathcal{O}(\alpha_{\mathrm{S}}^{4.5}) \neq \mathsf{NLO}^{(1)} + \mathcal{O}(\alpha_{\mathrm{S}}^{5})$$

ullet HJ-MiNLO* differential cross section $(d\sigma/dy)_{
m HJ-MiNLO}$ is NLO accurate

$$W(y) = \frac{\left(\frac{d\sigma}{dy}\right)_{\mathrm{NNLO}}}{\left(\frac{d\sigma}{dy}\right)_{\mathrm{HJ-MiNLO}}} = \frac{\frac{c_2\alpha_{\mathrm{S}}^2 + c_3\alpha_{\mathrm{S}}^3 + c_4\alpha_{\mathrm{S}}^4}{c_2\alpha_{\mathrm{S}}^2 + c_3\alpha_{\mathrm{S}}^3 + d_4\alpha_{\mathrm{S}}^4} \simeq 1 + \frac{c_4 - d_4}{c_2}\alpha_{\mathrm{S}}^2 + \mathcal{O}(\alpha_{\mathrm{S}}^3)$$

- thus, reweighting each event with this factor, we get NNLO+PS
 - obvious for y_H , by construction
 - $\alpha_{\rm S}^4$ accuracy of HJ-MiNLO* in 1-jet region not spoiled, because W(y) = 1 + $\mathcal{O}(\alpha_{\rm S}^2)$
 - if we had NLO⁽⁰⁾ + $\mathcal{O}(\alpha_{\rm S}^{2+3/2})$, 1-jet region spoiled because

$$\big[\mathsf{NLO}^{(1)}\big]_{\mathsf{NNLOPS}} = \mathsf{NLO}^{(1)} + \textcolor{red}{\mathcal{O}(\alpha_{\mathrm{S}}^{4.5})} \neq \mathsf{NLO}^{(1)} + \textcolor{red}{\mathcal{O}(\alpha_{\mathrm{S}}^{5})}$$

 * Variants for W are possible:

$$W(y, p_T) = h(p_T) \frac{\int d\sigma_A^{\text{NNLO}} \delta(y - y(\mathbf{\Phi}))}{\int d\sigma_A^{\text{MiNLO}} \delta(y - y(\mathbf{\Phi}))} + (1 - h(p_T))$$
$$d\sigma_A = d\sigma h(p_T), \qquad d\sigma_B = d\sigma (1 - h(p_T)), \qquad h = \frac{(\beta m_H)^2}{(\beta m_H)^2 + p_T^2}$$

- * $h(p_T)$ controls where the NNLO/NLO K-factor is spread
- * β (similar to resummation scale) cannot be too small, otherwise resummation spoiled

In 1309.0017, we used

$$W(y, p_T) = h(p_T) \frac{\int d\sigma^{\text{NNLO}} \delta(y - y(\mathbf{\Phi})) - \int d\sigma^{\text{MiNLO}}_B \delta(y - y(\mathbf{\Phi}))}{\int d\sigma^{\text{MiNLO}}_A \delta(y - y(\mathbf{\Phi}))} + (1 - h(p_T))$$

$$d\sigma_A = d\sigma h(p_T), \qquad d\sigma_B = d\sigma (1 - h(p_T)), \qquad h = \frac{(\beta m_H)^2}{(\beta m_H)^2 + p_T^2}$$

- one gets exactly $(d\sigma/dy)_{\rm NNLOPS}$ = $(d\sigma/dy)_{\rm NNLO}$ (no $\alpha_{\rm S}^5$ terms)
- we used $h(p_T^{j_1})$ (hardest jet at parton level)

inputs for following plots:

- results are for 8 TeV LHC
- scale choices: NNLO input with μ = $m_H/2$, HJ-MiNLO "core scale" m_H (other powers are at q_T)
- PDF: everywhere MSTW8NNLO
- NNLO always from HNNLO
- events reweighted at the LH level
- plots after k_{T} -ordered PYTHIA 6 at the PS level (hadronization and MPI switched off)

NNLO+PS (fully incl.)

• NNLO with $\mu = m_H/2$, HJ-MiNLO "core scale" m_H

[NNLO from HNNLO, Catani, Grazzini]

ullet $(7_{Mi} \times 3_{NN})$ pts scale var. in NNLOPS, 7pts in NNLO

[Until and including $\mathcal{O}(\alpha_{\mathrm{S}}^4)$, PS effects don't affect y_H (first 2 emissions controlled properly at $\mathcal{O}(\alpha_{\mathrm{S}}^4)$ by MiNLO+POWHEG)]

NNLO+PS (p_T^H)

$$\beta = \infty$$
 (W indep. of p_T)

$$\beta = 1/2$$

- HqT: NNLL+NNLO, $\mu_R = \mu_F = m_H/2$ [7pts], $Q_{\rm res} \equiv m_H/2$ [HqT, Bozzi et al.]
- \checkmark β = 1/2 & ∞ : uncertainty bands of HqT contain NNLOPS at low-/moderate p_T
- β = 1/2: HqT tail harder than NNLOPS tail (μ_{HqT} < " μ_{MiNLO} ")
- ullet eta = 1/2: very good agreement with HqT resummation ["~ expected", since $Q_{\rm res} \equiv m_H/2$]

NNLO+PS $(p_T^{j_1})$

- JetVHeto: NNLL resum, $\mu_R = \mu_F = m_H/2$ [7pts], $Q_{\rm res} \equiv m_H/2$, (a)-scheme only [JetVHeto, Banfi et al.]
- nice agreement, differences never more than 5-6 %

Separation of $H \to WW$ from $t\bar{t}$ bkg: x-sec binned in $N_{\rm jet}$ 0-jet bin (WW-dominated) \Leftrightarrow jet-veto accurate predictions needed!

- Especially in absence of very clear singals of new-physics, accurate tools are needed for LHC phenomenology
- ▶ In the last decade, impressive amount of progress: new ideas, and automated tools
- ⇒ Shown results of merging NLOPS for different jet-multiplicities without merging scale
- ⇒ Shown first working example of NNLOPS

What next?

▶ Drell-Yan: conceptually the same as $gg \to H$, technically slightly more involved, phenomenologically important (e.g. W mass extraction, pdfs,...)

- Especially in absence of very clear singals of new-physics, accurate tools are needed for LHC phenomenology
- In the last decade, impressive amount of progress: new ideas, and automated tools
- ⇒ Shown results of merging NLOPS for different jet-multiplicities without merging scale
- ⇒ Shown first working example of NNLOPS

What next?

- ▶ Drell-Yan: conceptually the same as $gg \rightarrow H$, technically slightly more involved, phenomenologically important (e.g. W mass extraction, pdfs,...)
- ▶ for more complicated processes, a more analytic-based approach might be needed

- Especially in absence of very clear singals of new-physics, accurate tools are needed for LHC phenomenology
- In the last decade, impressive amount of progress: new ideas, and automated tools
- ⇒ Shown results of merging NLOPS for different jet-multiplicities without merging scale
- ⇒ Shown first working example of NNLOPS

What next?

- ▶ Drell-Yan: conceptually the same as $gg \rightarrow H$, technically slightly more involved, phenomenologically important (e.g. W mass extraction, pdfs,...)
- ▶ for more complicated processes, a more analytic-based approach might be needed

Thank you for your attention!

- Especially in absence of very clear singals of new-physics, accurate tools are needed for LHC phenomenology
- In the last decade, impressive amount of progress: new ideas, and automated tools
- ⇒ Shown results of merging NLOPS for different jet-multiplicities without merging scale
- ⇒ Shown first working example of NNLOPS

What next?

- ▶ Drell-Yan: conceptually the same as $gg \rightarrow H$, technically slightly more involved, phenomenologically important (e.g. W mass extraction, pdfs,...)
- ▶ for more complicated processes, a more analytic-based approach might be needed

Thank you for your attention! ...and remember: code is public!