Search for **Hidden Particles**

Particle Physics Seminar — University of Birmingham

March 7, 2018

Introduction

- Higgs found! SM complete and consistent up to Plank scale. But...
 - matter-antimatter asymmetry
 - neutrino masses/mixing
 - dark matter
 - flavour anomalies... New physics?
- NO smoking gun in direct searches up to \sim 5 TeV...

What is the energy scale of new physics?

- ightharpoonup Neutrino masses and oscillations: Right Handed see-saw neutrino masses from 1 eV to $10^{15}~{\rm GeV}$
- \bullet Dark matter: From 10^{-22} eV (super-light scalar) to $\geq 10^{20}$ GeV (wimpzilla, Q-ball)
- ightharpoonup Baryogenesis: Mass of new particle from $10~{
 m MeV}$ to $10^{15}~{
 m GeV}$
- → Higgs mass hierarchy: SUSY, GUT, composite Higgs, large extra dimensions theories require the presence of new particles above the Fermi scale.

Where is new physics? Experimental approach

- → Unsolved problems ⇒ new particles
- → Why didn't we detect them? Too heavy or too weakly interacting

Hidden particles

$$\mathcal{L}_{\mathsf{world}} = \mathcal{L}_{\mathsf{SM}} + \mathcal{L}_{\mathsf{portal}} + \mathcal{L}_{\mathsf{HS}}$$

- Hidden Sector (HS) naturally accommodates Dark Matter
 - it may have a rich structure
- Interaction with visible sector (SM) proceeds through mediators
- HS processes very strongly suppressed relative to SM
 - production BRs $\sim 10^{-10}$
 - very weak interaction with matter
 - very long-lived objects!
- Can search HS through decays to visible particles

SHiP: Search for Hidden Particles

SHiP is a new proposed intensity-frontier experiment aiming to search for HNLs and other neutral hidden particles with mass up to $\mathcal{O}(10)$ GeV and extremely weak couplings.

Aims to be a **zero background** experiment!

Facility also ideally suited for studying ν_{τ} and $\bar{\nu}_{\tau}$ properties and testing lepton flavour universality by comparing interactions of μ and τ neutrinos.

Outline

- → The SHiP experiment
 - Detector system
 - Background strategies
- \rightarrow Physics with ν_{τ}
- → The search for Heavy Neutral Leptons
 - Evaluating SHiP sensitivity
- → Probing the Hidden Sector
 - Vector portal
 - Scalar portal
 - Axion-like particles
- → Conclusions

Outline

- → The SHiP experiment
 - Detector system - Background strategies
 - Physics with $u_{ au}$
 - The search for Heavy Neutral Leptons
 - Evaluating SHiP sensitivity
 - Probing the Hidden Sector
 - Vector portal
 - Scalar portal
 - Axion-like particles
 - Conclusions

Experimental requirements

- → Hidden particles production in **charm** (and beauty) **charm**
 - Intense proton beam from the SPS (400 GeV)
 - Very dense target of $10\times\lambda_{\rm int}$
 - abundant production of heavy flavours
 - \bullet reduce neutrino production from π and K decays
- → decay of hidden particles:

- large decay volume followed by spectrometer, calorimeter, PID
- shielding from SM particles: hadron absorber + VETO detectors (*)
- $\rightarrow \tau$ neutrinos:
 - $N_{ au}=4N_{p}\left(\sigma_{c\bar{c}}/\sigma_{pN}\right)f_{D_{s}} imes \mathrm{Br}(D_{s} o au)\simeq\mathbf{6} imes\mathbf{10^{15}}$
 - distinguish $\nu_{ au}$ / $\bar{\nu}_{ au}$: magnetized emulsion target + high-res tracker

Experimental requirements

- → Hidden particles production in charm (and beauty) charm
 - Intense proton beam from the SPS (400 GeV)
 - Very dense target of $10\times\lambda_{\rm int}$
 - abundant production of heavy flavours
 - reduce neutrino production from π and K decays
- decay of hidden particles:

- large decay volume followed by spectrometer, calorimeter, PID
- shielding from SM particles: hadron absorber + VETO detectors (*)
- $\rightarrow \tau$ neutrinos:
 - $N_{\tau} = 4N_p \left(\sigma_{c\bar{c}}/\sigma_{pN}\right) f_{D_s} \times \text{Br}(D_s \to \tau) \simeq \mathbf{6} \times \mathbf{10^{15}}$

TEASER: $au
ightarrow 3 \mu$ sensitivity $\sim 10^{-10}/\sqrt{N_{
m targets}!}$

– distinguish ν_{τ} / $\bar{\nu}_{\tau}$: magnetized emulsion target + high-res tracker

...and the muons (*)?

Residual μ flux after the hadron absorber is **dangerous**:

background for HS physics

– ageing of $u_{ au}$ emulsions

- active muon shield based on sweeping magnets
- "conical"-shaped vessel

History

2013:

- submission of the EOI (October, 16 authors) $\rightarrow arXiv:1310.1762$

2014:

- SPSC discusses EOI (January)
- 1st workshop (June, 100 participants)

2015:

- submission of TP (April, 233 authors)
 - \rightarrow arXiv:1504.04956
- submission of PP (April, 85 authors)
 - \rightarrow arXiv:1504.04855
- discussion with SPSC referees

2016:

- endorsement by the SPSC (February)

2014-today:

12 collaboration meetings, workshops...

Status and timeline

Accelerator schedule	2015	2016	2017	2018	2019	2020	202	2022	202	23	2024	2025		2026	2027
LHC		F	Run 2			32		Run	3			LS3			Run 4
SPS											NA stop	SPS sto	ор		
					ESPP										
Detector			CD	s	Prototyping,	design		Prod	uction		Insta	llation			
Milestones	TP			CDR		TDR	PRR							CwB	Data taking
Facility						ntegr	ation	-						CwB	
Civil engineering	Pre-construction Target - Detector hall - Beamline - Junction (WP1)														
Infrastructure									nstallation		Installat	tion	Inst.		
Beamline			CD:	S	Prototyping,	design		Production			Install	ation			
Target complex			CD	S	Prototyping,	design	Production Installation								
Target			CD:	s	Prototyping,	design			Produc	ction	In	stallation			

- "Comprehensive Design Study" + Report (2018) to input to the European Strategy consultation in 2019
- New phase of optimisation
 - Re-optimise detector design
 - Assess and improve sensitivity to various hidden sector models

Outline

- → The SHiP experiment
 - Detector system
 - Background strategies
 - Physics with $u_{ au}$
 - The search for Heavy Neutral Leptons
 - Evaluating SHiP sensitivity
 - Probing the Hidden Section
 - Vector portal
 - Scalar portal
 - Axion-like particles
 - Conclusions

The facility at the SPS

Target and hadron absorber

- Layers of titanium/zirconium/molybdenum
 - Heavy target stops hadrons before they decay. Only **muons** emerge
- Peak power 2.5 MW (average 355 kW)
- Challenges:
 - Extremely radioactive environment
 - Many constraints on the integration, access, thermal stress, radioactivity...
- Milestones:
 - Reduced scale prototype by 2019 Q2
 - Full-scale prototype with cooling and power connections by 2020 Q3

Active muon shield

- Has to reduce μ flux by $\leq 10^{-6}$
- Critical component to optimise to maximize the exp. acceptance
 - global optimisation with machine learning ongoing
- ullet μ spectrum measurement planned for 2018 at H4

• Challenges:

- narrow separation between field directions
- aiming to 1.8 T to minimise length
- size of the simulated μ sample to optimise with

JINST 12 P05011 2017

The ν /iSHiP detector

- 19 brick walls
- 20 Target Tracker planes
- 5 Spectrometer planes

The ν /iSHiP detector: technologies

- ECC Emulsion Cloud Chambers composed of lead (passive target) and high-res nuclear emulsion films (tracking device)
 - $\longrightarrow \nu$ interaction and τ decay vertex with $\mu \mathrm{m}$ resolution
- CES Compact Emulsion Spectrometer: air gaps and nuclear emulsions
 - \longrightarrow measure the charge of the au daughters, separate $u_{ au}/ar{
 u}_{ au}$
 - TT Target Trackers: scintillating fibres or MPGD
 - ---- link emulsion tracks to spectrometer tracks
 - ---- provide time stamp and calorimetry information

The ν /iSHiP detector: technologies

- \bigotimes
- ECC Emulsion Cloud Chambers composed of lead (passive target) and high-res nuclear emulsion films (tracking device)
 - $\longrightarrow \nu$ interaction and τ decay vertex with μm resolution
- CES Compact Emulsion Spectrometer: air gaps and nuclear emulsions
 - \longrightarrow measure the charge of the au daughters, separate $u_{ au}/ar{
 u}_{ au}$
 - TT Target Trackers: scintillating fibres or MPGD
 - ---- link emulsion tracks to spectrometer tracks
 - \longrightarrow provide time stamp and calorimetry information
 - Magnetized tracker for tracking and muon charge: drift tubes
 - Muon filter, also BG tagger for HS detector: iron/RPCs
 - New generation scanning system based on GPU processing

 → scanning 190 cm² h⁻¹
 - ML techniques for online/offline data processing

The Hidden Sector detector

Hidden Sector detector optimisation

- Optimisation:
 - \circ magnetize hadron stopper \longrightarrow muon shield shorter and lighter
 - \circ lower μ flux entering shield \longrightarrow decay volume closer to target \longrightarrow increased signal acceptance and less background
 - decay vessel has now a **pyramidal frustum** shape \longrightarrow from \sim 150 m to \sim 107 m

- $\leq 10^{-3}$ mbar to suppress ν interactions
- Veto systems surrounding the whole 60 m fiducial volume

Optimization of the decay volume

- studied cylindrical, conical solutions in vacuum or He
- might be able to release the vacuum requirement
- → acceptance depends on the hidden particle's lifetime

Hidden Sector spectrometer

- Full reconstruction and PID of e^{\pm} , μ^{\pm} , π^{\pm} , $\gamma/\pi^0/\rho^{\pm}$ final states
- NA62-like straw tracker with 5 m long straw tubes
- ullet Timing detector: scintillating bars with SiPM arrays, \leq 100 ps
- Shashlik-type ECAL (HCAL) with 11504 (1512) channels
- Muon detector: 4 xy layers of scintillating bars with WLS fibres (23 km!) and SiPM readout

Outline

- → The SHiP experiment
 - Detector system
 - Background strategies

Physics with $u_{ au}$

The search for Heavy Neutral Leptons

- Evaluating SHiP sensitivity
- Probing the Hidden Sector
- Vector portal
- Scalar portal
- Axion-like particles
- Conclusions

 \rightarrow cosmic μ can scatter on the cavern/vessel walls

- → cosmic μ can scatter on the cavern/vessel walls
- combinatorial combinations of tracks from different events/vertices

- → cosmic μ can scatter on the cavern/vessel walls
- → combinatorial combinations of tracks from different events/vertices
- μ DIS on the cavern walls can produce charged tracks

- → cosmic μ can scatter on the cavern/vessel walls
- combinatorial combinations of tracks from different events/vertices
- μ DIS on the cavern walls can produce charged tracks
- ν interactions in the material of the HS detector and upstream closely mimick HP decay topology

- cosmic μ can scatter on the cavern/vessel walls
- combinatorial combinations of tracks from different events/vertices
- μ DIS on the cavern walls can produce charged tracks
- → v interactions in the material of the HS detector and upstream closely mimick HP decay topology

Shields and background taggers

- → Hadron stopper after the target
- → Magnetic μ sweeper creates a \geq 5 m wide fiducial area
- ightharpoonup
 u detector precedes HS detector and tags upstream particles
- → Upstream VETO complements its acceptance
- → Straw VETO tags decays of K_L produced in the ν detector
- → Liquid scintillator tags interactions crossing the vessel walls
- → Timing detector reduces combinatorial background

Offline selection

- discard events with activity in the VETO detectors
- select candidates based on the reconstructed direction (must point back to the target)
- require good quality tracks & reconstructed vertex
- event must be fully contained in the fiducial volume, with margins
- we expect < 1 candidate per event \rightarrow cut on multiplicity

Selection efficiency

Sample	Multiplicity	Fiducial vol	Track q.	BG cuts/VETO		
$HNL o\pi\mu$	97.5 %	76.1 %	87.0 %	94.2 %		
$\gamma' o \mu \mu$	99.6 %	85.2 %	94.4 %	94.0 %		
u background	79.1 %	21.0 %	6.5 %	0.0 %		

Offline selection

- discard events with activity in the VETO detectors
- select candidates based on the reconstructed direction (must point back to the target)
- require good quality tracks & reconstructed vertex
- event must be fully contained in the fiducial volume, with margins
- we expect < 1 candidate per event \rightarrow cut on multiplicity

Selection efficiency

Sample	Multiplicity	Fiducial vol	Track q.	BG cuts/VETO		
$HNL o\pi\mu$	97.5 %	76.1 %	87.0 %	94.2 %		
$\gamma' o \mu \mu$	99.6 %	85.2 %	94.4 %	94.0 %		
u background	79.1 %	21.0 %	6.5 %	0.0 %		

Overall $\lesssim 0.1$ background events / 5 years is attainable!

Outline

- The SHiP experiment
 - Background strategies
- \rightarrow Physics with ν_{τ}
 - The search for Heavy Neutral Leptons
 - Evaluating SHiP sensitivity
 - Probing the Hidden Sector
 - Vector portal
 - Scalar portal
 - Axion-like particles
 - Conclusions

νSHiP : a unique opportunity for neutrino physics

High intensity beam dump \implies high flux of neutrinos (all species).

- ν_e tag: electron shower in the ECC brick
- ν_{μ} tag: μ in the muon filter
- $u_{ au}$ tag: separation of au production and decay vertices
- first observation of $\bar{\nu}_{\tau}$
- $\nu_{ au}/\bar{\nu}_{ au}$ cross-section measurements
- ullet First evaluation of the F_4 and F_5 structure functions
- ullet strange quark content from charm production in u scattering

Tests of perturbative QCD and lepton universality

→ PDF improvements with ν -nucleon DIS: strange sea quark content currently relies on $\mathcal{O}(5000)$ charm di- μ events:

LHC and SHiP will probe different ranges of x.

- → Lepton universality tests:
 - hints from LHCb, B factories, ...
 - DIS σ including BSM: Liu, Rashed, Datta PRD92(2015)7, 073016, to compare to σ_{SM}
 - results depend on our knowledge of the $\nu_{ au}$ flux!

Tests of perturbative QCD and lepton universality

→ PDF improvements with ν -nucleon DIS: strange sea quark content currently relies on $\mathcal{O}(5000)$ charm di- μ events:

LHC and SHiP will probe different ranges of x.

- → Lepton universality tests:
 - hints from LHCb, B factories, ...
 - DIS σ including BSM: Liu, Rashed, Datta PRD92(2015)7, 073016, to compare to σ_{SM}
 - results depend on our knowledge of the $\nu_{ au}$ flux!

iSHiP: Dark matter search

Detect dark matter from dark photon decay through elastic scattering on electrons: $\chi e^- \to \chi e^-$. Signature in the emulsion target: a vertex with only e^- coming out. Simulation \Longrightarrow background from neutrino scattering can be reduced with kinematical selections to 284 events / 5 y.

Dark photon parameter space for $\gamma' \to \text{invisible}$ decays excluded by SHiP at 90% C.L., with such expected background and for $m_\chi = 200$ MeV and $\chi\gamma'$ coupling $\alpha' = 0.1$:

PRD95 (2017) 3, 035006

- The SHiP experiment

 Detector system

 Background strategies
- Physics with ν_{γ}
- → The search for Heavy Neutral Leptons
 - Evaluating SHiP sensitivity
 - Probing the Hidden Section
 - Vector portal
 - Scalar portal
 - Axion-like particles
 - Conclusions

Heavy neutral leptons

dark matter neutrino masses/oscillations short-baseline neutrino anomalies matter-antimatter asymmetry

Could be explained with additional, sterile neutrinos

Heavy Neutral leptons

The Majorana mass term induces
$$\mathcal{L}_{osc} = c_{\alpha\beta} \left(L_{\alpha}^{\dagger} \tilde{\Phi} \right) \left(\tilde{\Phi} L_{\beta} \right) / \Lambda$$
 \Longrightarrow change flavour of SM neutrino $\nu_{\alpha} \equiv \tilde{\Phi} L_{\alpha}$

$$m_D = {
m Dirac}$$
 mass term, $(m_D)_{lpha I} = F_{lpha I} < \Phi >$

$$\left(\mathcal{M}_{
u}
ight)_{lphaeta} = -\sum_{I} \left(m_{D}
ight)_{lpha I} rac{1}{M_{I}} (m_{D})_{eta I}$$

GeV scale seesaw can generate BAU through HNL oscillations. Because of $\nu-N$ mixing, HNLs take part in all ν processes with strength reduced by $U_{\alpha I}^2$ and kinematics reflecting m_N .

The ν MSM Asaka, Blanchet, Shaposhnikov, Phys.Lett. B631 (2005) 151-156

Suitable values of m_N and U_f^2 allow to simultaneously explain:

- ν oscillations induced by massive states N_2 , N_3
- dark matter: N_1 with mass $\sim \text{keV}$
- BAU: leptogenesis due to Majorana mass term

Astrophys. J. 789(2014)13 Phys.Rev.Lett. 113(2014)251301

HNL phenomenology

HNLs can be produced in decays where a ν is replaced by a N (kinetic mixing, low \mathcal{BR}). Main neutrino sources in SHiP: c and b mesons.

They can then decay again to SM particles through mixing (U^2) with a SM neutrino. This (now massive) neutrino can decay to a large amount of final states through emission of a Z^0 or W^\pm boson.

The SHiP experiment
Detector system
Background strategies

ysics with $u_{ au}$

- → The search for Heavy Neutral Leptons
 - Evaluating SHiP sensitivity

Probing the Hidden Sector

- Vector porta
- Scalar portal
- Axion-like particles

Conclusions

Estimating SHiP's sensitivity to HNLs

→ Number of detected HNL events:

$$\Phi(p.o.t) \times \sigma(pp \to NX) \times \mathcal{P}_{vtx} \times \mathcal{BR}(N \to visible) \times \mathcal{A}$$

with

$$\sigma(pp \to NX) \propto \chi_{cc}, \chi_{bb}, U_f^2$$

 $\mathcal{BR}(N \to visible) \propto U_f^2$

- → HNL production:
 - χ_{cc} , χ_{bb} obtained from simulations (Pythia8)
 - $\mathcal{BR}(m_N, U_f^2)$ parametrised according to theory

JHEP 0710 (2007) 015

- \rightarrow Daughters acceptance (\mathcal{A}):
 - HNLs kinematics obtained from simulation
 - every decay channel with detectable daughters is simulated

HNL production in SHiP

Charm mesons are the main source of HNLs in SHiP. Contribution of b mesons for $m_N>2~{\rm GeV}.$

- → Pythia8 used to retrieve the spectrum of c and b mesons in 400 GeV/c proton-on-target collisions
- → HNL production simulated in kinematically-allowed decay chains:
 - $D \to K \ell N$
 - $D_s \rightarrow \ell N$
 - $D_s
 ightarrow au \,
 u_ au$ followed by $au
 ightarrow \mu \,
 u \, N$ or $au
 ightarrow \pi \, N$
 - $B \to \ell N$
 - $B \to D \ell N$
 - $B_s \to D_s \, \ell \, N$
- $ightharpoonup \mathcal{BR}(pp o NX)$ computed as sum of the BRs of the kinematically-allowed channels

HNL lifetime and decay channels

For a given HNL mass, its lifetime was computed on the basis of the widths of its kinematically allowed decay channels:

- $N o H^0
 u$, with $H^0 = \pi^0,
 ho^0, \eta, \eta'$
- $N o H^{\pm} \ell^{\mp}$, with $H = \pi,
 ho$
- $N o 3 \nu$
- $N \to \ell_i^{\pm} \ell_j^{\mp} \nu_j$
- $N \to \nu_i \ell_j^{\pm} \ell_j^{\mp}$
- N o q ar q
 u and $N o q ar q \ell$ with q ar q hadronising separately

All decay channels into ≥ 2 charged particles considered **detectable**.

SHiP sensitivity to HNLs

- Best sensitivity up to the charm kinematic limit
- ullet Significant contribution from B decays
- Nice synergy with FCC-ee operated as Z^0 factory \circ very clean signature $Z^0 \to \nu \bar{\nu}, \nu \to N \to \ell^+ \ell^-$
- ullet 10 ± 6 background events would not affect sensitivity!

- The SHiP experiment
- Detector system
 - Background strategies
- Physics with $u_{ au}$
 - The search for Heavy Neutral Leptons
- Evaluating SHiP sensitivity
- → Probing the Hidden Sector
 - Vector portal
 - Scalar portal
 - Axion-like particles
 - Conclusions

Hidden sector

- → new particles are light ⇒ they must be singlets with respect to the gauge group of the SM
- → they may couple to different singlet operators (portals) of the SM
 - dim 2: hypercharge field, $\epsilon F_{\mu\nu}F'^{\mu\nu}$, vector portal
 - dim 2: Higgs field, $\left(lpha_1 \chi + lpha \chi^2
 ight) H^\dagger H$, Higgs/scalar portal
 - dim 2 ½: Higgs-lepton, $YH^T\bar{N}L$, neutrino portal
 - dim 4: $AG_{\mu\nu}\epsilon^{\mu\nu\rho\eta}G^{\rho\eta}$, $\partial_{\mu}A\bar{\psi}\gamma^{\mu}\gamma^{5}\psi$, ..., axion portal
 - SUSY models

The SHiP experiment
Detector system
Background strategies

Physics with ν_{τ}

The search for Heavy Neutral Leptons

Evaluating SHIP sensitivity

- → Probing the Hidden Sector
 - Vector portal
 - Scalar portal
 - Axion-like particles

Conclusions

The vector portal

SM group $SU(3)\times SU(2)\times U(1)$ may descend from a larger group:

$$SU(3) \times SU(2) \times [U(1)]^n$$

• light ($m_V \sim \text{MeV-GeV}$) vector particles especially interesting for cosmological reasons

Dark photons and kinetic mixing

$$\mathcal{L} = \begin{array}{c|c} \hline \textbf{QED-like} \\ \mathcal{L} = \begin{array}{c|c} \mathcal{L}_{\psi,A} & + & \mathcal{L}_{\chi,A'} & -\frac{\epsilon}{2} & F_{\mu\nu}F'^{\mu\nu} & + & \frac{1}{2}m_{A'}^2(A'_{\mu})^2 \\ \hline \uparrow & & \uparrow & & \uparrow \\ \hline \textbf{QED fields} & \textbf{\textit{U}(1)' fields} & & & \text{mass term} \\ \hline \end{array}$$

field strength tensors

Eq. of motion: $\partial_{\mu}F^{\mu\nu}=eJ^{(EM)\nu}\Longrightarrow -\frac{\epsilon}{2}F_{\mu\nu}F'^{\mu\nu}=e\epsilon A'_{\mu}J^{(EM)\mu}$ \Longrightarrow coupling to EM current reduced by ϵ .

$$m_{A'}
ightarrow 0 \Longrightarrow$$
 e.m. charge of $\chi
ightarrow e \epsilon.$

Okun, Sov. Phys. JETP 56 (1982) 502 - Holdom, Phys. Lett. B 166 (1986) 196

Vector portal phenomenology

→ Decay:

$$\Gamma_{tot} = \Gamma(\ell^+\ell^-) + \Gamma(\text{hadrons}) + \Gamma(\chi\bar{\chi})$$

- → Production at SHiP:
 - meson decays e.g. $\pi^0 \to \gamma V \; (\sim \epsilon^2)$

Phys.Rev. D80(2009)095024

- p bremsstrahlung on target nuclei pp o ppV

Phys.Lett. B731(2014)320-326

- large $m_V \Rightarrow$ direct QCD production through underlying $q\bar{q} \rightarrow V$, $qq \rightarrow V$ (need some more theory work!)

Phys.Rev. D86(2012)035022

→ Light dark matter at SHiP:

if $\chi \bar{\chi}$ decays dominant $\Rightarrow \chi$ can scatter on electrons $\sim \alpha \alpha_D \epsilon^2$: dense detector to look for light DM.

SHiP sensitivity: vector portal

Sensitivity studied considering $\Gamma_{tot} = \Gamma(\ell^+\ell^-) + \Gamma(\mathsf{hadrons})$.

- The SHiP experiment
- Background strategies
- Physics with $u_{ au}$
- The search for Heavy Neutral Leptons
- Evaluating SHiP sensitivity
- → Probing the Hidden Sector
 - Vector portal
 - Scalar portal
 - Axion-like particles
 - Conclusions

The scalar portal

Most general renormalizable \mathcal{L} :

$$\Delta \mathcal{L} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S + \left(\alpha_{1} S + \alpha S^{2}\right) \left(H^{\dagger} H\right) + \lambda_{2} S^{2} + \lambda_{3} S^{3} + \lambda_{4} S^{4}$$
 | lowest-dim gauge and Lorentz singlet from SM fields | scalar self-couplings |

- $\alpha_1 \neq 0$: S mixes with Higgs after EW symmetry breaking \Rightarrow coupling between S and all SM particles
- $\alpha_1 = 0$ (forbidden by exact \mathcal{Z}_2 symmetry): S does not mix with H \Rightarrow new particles must be pair-produced

Linear scalar portal

- ightharpoonup Existing limits from searches for rare meson decays e.g. B
 ightarrow KS
- \Rightarrow Production: K decays (SHiP efficiency $\approx 0.2\%$) and B decays
- ightharpoonup Decay: $S \to \gamma \gamma, ee, \mu \mu, \pi \pi, KK$

- The SHiP experiment
 - Background strategies
- Physics with $u_{ au}$
- The search for Heavy Neutral Leptons
- Evaluating SHiP sensitivity
- → Probing the Hidden Sector
 - Vector portal
 - Scalar portal
 - Axion-like particles
 - Conclusions

Axion-like particles

- ightharpoonup The axion mass m_A is very constrained due to the axial QCD anomaly breaking the PQ symmetry. Other ALPs are not so constrained.
- → SHiP can probe ALPs coupled to gauge bosons and to SM fermions:
 - $pp \to AX, \ A \to \gamma\gamma$: all neutral, more challenging (left plot)
 - $pp o BX, \ B o AK, \ A o \mu^+\mu^-$ (right plot)

- The SHiP experiment
 - Detector system
 - Background strategies
- Physics with $u_{ au}$
 - The search for Heavy Neutral Leptons
- Evaluating SHiP sensitivity
- Probing the Hidden Sector
- Vector portal
- Scalar portal
- Axion-like particles
- → Conclusions

What's next

- crucial to understand the muon flux and spectrum (2018)
 - muon shield design depends on this
 - simulation validated against CHARM measurements, only low- p_{\perp}
 - use beam test with a NA61/SHINE-like detector and replica SHiP target
- improve current knowledge of inclusive charm production
 - normalisation for HS signal and $u_{ au}$ cross-section
 - cascade production? Charmed hadron spectrum?
 - use test beam at H4, with smaller target and nuclear emulsions
 - 10^8 p.o.t. \sim 4 weeks data taking at the SPS (LS2)

Conclusions

- → General purpose experiment to look for weakly interacting long lived particles
 - covers previously unexplored regions of the Hidden Sector in several theories
 - covers cosmologically interesting regions
- ightharpoonup Unique opportunity for $u_{ au}$ physics allowing for
 - $ar{
 u}_{ au}$ discovery
 - $\,\sigma$ and form factors measurements
 - also dark matter search
- → Complements LEP/LHC and boosts past experiments sensitivities
 - $\times 10^5$ for HS, $\times 200$ for $\nu_{ au}$
 - makes best use of existing SPS complex
- → Next steps:
 - comprehensive design report (2018)
 - μ flux (2018) and χ_{cc} (\sim 2019) measurements

Motivations for light vector particles

- \rightarrow Dark matter ($\Omega_{DM} \sim 0.25$):
 - light scalar dark matter $m_\chi \sim {
 m MeV}$ can solve the positron excess
 - WIMP interacting with SM through light mediator ($\chi \bar{\chi} \to VV \to$ SM) (hides DM from direct searches)
 - non thermal DM (sterile neutrinos)
 - DM self-interaction in structure formation ($m_V \sim {\sf MeV-GeV}$)
- \rightarrow Muon g-2:

Light vector particle coupled to muons provides upward correction through one-loop diagram (exchange of A'). *Not* minimal model.

\mathcal{Z}_2 scalar portal

- ightharpoonup Higher dimension portals: $\frac{1}{\Lambda}|H|^2\psi\psi$ (dark fermions), $\frac{1}{\Lambda^2}m_{Z_D}^2|H|^2Z_{D\mu}Z_D^{\mu}$ (dark gauge boson)
- → decays of the SM Higgs into hidden states
- → at SHiP $E_{CM} \simeq 28$ GeV $< m_H$ Production channels at SHiP:
 - heavy meson decays (dominant is $B o K^{(*)} XX$)
 - gluon fusion $pp \to h^* \to XX$
- → X decays back to SM with different coupling

Inflaton

- → In particle physics, the inflaton is a scalar field that couples to SM fields to ensure re-heating of the post-inflation Universe (production of particles that thermalize) and transfer of inflaton fluctuations into adiabatic matter perturbations.
- $ightarrow \, \mathcal{L}_{int} = lpha S^2 H^\dagger H$, with approx. $10^{-11} < lpha < 10^{-7}$
 - $\alpha < 10^{-11}$ \longrightarrow inefficient reheating
 - $-\alpha > 10^{-7}$ \longrightarrow quantum correction would imply large, scale-dependent density perturbations (\neq observations)
- Sensitivity at SHiP is dominated by the lifetime exponential.

SUSY: where do we stand?

- → SUSY is one of the most popular options to solve naturalness, grand unification and dark matter (WIMP)
- → $\mathbf{W_{RPC}} = (Y_e)_{ij} L_i H_1 \bar{E}_j + (Y_d)_{ij} Q_i H_1 \bar{D}_j + (Y_u)_{ij} Q_i H_2 \bar{U}_j + \mu H_1 H_2$ SUSY particles produced in pairs. Accelerator searches significantly constrain "natural" scenarios (e.g. MSSM, fine tuning at $\sim 1\%$).

SUSY at SHiP: RPV neutralino

- $\rightarrow \mathbf{W}_{\mathbf{RPV}} = \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_2$
 - The lightest SUSY particle is not anymore stable (no DM)
 - Can be searched for at SHiP in ${\cal D}$ meson decays:

– SHiP sensitivity studied with channels $\tilde{N}_1^0 o K^0 \overset{(-)}{
u}$ and $\tilde{N}_1^0 o K^\pm \ell^\mp$

SUSY at SHiP: sgoldstino

- \tilde{G}_{μ} (ψ) is R-odd
- P, S are R-even \Longrightarrow can be singly produced and may decay back to pairs of SM particles
- at SHiP:

$$\begin{array}{l} pp \xrightarrow{\mathrm{gluon\ fusion}} S \\ D \to SX \\ S \to \ell\ell, \pi\pi \end{array}$$

SUSY at SHiP: pseudo-Dirac gauginos

- ightarrow Dirac fermion (Ψ) split in two Majorana components (χ_1 , χ_2)
- interesting dark matter candidate: allows annihilation but appears as Majorana particle for direct and indirect detection purposes
- ightharpoonup Production at SHiP: $pp o \Psi ar{\Psi}$
- \rightarrow Decay: $\chi_2 \rightarrow \ell^+ \ell^- \chi_1$

Neutrino magnetic moment

If neutrinos are Dirac particles they can get a magnetic moment:

$$\mu_{\nu} = \frac{3eG_F m_{\nu}}{8\pi^2 \sqrt{2}} \simeq (3.2 \times 10^{-19}) \frac{m_{\nu}}{1 \text{ eV}} \mu_B$$

BSM can enhance μ_{ν} .

(E.g.: Shrock, Nucl.Phys. B206 (1982) 359)

$$e\nu \to e\nu \Longrightarrow \frac{dN}{dE_e}\Big|_{\mu_{\nu}} = \frac{\pi\alpha^2\mu_{\nu}^2}{m_e^2} \left(\frac{1}{E_e} - \frac{1}{E_{\nu}}\right)$$

Remove BG from νN scattering: $\theta^2_{\nu e} < 2m_e/E_e \Longrightarrow$ sensitivity: $N_{evt} \sim 4.3 \times 10^{15} \mu_{\nu}^2/\mu_B^2$. Prev. limits from $10^{-7}~(\nu_{\tau})$ to $10^{-11}~(\nu_e)$.

HNLs at future colliders

http://arxiv.org/abs/1411.5230 http://arxiv.org/abs/1503.08624

Sensitivity with non-zero background

Figure: Variation of the sensitivity contours for scenarios II (left) and IV (right) as a function of the background estimates. The solid blue curve represents the 90% C.L. upper limit assuming 0.1 background events in 2×10^{20} proton-target collisions. The dashed blue curve assumes 10 background events. The dotted blue curve assumes a systematic uncertainty of 60% on the level of background, i.e. 10 ± 6 background events.

Estimating SHiP's physics reach

$$\bigotimes$$

- $\Phi(p.o.t) \times \mathcal{BR}(pp \to NX) \times \mathcal{P}_{vtx} \times \mathcal{BR}(N \to visible) \times \mathcal{A}$
 - HNL's momentum and angle are stored in a binned PDF
 - HNL spectra are re-weighted by the probability $\mathcal{P}_{vtx}(p,\theta\,|\,m_N,U_f^2) \sim \int_V e^{-l/\gamma c \tau} dl$
 - Integral of the weighted PDF gives the total probability $\mathcal{P}_{vtx}(m_N,U_f^2)$ that HNLs leave a vertex in SHiP's fiducial volume

Sensitivity in the Left-Right symmetric model

- SHiP limits on m_{W_R} can be extracted from the HNL limits by $\left|U_{\mu I}\right|^2 o \left(m_{W_L}/m_{W_R}\right)^4$
- ullet LHC can perform direct searches on both W_R and N_R
- SHiP can only look for N_R , but in a domain inaccessible to LHC
- based on CMS, Eur. Phys. J. C 74 (2014) 3149, and Helo, Hirsch, Kovalenko, Phys.Rev. D89 (2014) 073005

LFV processes

- ightarrow
 u oscillations provide evidence of LFV in the neutral sector
- → LFV in charged sector foreseen with $\mathcal{BR} \sim \mathcal{O}(10^{-40})!$
- \rightarrow New physics models can enhance these \mathcal{BR} s
 - in seesaw models charged LFV can happen in tree or loop diagrams
 - $\ell \to 3\ell'$ generally favoured with respect to $\ell \to \ell' \gamma$ (type 2 and 3 seesaw)
- o $\ell o 3\ell'$ related by unitarity to $Z^0, h, V o \ell^+\ell'^-$ and $\ell o \ell'$ conversion in nuclei (most stringent limits so far by SINDRUM II)
 - $au o 3\mu$ and $\mu o 3e$ can provide better limits than direct searches e.g. for $\phi o e\mu$, $J/\Psi o e\mu$
 - $\mathcal{BR}(au o 3\mu) < 1.2 imes 10^{-8}$ (BaBar,Belle,LHCb) HFAG, arXiv:1412.7515
- ightharpoonup SHiP will collect $3\times 10^{15}~ au$ in the forward region
 - requires changes to conceptual design (upgrade):
 - 1 mm W target: $100 \times$ less τ , but decaying outside target
 - LHCb VELO + Si tracker + hadron absorber + μ spectrometer
 - sensitivity $\sim 10^{-10}/\sqrt{N_{\rm targets}}$

The Hidden Sector

$$L_{world} = L_{SM} + L_{mediation} + L_{HS}$$

- Neutrino portal: new Heavy Neutral Leptons coupling with Yukawa coupling, $L_{NP}=F_{\alpha I}(\bar{L}_{\alpha}\widetilde{\Phi})N_{I}$
- **Vector portal**: massive dark photon coupling through loops of particles charged both under U(1) and U'(1): $L_{VP} = \epsilon F'_{\mu\nu} F^{\mu\nu}$
- Scalar portal: light scalar mixing with the Higgs $L_{SP}=\left(\lambda_iS_i^2+g_iS_i\right)\overline{\Phi}\Phi$
- Axion portal: axion-like particles, $L_{AP}=rac{A}{4f_A}\epsilon^{\mu\nu\lambda\rho}F_{\mu\nu}F_{\lambda\rho}$
- SUSY: neutralino, sgoldstino, gaugino...

Models	Final states
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}, \rho^{\pm} \to \pi^{\pm}\pi^{0}$
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^+\ell^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^-\nu$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^{0}\pi^{0}$

New Phy

New Physics prospects in Hidden Sector

- D = 2: Vector portal
 - Kinetic mixing with massive dark/secluded/paraphoton V : $\frac{1}{2} \varepsilon F_{\mu\nu}^{SM} F_{HS}^{\mu\nu}$
 - → Motivated in part by idea of "mirror world" restoring left and right symmetry, constituting dark matter, g-2 anomaly, ...
 - Production: proton bremsstrahlung, direct QCD production $q\bar{q} \to V$, $qg \to Vq$, meson decays $(\pi^0, \eta, \ \omega, \ \eta', ...)$
- D = 2: Scalar portal
 - Mass mixing with dark singlet scalar $\chi:(gS+\lambda S^2)H^\dagger H$
 - → Mass to Higgs boson and right-handed neutrino, inflaton, dark phase transitions BAU, dark matter, "dark naturalness",.
 - Production: Direct $p + target \rightarrow X + S$, meson decays e.g. $B \rightarrow KS$, $K \rightarrow \pi S$
- D = 5/2: Neutrino portal
 - Mixing with right-handed neutrino N (Heavy Neutral Lepton): $Y_{l\ell}H^{\dagger}\overline{N}_{l}L_{\ell}$
 - → Neutrino oscillation, baryon asymmetry, dark matter
 - Production: Leptonic, semi-leptonic decays of heavy hadrons
- D = 4: Axion portal
 - Mixing with Axion Like Particles, pseudo-scalars pNGB, axial vectors $a: \frac{a}{\epsilon}G_{\mu\nu}\tilde{G}^{\mu\nu}, \frac{\partial_{\mu}a}{\epsilon}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi$, etc
 - → Generically light pseudo-scalars arise in spontaneous breaking of approximate symmetries at a high mass scale F
- → Extended Higgs, SUSY breaking, dark matter, possibility of inflaton,...

Production: Primakoff production, mixing with pions and heavy meson decays

- And higher dimensional operator portals
- Chern-Simons portal (vector portal)

New Physics prospects in Hidden Sector

- SUper-SYmmetric "portals"
 - Some of SUSY low-energy parameter space open to complementary searches Sgoldstino S(P) : $\frac{M_{YY}}{F_{UY}}SF^{\mu\nu}F_{\mu\nu}$
 - Neutralino in R-Parity Violating SUSY
 - Hidden Photinos, axinos and saxions....
 - Hidden Photinos, axinos and saxions...

- → A very large variety of models based on these or mixtures thereof
- Two search methods:
 - 1. "Indirect detection" through portals in (missing mass)
 - 2. "Direct detection" through both portals in and out

→ SHiP has significant sensitivity to all of these!

Assumption invisible decay width $\chi \bar{\chi}$ is absent or sub-dominant, $m_{\chi} > \frac{1}{2} m_{portal}$, where χ hidden sector particle

Sterile Neutrinos

Fermions get mass via the Yukawa couplings:

$$-\mathcal{L}_{\text{Yukawa}} = Y_{ij}^d \overline{Q_{Li}} \phi D_{Rj} + Y_{ij}^u \overline{Q_{Li}} \tilde{\phi} U_{Rj} + Y_{ij}^\ell \overline{L_{Li}} \phi E_{Rj} + \text{h.c.}.$$

If we want the same coupling for neutrinos, we need right-handed (sterile) neutrinos... the most generic Lagrangian is

$${\cal L}_N = i \overline{N}_i \partial_\mu \gamma^\mu N_i - rac{1}{2} M_{ij} \overline{N^c}_i N_j - Y^
u_{ij} \overline{L_{Li}} ilde{\phi} N_j$$

Kinetic term Majorana mass term Yukawa coupling

Seesaw mechanism:

$$\mathcal{V} = (\nu_{Li}, N_j)$$
 $-\mathcal{L}_{M_{\mathcal{V}}} = \frac{1}{2} \overline{\mathcal{V}} M_{\mathcal{V}} \mathcal{V} + h.c.$ $M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix}$ $\lambda_{\pm} = \frac{M_N \pm \sqrt{M_N^2 + 4M_D^2}}{2}$

if
$$M_N \gg M_D$$
:

$$\lambda_- \sim \frac{M_D^2}{M_N}$$

$$\lambda_+ \sim M_N$$

Sterile neutrino masses

Seesaw formula
$$m_D \sim Y_{I\alpha} < \phi >$$
 and $m_{\nu} = \frac{m_D^2}{M}$

- Assuming $m_{\nu} = 0.1 \text{eV}$
- if $Y \sim 1$ implies $M \sim 10^{14} \text{GeV}$
- if $M_N \sim 1 \text{GeV}$ implies $Y_{\nu} \sim 10^{-7}$

remember $Y_{top} \sim 1$. and $Y_e \sim 10^{-6}$

If we want to explain the smallness of neutrino masses (in a natural way) the mass of sterile neutrinos should be at least at the GeV scale

Majorana Mass (GeV)

Constraints on N₁

The decay mode N o
u
u
u is always present

$$LT = \left(\frac{U^2 G_F^2 M_N^5}{86 \pi^3}\right)^{-1} \simeq 0.3 \left(\frac{1 GeV}{M_N}\right)^4 sec$$

This gives an upper bound for the mass of the mass of the sterile neutrino Dark Matter

- $M_N \sim 1 KeV \Longrightarrow \tau_N \sim 10^{24} sec$
- Age of the Universe $\sim 10^{-6}$

Constraints on N₁

DM sterile neutrinos decay subdominantly as $N_1 \to \nu \gamma$ with a branching ration $\mathcal{B}(N_1 \to \gamma \nu) \sim \frac{1}{123}$

Discussion in the community, not yet clear if this is a "good" signal, needs confirmation

Bulbul et al. 2014 (arXiv:1402.2301)

Boyarsky et al. 2014 (arXiv:1402.4119)

Constraints on N₂, N₃

If U^2 is too large, $N_{2,3}$ are in **thermal equilibrium** during the expansion of the Universe

The **seesaw** limit defines the region where $N_{2,3}$ can explain the observed active neutrino Δm^2

At $M_N \ge M_W$ the rate is **enhanced** by $N \to Wl$ leading to stronger constraints on U^2

If $\tau(N_2, N_3) < 0.1 \, s$, they cannot affect the **Big Bang nucleosynthesis**

Backgrounds with TP detector

Background source	Decay modes
ν or μ + nucleon $\rightarrow X + K_L$	$K_L \rightarrow \pi e \nu, \pi \mu \nu, \pi^+ \pi^-, \pi^+ \pi^- \pi^0$
ν or μ + nucleon $\rightarrow X$] + K_S	$K_S \rightarrow \pi^0 \pi^0, \pi^+ \pi^-$
ν or μ + nucleon $\rightarrow X + \Lambda$	$\Lambda \rightarrow p\pi^-$
$n \text{ or } n + \text{nucleon} \rightarrow X + K_T \text{ etc.}$	as above

- Background summary: no evidence for any irreducible background
 - No events selected in MC → Expected background UL @ 90% CL

Background source	Stat. weight	Expected background (UL 90% CL)	
ν -induced		1 0 (/	
2.0	1.4	1.6	
4.0	2.5	0.9	
p > 10 GeV/c	3.0	0.8	
$\overline{\nu}$ -induced			
2.0	2.4	1.0	
4.0	2.8	0.8	
p > 10 GeV/c	6.8	0.3	
Muon inelastic	0.5	4.6	
Muon combinatorial	-	< 0.1	
Cosmics			
p < 100 GeV/c	2.0	1.2	
p > 100 GeV/c	1600	0.002	

NA work packages

- Preparation of facility in four well-defined quasi-independent work packages
 - WP1: Junction cavern + 70m beam line for clearance during operation (21 months)
 - WP2 : Rest of beam line (12 months)
 - WP3 : Target complex (12 months)
 - · WP4 : Experiment facility (18 months)
 - → Only WP1 has to be done during a stop of the North Area only
 - → WP1 associated with cool down, removal and re-installation of services and beam line (24-27 months)
 - → Construction of facility has no interference with operation of SPS and LHC at any time

SHiP target

Design considerations with 4x10¹³ p / 7s

- → 355 kW average, 2.56 MW during 1s spill
 - · High temperature
- Compressive stresses
- Atomic displacement
- Erosion/corrosion
- Material properties as a function of irradiation
- Remote handling (Initial dose rate of 50 Sv/h...)
- → Hybrid solution: Mo allow TZM (4λ) + W (6λ)

	DONUT 1)	CHARM 2)	SHiP
Target material	W-alloy	Cu (variable ρ)	TZM + pure W
Momentum (GeV/c)	800	400	400
Intensity	0.8*1013	1.3*10 ¹³	4*10 ¹³
Pulse length (s)	20	23*10-6	1
Rep. rate (s)	60	~10	7.2
Beam energy (kJ)	1020	830	2560
Avg. beam power (spill) (kW)	51	3.4*10 ⁷ (fast)	2560
Avg. beam power (SC) (kW)	17	69	355
POT	Few 10 ¹⁷	Few 10 ¹⁸	2*10 ²⁰

30x30cm²

TZM

-2

Active muon shield

CÉRN

2800 tonnes

48m

- Muon flux limit driven by emulsion based ν -detector and "hidden particle" background
- Passive and magnet sweeper/passive absorber options studied:
 - Conclusion: Shield based entirely on magnetic sweeping with $\int B_{\gamma} \, dl \sim$ 86 Tm
 - \rightarrow <7x10³ muons / spill (E_u > 3 GeV) which can potentially produce V0 (K_L)
 - → Negligible occupancy

350 GeV

+10 mrad 0 mrad -10 mrad

→ Challenges: flux leakage, constant field profile, modelling magnet shape

HS detector optimization

- Optimization of geometrical acceptance for a given $\mathsf{E}_{\mathsf{beam}}$ and Φ_{beam}
 - Hidden particle lifetime (~flat for longlived)
 - Hidden particle production angles (~distance and transversal size)
 - Hidden particle decay opening angle (~length and transversal size)
 - Muon flux (~distance and acceptable occupancy)
 - Background (~detector time and spatial resolution)
 - Evacuation in decay volume / technically feasible size ~ W:5m x H:10m

→ Acceptance saturates ~40m - 50m

Hidden scalar

HS tracking system

A62-like straw detector

Parameter	Value
Straw	
Length of a straw	5 m
Outer straw diameter	9.83 mm
Straw wall (PET, Cu, Au)	
PET foil thickness	$36 \mu m$
Cu coating thickness	50 nm
Au coating thickness	20 nm
Wire (Au-plated Tungsten)	
diameter	$30 \mu m$
Straw arrangement	
Number of straws in one layer	568
Number of layers per plane	2
Straw pitch in one layer	17.6 mm
Y extent of one plane	$\sim 10 \text{ m}$
Y offset between straws of layer 1&2	8.8 mm
Z shift from layer 1 to 2	11 mm
Number of planes per view	2
Y offset between plane 1&2	4.4 mm
Z shift from plane 1 to 2	26 mm
Z shift from view to view	100 mm
Straw station	
Number of views per station	4 (Y-U-V-Y)
Stereo angle of layers in a view Y,U,V	0, 5, -5 degrees
Z envelope of one station	$\sim 34~\mathrm{cm}$
Number of straws in one station	9088
Straw tracker	
Number of stations	4
Z shift from station 1 to 2 (3 to 4)	2 m
Z shift from station 2 to 3	5 m
Number of straws in total	36352

Straws in test beam 2016

- · Study sagging effects and compensation
- Read out of signal, attenuation / two-sided readout
- Upstream straw veto may be based on same technology

Horizontal orientation of 5m straws

First production of 5m straws at JINR

JINR Dubna (NA62, SHiP): Straws St Petersburg (CMS, SHiP): Infra

PID performance

Electron efficiency >98%
Pion contamination:<2%
Neutral pion mass resolution: 5 MeV

Muon misid with ECAL+HCAL Rejection factor for ε_u =95% Energy, GeV E+H1+H2 1.0 23 1.5 32 2.0 50 2.7 120 3.0 160 5.0 210 2/07/1000 250

→ ECAL (July), HCAL (September), MUON (October) in test beam 2015 on PS and SPS