

Measuring the invisible new approaches to dark matter searches at colliders

Darren Price, University of Manchester Particle Physics Seminar, University of Birmingham, November 22nd '17

arXiv:1707.03263, Eur.Phys.J. C77 (2017) 11, 765

The dark matter puzzle

Gravitational lensing

Galactic rotation curves

The Bullet Cluster

Ordinary matter 4.9%

Dark energy 68.3%

Dark matter 26.8%

Interacts gravitationally

....

Interacts gravitationally

...

...

Interacts gravitationally

-
- •••
- •••

Interacts gravitationally

....

...

...

...

Interacts gravitationally

• ...Would be nice if it interacted via other forces...?

Explaining dark matter

The University of Manchester

MANCHESTER 1824

Detecting dark matter: colliders

The University of Manchester

ESTER

MANCH

Assuming dark matter can be produced in pp collisions at √s=13 TeV, and can be distinguished from other collision processes!

THE LARGE HADRON COLLIDER, GENEVA

The ATLAS detector

A high-resolution camera taking photos 40 million times a second in a high radiation environment, creating conditions last seen at the Big Bang, in an accelerator colder than outer space

Dedicated searches targeting e.g. SUSY-inspired models:

- Rich and specific phenomenology + DM candidate at the weak scale
- Distinctive collider signatures!
- Used as a standard benchmark for weak scale new physics

Difficulty in reinterpreting results

MANCI

Dedicated searches targeting e.g. SUSY-inspired models:

- Rich and specific phenomenology + DM candidate at the weak scale
- Distinctive collider signatures!
- Used as a standard benchmark for weak scale new physics

100

250

300

350

400

200

150

500

450

μ[GeV]

MANCHESTER

Mediator Mass [TeV]

Simplified models

Why not keep on doing this?

- Both approaches rely on careful detector simulation and application of data selection criteria to SM backgrounds and theory under test.
- Difficulty of application/generalisation of results to other theories.

Key considerations

- IN New dark matter theory in future?
- Is a second second
- Improvements in SM modelling?
- A global view on searches?

Reinterpretation. Over-optimisation. Recalculation of limits. Maximising sensitivity.

LHC luminosity evolution places increasing importance of making most of data we have!

Key considerations

- IN New dark matter theory in future?
- Looking for the wrong things?
- Improvements in SM modelling?
- A global view on searches?

Reinterpretation. Over-optimisation. Recalculation of limits. Maximising sensitivity.

Addressing model dependence:

Make a new search for DM with as few assumptions as possible even if this reduces our sensitivity to a previously-explored model.

Addressing model dependence:

Make a new search for DM with as few assumptions as possible even if this reduces our sensitivity to a previously-explored model.

Addressing reinterpretability:

Correct the published data for detector effects: resolution/efficiency

Addressing model dependence:

Make a new search for DM with as few assumptions as possible even if this reduces our sensitivity to a previously-explored model.

Addressing reinterpretability:

Correct the published data for detector effects: resolution/efficiency

Present data not as: *"here is what ATLAS sees in the search for DM model X"* but as *"here is how DM satisfying certain criteria looks in pp collisions at*

"here is how DM satisfying certain criteria looks in pp collisions at 13 TeV"

A critical distinction!

ESTER

MANCH

What to measure?

General dark matter signatures

MANCH

ESTER

MANCHESTER Monojet event in ATLAS

Take our lead from "Standard Model" measurements:

Take our lead from "Standard Model" measurements:

Aim to make cross-section measurements of new particles that:

- we have no evidence are being produced in our detectors
- would be completely invisible even if they were
- we have little to no idea what they are

The challenge!

might not exist anyway

Construct measurable quantity sensitive to dark matter that:

- Can be corrected for detector effects
- Has minimal model dependence

Construct measurable quantity sensitive to dark matter that:

- Can be corrected for detector effects
- Has minimal model dependence

Benefit: if anomaly discovered, already measuring properties!

Construct measurable quantity sensitive to dark matter that:

- Can be corrected for detector effects
- Has minimal model dependence

Benefit: if anomaly discovered, already measuring properties!

New observable:

Measure differential detector-corrected production cross-section ratio sensitive to new phenomena producing anomalous MET+jets rate:

$$R_{\rm miss} = \frac{\sigma(\not p_T + \rm jets)}{\sigma(Z \to \ell^+ \ell^- + \rm jets)}$$

ESTER

MANCH

Detector-corrected observable R_{miss}:

In Standard Model, only contributions to denominator come from $Z \rightarrow vv$ decays

FR.

MAN

Measure detector-corrected observable as function of kinematics of event for two generic search topologies as proof-of-principle: monojet, and dijet "VBF"

No assumption baked into measurement procedure, just a likely scenario for model sensitivity

 $\overline{\chi}$

MANCH

Analyse 3.2 fb⁻¹ of 13 TeV ATLAS data:

- **3 TeV ATLAS data:** $R_{\text{miss}} = \frac{\sigma(\not p_T + \text{jets})}{\sigma(Z \to \ell^+ \ell^- + \text{jets})}$ **21 jet fiducial region** One+ jet with p_T>120 GeV, |y|<2.4. Veto on charged leptons.
- VBF fiducial region
 At least two tagging jets, p_T^{j1}>80 GeV, p_T^{j2}>50 GeV,
 |y|<4.4, m_{jj}>200 GeV.
 Veto on jets (p_T>25 GeV) in dijet rapidity interval, and charged leptons.

Common selections:

- MET>200 GeV (trigger at 70 GeV), $\Delta \phi$ (MET,j_{1...4})>0.4 for jets with p_T>30 GeV
- Denominator:

Two same-flavour opposite-sign leptons |y|<2.5, p_{T1}>80 GeV, p_{T2}>7 GeV, Lepton pair treated as invisible, require 'MET'>200 GeV, m_{ll}∈[66,116] GeV

$$R_{\rm miss} = \frac{\sigma(\not p_T + \rm jets)}{\sigma(Z \to \ell^+ \ell^- + \rm jets)} = \frac{1}{C_Z} \frac{N(\not p_T + \rm jets)}{N(Z \to \ell^+ \ell^- + \rm jets)}$$

Dominant backgrounds from when a charged lepton is missed Primarily $W \rightarrow Iv$ contributions.

Define W-enhanced control samples in data with identified electrons / muons with identical MET and jet requirements to those in signal region

In control region:

Muons:treat as invisible and re-run p_T^{miss} calculationElectrons:energy included in p_T^{miss} calibrated as a jet

Constrain modelling of MC predictions in signal region:

MANCH

Dominant background from $W \rightarrow Iv$ (charged lepton missed)

Alternative (new) approach:

- 1. Define W-enriched control samples in data as before
- 2. Correct events on event-by-event basis for data-driven reconstruction efficiencies and geometrical acceptance
 - Can predict contribution from $W \rightarrow ev$ in $W \rightarrow \mu v$ signal region and vice versa
 - PDF uncertainties important for acceptance ratios
 - Exp uncertainties largely cancel (lepton efficiency uncertainty ~1% on final SR)

ESTER

MANCH

W background control region:

- Data driven measurement results in slightly different shapes than theory
- Good agreement with data-driven method and MC-reweighting approach

MANCHESTER MET+jet signal region data

1824

$$R_{\rm miss} = \frac{\sigma(\not p_T + {\rm jets})}{\sigma(Z \to \ell^+ \ell^- + {\rm jets})} = \frac{1}{C_{\star}} \underbrace{\frac{N(\not p_T + {\rm jets})}{N(Z \to \ell^+ \ell^- + {\rm jets})}}$$

MANCHESTER I+I-+jet signal region data

1824

MANCHESTER

$$R_{\rm miss} = \frac{\sigma(\not p_T + {\rm jets})}{\sigma(Z \to \ell^+ \ell^- + {\rm jets})} = \underbrace{\frac{1}{C_Z} N(\not p_T + {\rm jets})}_{N(Z \to \ell^+ \ell^- + {\rm jets})}$$

STER

MANCE

Correction factor from simulated events

Object reconstruction in fiducial region very similar in l⁺l⁻+jets and MET+jets events

Main differences due to lepton reconstruction efficiency, resolution, trigger effects

STER

MAN

Various tests of model independence of procedure performed.

One example: Injection of BSM dark matter model enhancing MET distribution:

- Causes large changes in numerator and shape of R_{miss}
- Negligible effect on correction factor!
- Such large enhancements are anyway ruled out by the measured data

$$R_{\rm miss} = \frac{\sigma(\not p_T + {\rm jets})}{\sigma(Z \to \ell^+ \ell^- + {\rm jets})} = \frac{1}{C_Z} \frac{N(\not p_T + {\rm jets})}{N(Z \to \ell^+ \ell^- + {\rm jets})}$$

MANCHESTER

1824

$$R_{\rm miss} = \frac{\sigma(\not p_T + {\rm jets})}{\sigma(Z \to \ell^+ \ell^- + {\rm jets})} = \frac{1}{C_Z} \frac{N(\not p_T + {\rm jets})}{N(Z \to \ell^+ \ell^- + {\rm jets})}$$

Electron and muon R_{miss} data found in good agreement, perform statistical combination

Summary of experimental uncertainties

The University of Manchester

MANCHESTER

Determine statistical and systematic covariance between bins and between distributions by bootstrapping data

MANCHESTER Detector-corrected results

Alongside paper (<u>arXiv:1707.03263</u>) released supporting material:

Rivet analysis code: https://www.hepforge.org/archive/rivet/contrib/NEW/ATLAS_2017_11609448.tar.gz

HEPDATA record: https://hepdata.net/record/ins1609448

Containing:

- Measured R_{miss},
- SM R_{miss},
- SM numerator and denominator,
- Covariance matrices

HEPData Q Search HEP Data Search								● About ② Submission Help ★ Sign in
Q. Browse all Aboud, Morad et al.							Last updated on 2017-07-1	14 09:42 LAL Accessed 203 times 55 Cite
Citie Halactive information Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in pp collisions at $\sqrt{s}=13$ TeV using the ATLAS detector	الله Download All -	Table 1	Table 1 Matsutations manutation Weak-wide supported R ^{evin} as a function of pl ^{ate} in the 2-1 jut phase space. The fiducial SM predictions denomination are also given. commentging observables pravate phases				for the numerator and the	http://www.hepdata.ner 🖄 🛓 - 359
	V Filter 7 data tables	denominat cmenerg						reactions
The ATUUS collaboration Adoscu, Moras J, And, Geerges , Abdom, Grad , Abdallah, Jaldi A, Abdron, Orsak , Abdom, Boytona , Abdil, Sydei Haider , AbovaZiki, Ossama , Atanham, Nicola , Abammanka, Jahima No Journal Information, 2017 http://dx.doi.org.10.1173/httpstbat.17056	Table 1 > Outs Ten 14 March 14 March 14 March 14 March 14 March 14 Names 14 March 14 Table 2 D Data Ten 14 March 14 Table 2 D Data Ten 14 March 14 March 14 March 14	•	♦ 1000.8			Dark herzer Producti Cress Section Rutor Producti Cress Section Rutor Press Press Press Press		
INGPRERecord Hepdata Resources		PHASE SPACE	PHASE ≥ LJET SPACE				Visualize	
Alternis failer statesteller Gelf, C. Changel and Statesteller i the strend statesteller and strend strend strend strend failer og Statesteller and Statesteller and Statesteller The Logen that the Composition of the Statesteller Statesteller and Statesteller	Table 3 > Control Cont	SQRT(S) PT ^{ato} [GEV]	13000 GEV measured genins	expected R ^{min}	deidp ^{reiss} (SN prediction for numerator) (FB GEV**-1]	devide ^{min} (SM prediction for denominator) [FB GEV*-1]	8,000- 7,000- 6,000- 5,000-	
		200-250	7.71 222 ent	7.44 x0.84 star x0.84 spt.basey 7.03 x0.85 star	7796.37 #21.22 ### #1818.46 sputterry 3137.99 #21.8 ###	1048.22 x3.82 wes x333.76 spc/meany 446.5 x3.86 x4ei	1,000- 1,000- 2,000-	
		300 - 350	24, 14 7.21, 22, est 22, 14	00.04 spulleony 6.73 00.03 stat 20.04 spulleony	AMELIN sychnory 1370.83 alive wat alet.rs sychnory	472.08 spijheary 203.74 a8.54 stat a37.8 spijheary	200 30 40 50 60	700 mlo udozulnaulnaulnaulnaulno ranatiman MAN
		350 - 500	6.74 28 mm	6.48 pt.49 mm	1158.77 x2.60 stat x283.8 spitheavy	178.85 an.s stat 235.66 spictowy	Sum errors 😨 Lo	g Scale (X) 🗌 Log Scale (Y) 🗌
		500 - 700	6.12 12 19 mm	6.18 20.44 mm 20.3 mutheory 5.94 20.47 mm	211.05 sk36 inst sk1.4 rputheory 37.79 sk35 inst	34.16 sk13 met s646 syntheory 6.36 sk1 met s1.17 syntheory	Deselect variables or hide different error bars by cl Variables	er hide different error bærs by clicking on them.

Everything necessary to perform reinterpretation of this data in terms of any BSM prediction resulting in jets plus missing transverse energy!

MANCH

Use detector-corrected data to probe three benchmark dark matter models using publicly-released resources:

- Dark matter coupling to quarks
- Dark matter coupling to EW bosons
- Dark matter coupling to Higgs bosons

Approach:

Construct χ^2 compatibility between model under test and data across all bins of all corrected distributions simultaneously:

$$\chi^2 = \sum_{i,j}^n (x_i - t_i) (C^{-1})_{ij} (x_j - t_j)$$

The CLs technique evaluated using the asymptotic approximation is used to derive 95% CL limits.

Dark matter coupling to quarks

The University of Manchester

MAN

New approach competitive with **dedicated** collider searches!

Measuring the

invisible

)arren

Price

Nov 22nd 2017

Dark matter coupling to EW bosons

The University of Manchester

MAN

Exclusion contours (at 95 % CL) for Dirac-fermion dark matter produced via a contact interaction with two electroweak bosons as described in an effective field theory with a dimension-seven operator.

Most stringent constraints to-date on such interactions!

q

 \bar{q}

MAN

Exclusion limits (at 95 % CL) for dark matter produced via decay of a Higgs boson (produced through gg fusion, associated production, or vector boson fusion).

 χ^0

 $\bar{\chi^0}$

 $Br^{\exp}(H \to inv) < 59\%; \qquad \pm 1\sigma : [47\%, 113\%]$ $Br^{obs}(H \to inv) < 46\%$

Upper limits on decays of the Higgs boson to invisible particles

 W^{\pm}/Z

 W^{\pm}/Z

 \bar{q}

H

MANCH

FSTER

Existing data release can be used by anyone to place limits on models with jets and missing transverse momentum: use by wider community?

Plans

- Improvements to SM signal definitions
- Improvements to SM control region constraints
- ×30 times more data for Run-2
- Additional event topologies
- More final states (generalisation of technique to other new phenomena)

Presented a proof-of-concept search for general new phenomena in MET+jets final states using detector-corrected observables

Measurement approach:

- allows for easy reinterpretation with new SM / BSM model
- is **robust** against presence of unknown BSM signals
- allows determination of *properties* of new phenomena
- provides enhanced sensitivity to new phenomena <u>simultaneously</u> rivalling all dedicated benchmark search analyses tested

Paper: Eur. Phys. J. C77 (2017) 11, 765; arXiv:1707.03263Analysis code:https://www.hepforge.org/archive/rivet/contrib/NEW/ATLAS_2017_11609448.tar.gzData:https://hepdata.net/record/ins1609448

Backup

Workflow for reinterpretation

The University of Manchester

MANCHESTER

Provided information for detector-corrected data:

- Fully-corrected data measurements (+uncertainties) [<u>http://hepdata.net</u>]
- Bin-to-bin correlations + any useful auxiliary information (Improved constraints)
- Rivet analysis routine [<u>http://rivet.hepforge.org</u>] (Handle object definitions to avoid ambiguity in isolation, jet algorithms, MET definition etc., observable definitions, and binning)

MANCH

Fundamental challenge to re-interpretation:

Theory predictions developed at parton-level, measurements originate at reconstruction-level

"Meet in the middle": Report measurements at particle-level in well-defined fiducial region.

MANCHESTER 1824 Fiducial measurements

The University of Manchester

Standard Model cross-sections generally measured in well-defined fiducial region, region of phase space well-understood, high efficiency, minimal extrapolation.

Correct measured data for:

- background contamination,
- migrations in, out, and within fiducial region due to efficiency and resolution effects.

$$\sigma_i^{\text{particle-level}} = \sum_j \frac{(N_{\text{data}} - N_{bkg})_j \cdot \epsilon_j^{\text{reco-level}} M_{ij}}{\mathcal{L} \, \epsilon_i^{\text{particle-level}}}$$

Resulting measurement independent of prior assumptions; unfolding uncertainties assessed

SM measurements and reinterpretation

61

Measuring

the

ົວ

arren Price

Nov 22nd 2017

The University of Manchester

MANCHESTER

Leading-jet p_ [GeV]

Numerator and denominator	$\geq 1 \text{jet}$	VBF			
$p_{\mathrm{T}}^{\mathrm{miss}}$	$> 200 \mathrm{GeV}$				
(Additional) lepton veto	No e, μ with $p_{\rm T} > 7 {\rm GeV}, \ \eta < 2.5$				
$\operatorname{Jet} y $	< 4.4				
Jet $p_{\rm T}$	$> 25 \mathrm{GeV}$				
$\Delta \phi_{ m jet_i,p_T^{miss}}$	> 0.4 , for the four leading jets with $p_{\rm T} > 30 {\rm GeV}$				
Leading jet $p_{\rm T}$	> 120 GeV	$> 80 \mathrm{GeV}$			
Subleading jet $p_{\rm T}$	_	$> 50 \mathrm{GeV}$			
Leading jet $ \eta $	< 2.4	_			
$m_{ m jj}$	_	$> 200 { m GeV}$			
Central-jet veto	_	No jets with $p_{\rm T} > 25 { m GeV}$			
Denominator only	$\geq 1 \text{jet and VBF}$				
Leading lepton $p_{\rm T}$	$> 80 \mathrm{GeV}$				
Subleading lepton $p_{\rm T}$	$> 7{ m GeV}$				
Lepton $ \eta $	< 2.5				
$m_{\ell\ell}$	$66{-}116\mathrm{GeV}$				
ΔR (jet, lepton)	> 0.5, otherwise jet is removed				

Systematic uncertainty source	Low $p_{\rm T}^{\rm miss}$ [%]	High $p_{\rm T}^{\rm miss}$ [%]	Low m_{jj} [%]	High $m_{\rm jj}$ [%]
Lepton efficiency	+3.5, -3.5	+7.6, -7.1	+3.7, -3.6	+4.6, -4.4
Jets	+0.8, -0.7	+2.2, -2.8	+1.1, -1.0	+9.0, -0.5
$W \to \tau \nu$ from control region	+1.2, -1.2	+4.6, -4.6	+1.3, -1.3	+3.9, -3.9
Multijet	+1.8, -1.8	+0.9, -0.9	+1.4, -1.4	+2.5, -2.5
Correction factor statistical	+0.2, -0.2	+2.0, -1.9	+0.4, -0.4	+3.8, -3.6
W statistical	+0.5, -0.5	+24, -24	+1.1, -1.1	+6.8, -6.8
W theory	+2.4, -2.3	+6.0, -2.3	+3.1, -3.0	+4.9, -5.1
Top cross-section	+1.5, -1.8	+1.3, -0.1	+1.1, -1.2	+0.5, -0.4
$Z \to \ell \ell$ backgrounds	+0.9, -0.8	+1.1, -1.1	+1.0, -1.0	+0.1, -0.1
Total systematic uncertainty	+5.2, -5.2	+27, -26	+5.6, -5.5	+14, -11
Statistical uncertainty	+1.7, -1.7	+83, -44	+3.5, -3.4	+35, -25
Total uncertainty	+5.5, -5.4	+87, -51	+6.6, -6.5	+38, -27

MANCHESTER Summary of experimental uncertainties

1824

MANCHESTER Statistical covariance matrix

The University of Manchester

ATLAS $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$

MANCHESTER

MET+dijet azimuthal angle correlations

The University of Manchester

ESTER

MANCH

Phys.Rev. D89 (2014) 034009