

Trinity Hall cambridge

Exploring the Unknown with Higgs boson pairs

Bill Balunas

University of Cambridge

8 February 2022

Theoretical Background: Why study Higgs pair production?

Experimental Overview: How to approach the problem

Latest results from ATLAS

- Highlight: HH→bbbb decay channel

Outlook: HL-LHC and beyond

Our current knowledge

Plenty of reasons to think the SM is incomplete

- Dark matter, antimatter asymmetry, gravity, theoretical "problems" (naturalness), etc...

Let's start with a zoomed-out look at what we know:

Our current knowledge

Gauge bosons and their interactions with fermions. Very precisely measured.

Higgs interactions with fermions. Fairly well-measured for heavy fermions only.

Higgs electroweak interactions (and propagator). **Precisely measured (mostly).**

Higgs potential. Mostly unexplored!

New fields?

Our current knowledge

Gauge bosons and their interactions with fermions. Very precisely measured.

Higgs interactions with fermions. Fairly well-measured for heavy fermions only.

Higgs electroweak interactions (and propagator). **Precisely measured (mostly).**

Higgs potential. Mostly unexplored!

New fields?

Higgs pair production is a direct probe of both of these!

The Higgs Potential

The Higgs Potential

SM predicts the shape of the potential...

$V(\phi) = \mu^2 \phi^2 + \mu^2 \phi^2$ (simplified)

Curvature of the minimum corresponds to the Higgs

And that's all we've measured of it! Constraints on the global structure

The Higgs Potential

Vacuum stability depends on the Higgs potential!

It's currently not known whether the SM vacuum is stable or metastable. We're close to the edge

The Electroweak Phase Transition

The Higgs potential also determines the nature of the EW phase transition in the early universe

- At high temperature, $\langle \phi \rangle = 0$ and baryon number can be violated
- Implications for baryogenesis, which is still poorly understood

Higgs interactions with new fields?

For a BSM theory with a new field X, it's difficult to avoid interactions with H

- Usually only a manually-inserted symmetry will prevent this.
- Example for boson X: $\mathcal{L}_{int} = g\Phi^{\dagger}\Phi X^{\dagger}X$ (plenty of other structures possible, depending on model)

Experimental Overview

ATLAS and CMS are the only experiments currently able to probe Higgs pair production

Experimental Overview

Proton-proton collisions at 13 TeV* can produce HH pairs, which promptly decay.

- Decay products are then measured by the detectors

Wide range of detector technologies allows particle ID and momentum measurements for:

- Electrons
- Muons
- Hadronic taus
- Photons
- Jets (with flavor tagging)

*Now 13.6 TeV in the new run, but no HH results from this yet

HH production modes at LHC

Non-resonant interference

Resonant searches are effectively "bump hunts" in the m_{HH} spectrum.

Non-resonant is more subtle: destructive interference between production diagrams results in complex effects in *m*_{HH}.

Non-resonant

shape varying substantially with $\boldsymbol{\lambda}$

HH decay channels

We're looking for the decay products of 2 Higgs bosons.

This presents a choice: Which decays to look at?

SM Higgs boson branching ratios

HH decay channels

Which decay modes to search in?

- HH is known to be very rare, so high branching ratios are good.
- But, these channels also have the most background.
 Complicated trade-off.
- It turns out that some of the best are bbγγ, bbττ, and bbbb.

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Resonant: <u>Phys. Rev. D 105 (2022) 092002</u> Non-resonant: <u>arxiv:2301.03212</u>

Run: 362619 Event: 524614423 2018-10-03 08:06:34 CEST

HH→bbbb: Overview

bbbb has the highest branching fraction (~34% in SM), but the largest background

- QCD cross sections are big, even for 4 jets after b-tagging requirements!
- Top pairs also contribute background (5-10%).

Depending on the Higgs boson momenta, the detector signature can be 4 "resolved" jets or 2 merged ("boosted") ones.

- Include the **boosted** channel for resonance searches, for mass coverage up to **5 TeV**.

Resolved

Boosted

ATLAS HH→bbbb: Resolved Channel

- **1.** Select events with 4 b-tagged jets* ($p_T > 40$ GeV, so we can trigger on them)
- **2.** Pair these jets into 2 Higgs boson candidates
- **3.** Construct a signal region based on the *H* candidate masses
- Also construct adjacent "control" and "validation" regions for estimating background
- **4.** Construct a background model and fit m_{HH} spectrum
- Use events with only 2 jets b-tagged to construct estimate

*Anti- k_t clustering, R=0.4, Particle Flow inputs. 77% eff. b-tagging WP

ATLAS HH→bbbb: Jet Pairing

Ambiguity in resolving which jet came from which Higgs

- Choose pairing which gets masses as close to 125 GeV as possible? Major background bias!
- Resonant search: Use a boosted decision tree with angular variables as input features
- Nonresonant search: Simply minimize ΔR_{ii} for H_1 .

ATLAS HH→bbbb: Event Selection

Resonant Analysis

Non-resonant Analysis

ATLAS HH→bbbb: Background Model

ATLAS HH→bbbb: Background Model

2b distributions don't look exactly like 4b distributions.

- Derive a kinematic reweighting in CR to apply to 2b "SR"

This is a density ratio estimation problem: find w(x), where

$$w(\vec{x}) = \frac{p_{4b}(\vec{x})}{p_{2b}(\vec{x})}$$

Neural network can "learn" the solution by minimizing:

$$\mathcal{L}(w(\vec{x})) = \int d\vec{x} \left[\sqrt{w(\vec{x})} p_{2b}(\vec{x}) + \frac{1}{\sqrt{w(\vec{x})}} p_{4b}(\vec{x}) \right] \qquad \qquad \mathbf{x} \text{ are a a set of } kinematic variables}$$

The full list of reweighting variables...

ggF	VBF		
1. $\log(p_{\rm T})$ of the 2 nd leading Higgs boson candidate jet	1. Maximum di-jet mass out of the pos- sible pairings of the four Higgs boson		
2. $\log(p_{\rm T})$ of the 4 th leading Higgs boson	candidate jets		
candidate jet	2. Minimum di-jet mass out of the pos-		
3. $log(\Delta R)$ between the closest two Higgs boson candidate jets	sible pairings of the four Higgs boson candidate jets		
4. $\log(\Delta R)$ between the other two Higgs	3. Energy of the leading Higgs boson can-		
boson candidate jets	didate		
5. Average absolute η value of the Higgs	4. Energy of the subleading Higgs boson		
boson candidate jets	candidate		
6. $\log(p_{\rm T})$ of the di-Higgs system	5. Second smallest ΔR between the jets		
7. ΔR between the two Higgs boson candi-	in the leading Higgs boson candidate		
dates	(out of the three possible pairings for the		
8. $\Delta \phi$ between jets in the leading Higgs	leading Higgs candidate)		
boson candidate	6. Average absolute η value of the four		
9. $\Delta \phi$ between jets in the subleading Higgs	Higgs boson candidate jets		
boson candidate	7. $\log(X_{Wt})$		
10. $\log(X_{Wt})$	8. Trigger class index as one-hot encoder		
11. Number of jets in the event	9. Year index as one-hot encoder (for years		
12. Trigger class index as one-hot encoder	inclusive training)		

Before Reweighting

After Reweighting

In practice, we construct an ensemble of reweighting functions

- Build training sets by sampling with replacement ("bootstrap" method)
- Average distribution is nominal estimate, spread gives stat. uncertainty

HH→bbbb: Systematic Uncertainties

Several more uncertainties on background model considered (besides detector & theory):

- Non-closure of the reweighting in the CR used to derive it
- Extrapolation from CR to SR (estimated using alternate reweightings derived in other regions)
- Residual non-closure when tested using 3b event selection

HH→bbbb: Boosted Channel

Select events with 2 large-*R* jets^{*} (one with $p_T > 450$ GeV, so we can trigger on it)

b-tag them using variable-radius subjets constructed from their associated tracks

 At very high resonance masses, even these get merged. Therefore, also keep events with only 2 or 3 b-tagged subjets in their own separate categories.

*Anti-k_t clustering, R=1.0, locally-calibrated calorimeter cluster inputs, trimmed (R=0.2, 5% threshold)

HH→bbbb: Boosted Channel

Top pair background more significant in the boosted channel.

- Model explicitly with MC, and subtract this off for the multijet estimate

Kinematic reweighting only needed in 2b selection (statistics)

Fit analytic function to m_{HH} tails to smooth bkgd estimate

HH→bbbb: Resonant Results

HH→bbbb: Resonant Results

Set cross section limits on benchmark models: generic narrow scalar produced in ggF, and RS graviton

Dominant uncertainties are statistical in origin, even at low mass.

HH→bbbb: Non-Resonant Results

HH→bbbb: Non-Resonant Results

Effective Field Theory interpretation.

 Set limits on HHH vertex, holding other interactions fixed to SM ("kappa framework")

Also set signal strength limit:

- 5.4 (8.1 expected) times SM cross section excluded

Not shown here: can also do multi-parameter EFT fits allowing other couplings to float too

HH→bbbb: Non-Resonant Results

Also set limit on HHVV vertex

 In SM, this is tied to HVV vertex. This provides a check on that assumption.

HH→bbbb: Non-Resonant Results

Can consider scenarios where both couplings are modified

$HH \rightarrow bb\tau\tau$

arXiv:2209.10910 (accepted in JHEP)

Run: 351223 Event: 1338580001 2018-05-26 17:36:20 CEST

HH→bbττ: Overview

Lower branching fraction (~7.3% in SM) than bbbb, but more manageable backgrounds

- We consider the semi-leptonic $(\tau_{lep}\tau_{had})$ and fully-hadronic $(\tau_{had}\tau_{had})$ cases in this search.

Method: Select signal-like events using object-based cuts, then use an MVA to construct a discriminant, which we then fit.

- Various BDT and NN architectures used for resonant/non-resonant interpretations

Mix of Monte Carlo and data-driven background modelling

- "Fake" hadronic taus are tricky, use fake-enriched control region to estimate from data

HH→bbττ: Results

Data consistent with background. Set cross section limits on narrow scalar resonance

Comparable sensitivity between $\tau_{\text{lep}}\tau_{\text{had}} \text{ and } \tau_{\text{had}}\tau_{\text{had}}$

Statistical uncertainties dominate the sensitivity (but systematics not quite negligible)

Excess at ~1 TeV has a global significance of **2.0** σ

Non-resonant: Cross sections above 4.7 (3.9 expected) times the SM excluded

11 .

Run: 329964 Event: 796155578 2017-07-17 23:58:15 CEST

Phys. Rev. D 106 (2022) 052001

HH→bbγγ: Overview

The bbyy final state is very clean, but has low branching fraction (~0.26% in SM)

- Very statistically limited, and will remain so for a long time to come
- Photon triggers allow good reach to low masses

Method: Use two BDTs to cut away background, then fit the $m_{\gamma\gamma}$ distribution

- One to discriminate vs. $H \rightarrow \gamma \gamma$ and one to discriminate vs. everything else (smooth $m_{\gamma\gamma}$)
- $H \rightarrow \gamma \gamma$ background taken from MC simulation
- "Continuum" $\gamma\gamma$ background modeled as an exponential function in $m_{\gamma\gamma}$

$HH \rightarrow bb\gamma\gamma$: Results

Data are consistent with the background model.

$HH \rightarrow bb\gamma\gamma$: Results

Resonant HH: combining channels

Global significance of largest excess is 2.10

in a different mass range: **good complementarity**

Non-resonant: combining channels

We can combine with single-Higgs channels for maximum sensitivity to the self-coupling

Non-resonant: combining channels

Single Higgs channels provide complementary contraints on ttH coupling

arXiv:2211.01216

Looking ahead: the future

We're transitioning from "search" to "precision measurement" paradigm

Baseline ATLAS HL-LHC projection expects evidence for SM HH production at 3.4σ

- Roughly 5_o in the limit of small systematic uncertainties
- This assumes current analysis methodology: good chance we'll exceed this!

Future colliders can do even better

O(10%) precision expected on self-coupling at ILC,
FCC-ee. Mainly from single Higgs!

Summary

Higgs pair production gives us a unique probe for physics beyond the SM.

- Resonant production lets us directly search for new particles decaying to HH
- Non-resonant production lets us search for indirect effects and explore the Higgs potential

ATLAS has a broad set of results constraining these processes

- CMS has an analogous set of results: methodology varies, but conclusions very similar
- Everything in agreement with SM so far, but sensitivity improving rapidly
 - Will need to get more clever with our methods to keep reducing backgrounds/systematics

This will continue to be a rich area of study for years to come!

- "Observation" of Higgs pair production at LHC not out of the question