### +

## SUSY Searches at ATLAS





US50 University of Sussex Celebrating 50 years of excellence

### Antonella De Santo University of Sussex

Birmingham, 31 October 2012





### Introduction

>> Supersymmetry and all that

### The LHC and ATLAS

>> Status

**SUSY searches at ATLAS** 

>> The author's preferred selection

Conclusions

# + The (Very Resilient) Standard Model



### **Matter (Fermions)**

3 quark generations3 lepton generations

### Forces (Bosons)

 $\begin{array}{l} EWK-\gamma, Z, W^{\pm}\\ Strong-gluons \end{array}$ 

### Mass

Higgs boson



2

### +The (Very Resilient) Standard Model



### **Matter (Fermions)**

3 quark generations 3 lepton generations

### **Forces (Bosons)**

EWK –  $\gamma$ , Z, W<sup>±</sup> Strong – gluons

### Mass

Higgs boson



# + The (Very Resilient) Standard Model



### **Matter (Fermions)**

3 quark generations3 lepton generations

### Forces (Bosons)

 $\begin{array}{l} EWK-\gamma, Z, W^{\pm}\\ Strong-gluons \end{array}$ 

### Mass

Higgs boson





## + Some Outstanding Issues



## + Supersymmetry (SUSY)

### New symmetry between bosons and fermions

Every SM particle has a supersymmetric partner with  $\Delta(spin)=1/2$ Extended Higgs sector: h, H, A, H<sup>±</sup>

Natural solution to hierarchy problem Exact cancellation of loop contributions

### **Dark Matter candidate** If R-parity is conserved, stable LSP

(More on R-parity later)

**Gauge unification** Possible in SUSY theories

**SUSY** is a broken symmetry No superpartners observed with same mass but different spin



**Mechanism** for SUSY-breaking unknown



## The Elephant in the Room





 $m_{\rm H}$  regularized by scalar top mass, still possible to have natural SUSY with a relatively light stop / sbottom

Naturalness achievable even if 1<sup>st</sup>/2<sup>nd</sup>-generation squark masses are O(TeV)

Relatively light gluino

Electroweak sector also light

## + Search Strategy

At the LHC, SUSY cross-sections are dominated by the production of coloured sparticles (squarks and gluinos)

### **R-parity Conserving (RPC) Models**

Sparticles produced in pairs

**Decay chains** ( $\rightarrow$  jets, leptons, ...) terminating with a stable and neutral LSP (neutralino or



LSP leaves the detector unseen  $\rightarrow$  Missing transverse energy ( $E_T^{miss}$ )

No mass peaks, signal in tails





### **R-parity Violating (RPV) Models**



### **Other Scenarios**

Displaced vertices Slow highly hadronising particles

. .

### + SUSY Models and Interpretation

## The minimal SUSY extension of the SM (MSSM) has got 105+19 free parameters

**Unmanageable!** 

### Top-down approach

### Models of SUSY breaking - cMSSM/mSUGRA, GMSB, etc

Fix a limited number of parameters at some higher energy scale, then extrapolate back to to the EWK scale & predict phenomenology

Search for a wide range of signatures – if null result, set limits in parameter space

### **Bottom-up** approach

**Phenomenological Models** – Assume some sparticle mass hierarchy

**Simplified Models** – Consider individual decays as separate building blocks

### Model-independent limits on "effective cross-section"

$$\sigma \times \varepsilon \times A$$

(A=acceptance,  $\epsilon$ =efficiency)

(ie a limit on the number of events in the signal region – for a given luminosity)

10









#### **Multi-purpose detector**

Large acceptance (~ $4\pi$  coverage) and hermeticity

Excellent particle identification and reconstruction

Excellent  $E_{T}^{\ miss}$  and jet reconstruction

Excellent vertex reconstruction

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

**Inner Detector (** $|\eta|$ **<2.5,B=2T)** Si pixels and strips, TRT straws Tracking and vertexing,  $e/\pi$  separation

 $\sigma_{p_T} / p_T \sim 3.8 \times 10^{-4} p_T (GeV) \oplus 0.015$ 

#### **EM Calorimeter (** $|\eta|$ < 4.9)

Pb-Lar Accordion e/ $\gamma$  trigger, id and measurement  $\sigma_E/E \sim 10\%/\sqrt{E(GeV)}$  Hadron Calorimeter ( $|\eta| < 4.9$ ) Fe-scintillator tiles (barrel)  $\sigma_E / E \sim 50\% / \sqrt{E(GeV)} \oplus 0.03$ Cu/W-Lar (endcap)  $\sigma_E / E \sim 90\% / \sqrt{E(GeV)} \oplus 0.07$ Trigger and measurement of jets and  $E_T^{miss}$ 

#### **Muon Spectrometer (** $|\eta|$ < 2.7)

Air-core toroids with gas-based muon chambers Muon trigger and measurement  $p_T$  resolution <10% up to ~1TeV



## **+** A Collaborative Effort





### **Instantaneous Luminosity**

Peak luminosity –  $3.65 \times 10^{33}$  cm<sup>-2</sup> s<sup>-1</sup>

### **Datasets for SUSY analyses**

2010 : ~35 pb<sup>-1</sup>

2011:4.7 fb<sup>-1</sup> (7 TeV)

2012 : 5.8 fb-1 analysed (8 TeV)





# + Lots of SUSY Results...

#### 2011 Data (7 TeV)

| Short Title of the Paper                                                       | Date    | √s (TeV) | L (fb <sup>-1</sup> ) | Document  | Plots+Aux. Material | Journal               |
|--------------------------------------------------------------------------------|---------|----------|-----------------------|-----------|---------------------|-----------------------|
| Disappearing track + jets + Etmiss<br>[Direct long-lived charginos - AMSB] NEW | 10/2012 | 7        | 4.7                   | 1210.2852 | Link                | Submitted to JHEP     |
| 1-2 taus + 0-1 leptons + jets + Etmiss [GMSB] NEW                              | 10/2012 | 7        | 4.7                   | 1210.1314 | Link                | Submitted to EPJC     |
| Monophoton [ADD, WIMP] NEW                                                     | 09/2012 | 7        | 4.7                   | 1209.4625 | Link                | Submitted to PRL      |
| 2 leptons + jets + Etmiss [Medium stop] NEW                                    | 09/2012 | 7        | 4.7                   | 1209.4186 | Link                | Accepted by JHEP      |
| 1-2 b-jets + 1-2 leptons + jets + Etmiss [Light Stop] NEW                      | 09/2012 | 7        | 4.7                   | 1209.2102 | Link                | Submitted to PLB      |
| 2 photons + Etmiss [GGM] NEW                                                   | 09/2012 | 7        | 4.7                   | 1209.0753 | Link                | Submitted to PLB      |
| 1-2 leptons + >=2-4 jets + Etmiss                                              | 08/2012 | 7        | 4.7                   | 1208.4688 | Link                | Accepted by PRD       |
| 2 leptons + >=1 jet + Etmiss [Very light stop]                                 | 08/2012 | 7        | 4.7                   | 1208.4305 | Link (inc. HEPData) | Submitted to EPJC     |
| 3 leptons + Etmiss [Direct gauginos]                                           | 08/2012 | 7        | 4.7                   | 1208.3144 | Link (inc. HEPData) | Submitted to PLB      |
| 2 leptons + Etmiss [Direct gauginos/sleptons]                                  | 08/2012 | 7        | 4.7                   | 1208.2884 | Link                | Submitted to PLB      |
| 1 lepton + >=4 jets (>=1 b-jet) + Etmiss [Heavy stop]                          | 08/2012 | 7        | 4.7                   | 1208.2590 | Link                | Accepted by PRL       |
| 0 lepton + 1-2 b-jet + 5-4 jets + Etmiss [Heavy stop]                          | 08/2012 | 7        | 4.7                   | 1208.1447 | Link                | Accepted by PRL       |
| 0 lepton + >=2-6 jets + Etmiss                                                 | 08/2012 | 7        | 4.7                   | 1208.0949 | Link                | Submitted to PRD      |
| 0 lepton + >=3 b-jets + >=(1-3) jets + Etmiss [Gluino med. stop/sb.]           | 07/2012 | 7        | 4.7                   | 1207.4686 | Link                | Accepted by EPJC      |
| 0 lepton + >=(6-9) jets + Etmiss                                               | 06/2012 | 7        | 4.7                   | 1206.1760 | Link (inc. HEPData) | JHEP 1207 (2012) 167  |
| Electron-muon continuum [RPV]                                                  | 05/2012 | 7        | 2.05                  | 1205.0725 | Link (inc. HEPData) | EPJC 72 (2012) 2040   |
| Z->II + b-jet + jets + Etmiss [Direct stop in natural GMSB]                    | 04/2012 | 7        | 2.05                  | 1204.6736 | Link (inc. HEPData) | PLB 715 (2012) 44     |
| =3 leptons + Etmiss [Direct gauginos]                                          | 04/2012 | 7        | 2.05                  | 1204.5638 | Link (inc. HEPData) | PRL 108 (2012) 261804 |
| >=1 tau + jets + Etmiss [GMSB]                                                 | 04/2012 | 7        | 2.05                  | 1204.3852 | Link (inc. HEPData) | PLB 714 (2012) 197    |
| >=2 taus + jets + Etmiss [GMSB]                                                | 03/2012 | 7        | 2.05                  | 1203.6580 | Link (inc. HEPData) | PLB 714 (2012) 180    |
| b-jet(s) + 0-1 lepton + jets + Etmiss [Gluino med. stop/sb.]                   | 03/2012 | 7        | 2.05                  | 1203.6193 | Link                | PRD 85 (2012) 112006  |
| 2 same-sign leptons + jets + Etmiss                                            | 03/2012 | 7        | 2.05                  | 1203.5763 | Link (inc. HEPData) | PRL 108 (2012) 241802 |
| 2 b-jets + Etmiss [Direct sbottom]                                             | 12/2011 | 7        | 2.05                  | 1112.3832 | Link (inc. HEPData) | PRL 108 (2012) 181802 |
| Disappearing track + jets + Etmiss [AMSB Strong Prod.]                         | 02/2012 | 7        | 1.02                  | 1202.4847 | Link (inc. HEPData) | EPJC 72 (2012) 1993   |
| 2 photons + Etmiss [GGM]                                                       | 11/2011 | 7        | 1.07                  | 1111.4116 | Link                | PLB 710 (2012) 519    |
| 2 leptons + jets + Etmiss                                                      | 10/2011 | 7        | 1.04                  | 1110.6189 | Link (inc. HEPData) | PLB 709 (2012) 137    |
| 0 lepton + >=(6-8) jets + Etmiss                                               | 10/2011 | 7        | 1.34                  | 1110.2299 | Link (inc. HEPData) | JHEP 11 (2011) 99     |
| 1 lepton + jets + Etmiss                                                       | 09/2011 | 7        | 1.04                  | 1109.6606 | Link (inc. HEPData) | PRD 85 (2012) 012006  |
| 0 lepton + >=(2-4) jets + Etmiss                                               | 09/2011 | 7        | 1.04                  | 1109.6572 | Link (inc. HEPData) | PLB 710 (2012) 67     |
| Electron-muon resonance [RPV]                                                  | 09/2011 | 7        | 1.07                  | 1109.3089 | Link (inc. HEPData) | EPJC 71 (2011) 1809   |

#### 2012 Data (8 TeV)

| Short Title of the CONF note            | Date    | √s (TeV) | L (fb <sup>-1</sup> ) | Document            |
|-----------------------------------------|---------|----------|-----------------------|---------------------|
| 0 leptons + >=2-6 jets + Etmiss         | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-109 |
| 0 leptons + >=6-9 jets + Etmiss         | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-103 |
| 1 lepton + >=4 jets + Etmiss            | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-104 |
| 2 same-sign leptons + >=4 jets + Etmiss | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-105 |

| Short Title of the Conf. note                             | Date    | √s (TeV) | L (fb <sup>-1</sup> ) | Document            | Plots               |
|-----------------------------------------------------------|---------|----------|-----------------------|---------------------|---------------------|
| 1 lepton + >=7 jets + Etmiss                              | 10/2012 | 7        | 4.7                   | ATLAS-CONF-2012-140 | Link                |
| 3 leptons + jets + Etmiss                                 | 08/2012 | 7        | 4.7                   | ATLAS-CONF-2012-108 | Link                |
| 2 b-jets + Etmiss [Direct sbottom]                        | 08/2012 | 7        | 4.7                   | ATLAS-CONF-2012-106 | Link                |
| muon + displaced vertex [RPV]                             | 08/2012 | 7        | 4.7                   | ATLAS-CONF-2012-113 | Link                |
| 2 jet-pair resonances [N=1/2 scalar gluons]               | 08/2012 | 7        | 4.7                   | ATLAS-CONF-2012-110 | Link                |
| General new phenomena search                              | 08/2012 | 7        | 4.7                   | ATLAS-CONF-2012-107 | Link                |
| Monojet [ADD, WIMP]                                       | 07/2012 | 7        | 4.7                   | ATLAS-CONF-2012-084 | Link                |
| Long-Lived Particles [R-hadron, slepton]                  | 07/2012 | 7        | 4.7                   | ATLAS-CONF-2012-075 | Link                |
| Disappearing track + jets + Etmiss<br>[AMSB Strong Prod.] | 03/2012 | 7        | 4.7                   | ATLAS-CONF-2012-034 | Link                |
| Add. >=4 leptons + Etmiss Interpretation [RPV]            | 03/2012 | 7        | 2.05                  | ATLAS-CONF-2012-035 | Link (inc. HEPData) |
| Long lived Particle (Pixel-like)                          | 03/2012 | 7        | 2.05                  | ATLAS-CONF-2012-022 | Link                |
| >=4 leptons + Etmiss                                      | 01/2012 | 7        | 2.05                  | ATLAS-CONF-2012-001 | Link (inc. HEPData) |
| Z->II + jets + Etmiss (GGM)                               | 04/2012 | 7        | 1.04                  | ATLAS-CONF-2012-046 | Link                |
| Add. 2 leptons + jets + Etmiss interpretation<br>[GMSB]   | 11/2011 | 7        | 1.04                  | ATLAS-CONF-2011-156 | Link                |
| Add. 0 lepton + jets + Etmiss interpretation              | 11/2011 | 7        | 1.04                  | ATLAS-CONF-2011-155 | Link (inc. HEPData) |
| b-jets + 1 lepton + jets + Etmiss                         | 08/2011 | 7        | 1.03                  | ATLAS-CONF-2011-130 | Link                |
| b-jets + 0 lepton + jets + Etmiss                         | 07/2011 | 7        | 0.83                  | ATLAS-CONF-2011-098 | Link                |
| 1 lepton + jets + Etmiss                                  | 06/2011 | 7        | 0.16                  | ATLAS-CONF-2011-090 | Link                |
| 0 lepton + jets + Etmiss                                  | 06/2011 | 7        | 0.16                  | ATLAS-CONF-2011-086 | Link                |
|                                                           |         |          |                       |                     |                     |

### https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

# + Lots of SUSY Results...

| anone more or one cont. note                              | Late    | 1.2 (100) | L(15") | Document            | P1015               |
|-----------------------------------------------------------|---------|-----------|--------|---------------------|---------------------|
| 1 lepton + >=7 jets + Etmiss                              | 10/2012 | 7         | 4,7    | ATLAS-CONF-2012-140 | Link                |
| 3 leptons + jets + Etmiss                                 | 08/2012 | 7         | 4.7    | ATLAS-CONF-2012-108 | Link                |
| 2 b-jets + Etmiss (Direct shoftom)                        | 08/2012 | 7         | 4.7    | ATLAS-CONF-2012-106 | Link                |
| muon + displaced vertex (RPV)                             | 08/2012 | 7         | 4.7    | ATLAS-CONF-2012-113 | Link                |
| 2 jet-pair resonances [N=1/2 scalar gluons]               | 08/2012 | 7         | 4.7    | ATLAS-CONF-2012-110 | Link                |
| General new phenomena search                              | 08/2012 | 7         | 4.7    | ATLAS-CONF-2012-107 | Link                |
| Monglet (ADD, WIMP)                                       | 07/2012 | 7         | 4.7    | ATLAS-CONF-2012-084 | Link                |
| Long-Lived Particles (R-hadron, slepton)                  | 07/2012 | 7         | 4,7    | ATLAS-CONF-2012-075 | Link                |
| Disappearing track + jets + Etmiss<br>(AMSB Strong Prod.) | 03/2012 | 7         | 4.7    | ATLAS-CONF-2012-034 | Link                |
| Add. >=4 leptons + Etmiss Interpretation [RPV]            | 03/2012 | 7         | 2.05   | ATLAS-CONF-2012-035 | Link (inc. HEPData) |
| Long lived Particle (Pixel-like)                          | 03/2012 | 7         | 2.05   | ATLAS-CONF-2012-022 | Link                |
| >=4 leptons + Etmiss                                      | 01/2012 | 7         | 2.05   | ATLAS-CONF-2012-001 | Link (inc. HEPData) |
| Z->il + jets + Etmiss (GGM)                               | 04/2012 | 7         | 1.04   | ATLAS-CONF-2012-046 | Link                |
| Add. 2 leptons + jets + Etmiss interpretation<br>[GMSB]   | 11/2011 | 7         | 1.04   | ATLAS-CONF-2011-156 | Link                |
| Add. 0 lepton + jets + Etmiss interpretation              | 11/2011 | 7         | 1.04   | ATLAS-CONF-2011-155 | Link (inc. HEPData) |
| b-jets + 1 lepton + jets + Etmiss                         | 08/2011 | 7         | 1.03   | ATLAS-CONF-2011-130 | Link                |
| b-jets + 0 lepton + jets + Etmiss                         | 07/2011 | 7         | 0.83   | ATLAS-CONF-2011-098 | Link                |
| 1 lapton + jets + Etmiss                                  | 06/2011 | 7         | 0.16   | ATLAS-CONF-2011-090 | Link                |
| 0 lepton + jets + Etmiss                                  | 06/2011 | 7         | 0.16   | ATLAS-CONF-2011-085 | Link                |

| 2012 Data (8 TeV)                       |         |          |                       |                     |
|-----------------------------------------|---------|----------|-----------------------|---------------------|
| Short Title of the CONF note            | Date    | √s (TeV) | L (fb <sup>-1</sup> ) | Document            |
| 0 leptons + >=2-6 jets + Etmiss         | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-109 |
| 0 leptons + >=6-9 jets + Etmiss         | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-103 |
| 1 lepton + >=4 jets + Etmiss            | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-104 |
| 2 same-sign leptons + >=4 jets + Etmiss | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-105 |

| Short Title of the Paper                                                         |         |   |      | Document  | Piote+Aux, Naterial |                        |
|----------------------------------------------------------------------------------|---------|---|------|-----------|---------------------|------------------------|
| Chappearing thatk + jets + Etimiss<br>(Direct long-lived charginos - AMISS) Here | 10/2013 | 7 | 47   | 1210.2852 | Link                | SuberVised to JHEP     |
| 1-2 taus + 0-1 leptons + jats + Etmiss (ONSSI) wrw                               | 10/2012 | 7 | 4.7  | 1210.1314 | Link                | Submitted to EPUC      |
| Manaphoton (ADD, WMP) new                                                        | 09/2012 | 7 | 47   | 1209.4825 | Link                | Submitted to PRL       |
| 2 leptons + jets + Dtniss (Medium stop) ve w                                     | 09/2012 | T | 4.7  | 1209.4105 | Link                | Accepted by JHDP       |
| 1-2 b-jets + 1-2 leptens + jets + Stmiss (Light Stop) wear                       | 08/2012 | 7 | 42   | 1209.2102 | Link                | Submitted to PUR       |
| 2 photons + Elmiss (OOM) www                                                     | 09/2012 | τ | 47   | 1209.0753 | Life .              | Submitted to PLS       |
| 1-2 leptone + >+2-4 jets + Etmiss                                                | 06/2012 | 7 | 47   | 1208.4608 | Link                | Accepted by PRD        |
| 2 leptons + >+1 jet + Etmiss (Very light stop)                                   | 06/2012 | r | 42   | 1208.4305 | Link (inc. HEPData) | Submitted to EPUC      |
| 3 leptons + Etmise (Direct gauginos)                                             | 06/2012 | τ | 47   | 1258.3144 | Link (inc. HEPOate) | Submitted to PLB       |
| 2 leptons - Etmiss (Direct gauginos/bleptons)                                    | 06/2012 | T | 47   | 1208.2804 | Link                | Submitted to PLB       |
| 1 lepton + >+4 jets (>+1 b-jet) + Etmiss (Heavy site)                            | 06/2012 | 7 | 47   | 1208.2900 | Line .              | Accepted by PR.        |
| D lepton + 1-2 b-jet + 5-4 jets = Dtrriss (Heavy stop)                           | 06/2012 | T | 47   | 1200.1447 | Link                | Accepted by PRL        |
| 0 lapton + >+2-0 jets + Etmiss                                                   | 062012  | 7 | 42   | 1208.0948 | Link                | Submitted to PRD       |
| 0 lepton + i+3 b-jets + i++(1-3) jets + Elmiss (Sluino med. stopisb.)            | 07/2012 | τ | 47   | 1207.4655 | Line .              | Accepted by EPUC       |
| Dispton + >=(8-8) jets + Etmiss                                                  | 06/2012 | 7 | 47   | 1200.1700 | Link (nc. HEPData)  | JHEP 1207 (2012) 167   |
| Electron-muon condinuum (RPN)                                                    | 06/2012 | r | 2.05 | 1205.0725 | Link (inc. HEPDate) | EPUC 72 (2012) 2040    |
| Z-+I + b-jet + jets + Ehmiss (Direct stop in natural GMS8)                       | 042012  | 7 | 2.05 | 1204.0736 | Link (no. HEPOate)  | PLB 715 (2012)-44      |
| "3 leptons + Etnies (Direct gauginos)                                            | 049012  | T | 2.05 | 1204.5838 | Link (nc. HEPDate)  | PRL 108 (2012) 201804  |
| ++1 lau + jets + Etmiss (CMSB)                                                   | 04/2012 | τ | 2.05 | 1204.3892 | Link (inc. HEPOate) | PL8 714 (2012) 197     |
| ++2 taus + jets + Etmiss (Chit58)                                                | 03/2012 | T | 2.05 | 1203.6500 | Link (nc. HDPData)  | PLB 714 (2012) 180     |
| tr-jet(x) + 0-1 lepton + jets + Etmiss (Chains med. stop/sb.)                    | 052012  | 7 | 2.05 | 1203.6193 | Link                | PRD 85 (2012) 112006   |
| 2 same-sign leptons + jets + Etmise                                              | 03/2012 | т | 2.05 | 1203.5763 | Link (inc. HEPOate) | PRI, 108 (2012) 241802 |
| 2 b-jata + Ebnisa (Direct sbottom)                                               | 12/2011 | 7 | 2.05 | 1112.0002 | Link (nc. HEPDate)  | PRL 108 (2012) 101802  |
| Disappearing hack + jets + Etmiss (AM88 Strong Prod.)                            | 02/2012 | T | 1.02 | 1202.4847 | Link (inc. HEPOate) | EPUC 72 (2012) 1983    |
| 2 photons + Etmiss (OOM)                                                         | 112211  | 7 | 1.07 | 1111.4115 | Link                | PLB 792 (2012) 519     |
| 2 leptons - jets - Stimiss                                                       | 10/2011 | 7 | 1.04 | 1112.0189 | Link (nc. HEPData)  | PLB 709 (2012) 137     |
| Dispton + i++(5-8) jobs + Elmiss                                                 | 10/2011 | T | 1.34 | 1118.2299 | Link (inc. HEPOate) | JHEP 11 (2011) 99      |
| 1 lepton + jetx + Ebmiss                                                         | 09/2011 | 7 | 1.04 | 1129,8000 | Link (nc. HEPData)  | PRD 85 (2912) 012006   |
| 0 lepton + >=(2-4) jets + Etmiss                                                 | 09/2011 | 7 | 1.04 | 1129.8572 | Link (inc. HEPDate) | PL8 710 (2012) 87      |
| Dector-must resonance PRVI                                                       | 09/2011 | T | 1.07 | 1129.3089 | Link Inc. HEPOstel  | EPUC 71 (2011) 1809    |



15

# + Lots of SUSY Results...

| Short Title of the Conf. note                             | Date    | vis (TeV) | L(15') | Document            | Piots               |
|-----------------------------------------------------------|---------|-----------|--------|---------------------|---------------------|
| 1 lepton + >=7 jets + Etmiss                              | 10/2012 | 7         | 4.7    | ATLAS-CONF-2012-140 | Link                |
| 3 leptons + jets + Etmiss                                 | 08/2012 | 7         | 4.7    | ATLAS-CONF-2012-108 | Link                |
| 2 b-jets + Etmiss (Direct shoftom)                        | 08/2012 | 7         | 4.7    | ATLAS-CONF-2012-106 | Link                |
| muon + displaced vertex (RPV)                             | 08/2012 | 7         | 4.7    | ATLAS-CONF-2012-113 | Link                |
| 2 jet-pair resonances [N=1/2 scalar gluons]               | 08/2012 | 7         | 4.7    | ATLAS-CONF-2012-110 | Link                |
| General new phenomena search                              | 08/2012 | 7         | 4.7    | ATLAS-CONF-2012-107 | Link                |
| Monglet (ADD, WIMP)                                       | 07/2012 | 7         | 4.7    | ATLAS-CONF-2012-084 | Link                |
| Long-Lived Particles (R-hadron, slepton)                  | 07/2012 | 7         | 4.7    | ATLAS-CONF-2012-075 | Link                |
| Disappearing track + jets + Etmiss<br>(AMSB Strong Prod.) | 03/2012 | 7         | 4.7    | ATLAS-CONF-2012-034 | Link                |
| Add. >=4 leptons + Etmiss Interpretation [RPV]            | 03/2012 | 7         | 2.05   | ATLAS-CONF-2012-035 | Link (inc. HEPData) |
| Long lived Particle (Pixel-like)                          | 03/2012 | 7         | 2.05   | ATLAS-CONF-2012-022 | Link                |
| >=4 leptons + Etmiss                                      | 01/2012 | 7         | 2.05   | ATLAS-CONF-2012-001 | Link (inc. HEPData) |
| Z->it + jets + Etmiss (GGM)                               | 04/2012 | 7         | 1.04   | ATLAS-CONF-2012-046 | Link                |
| Add. 2 leptons + jets + Etmiss interpretation<br>[GMSB]   | 11/2011 | 7         | 1.04   | ATLAS-CONF-2011-156 | Link                |
| Add. 0 lepton + jets + Etmiss interpretation              | 11/2011 | 7         | 1.04   | ATLAS-CONF-2011-155 | Link (inc. HEPData) |
| b-jets + 1 lepton + jets + Etmiss                         | 08/2011 | 7         | 1.03   | ATLAS-CONF-2011-130 | Link                |
| b-jets + 0 lepton + jets + Etmiss                         | 07/2011 | 7         | 0.83   | ATLAS-CONF-2011-098 | Link                |
| 1 lapton + jets + Etmiss                                  | 06/2011 | 7         | 0.16   | ATLAS-CONF-2011-090 | Link                |
| 0 lepton + jets + Etmiss                                  | 06/2011 | 7         | 0.16   | ATLAS-CONF-2011-086 | Link                |

| 012 Data (8 TeV)                        |         |          |                       |                    |
|-----------------------------------------|---------|----------|-----------------------|--------------------|
| Short Title of the CONF note            | Date    | √s (TeV) | L (fb <sup>-1</sup> ) | Document           |
| 0 leptons + >=2-6 jets + Etmiss         | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-10 |
| 0 leptons + >=6-9 jets + Etmiss         | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-10 |
| 1 lepton + >=4 jets + Etmiss            | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-10 |
| 2 same-sign leptons + >=4 jets + Etmiss | 08/2012 | 8        | 5.8                   | ATLAS-CONF-2012-10 |

| Short Title of the Paper                                                                                        |         |          |      | Document  | Piote+Aux, Naterial |                        |
|-----------------------------------------------------------------------------------------------------------------|---------|----------|------|-----------|---------------------|------------------------|
| Disappearing thatk + jets + Etmiss<br>[Direct long-lived charginos - AMSS] very                                 | 10/2012 | 7        | 47   | 1213.2852 | Link                | Submitted to JHEP      |
| 1-2 taus + 0-1 leptons + jats + Etmiss (ONSE) www                                                               | 10/2012 | 7        | 4.7  | 1210.1214 | Link                | Submitted to EPUC      |
| Manephoton (ADD, WMP) sew                                                                                       | 09/2012 | 7        | 47   | 1209.4825 | Link                | Submitted to PRL       |
| 2 leptons + jets + Dtniss (Medium stop) +e.w                                                                    | 09/2012 | 7        | 4.7  | 1209.4108 | Link                | Accepted by JHDP       |
| 1-2 b-jets + 1-2 leptens + jets + Stmiss (Light Stop) wear                                                      | 08/2012 | 7        | 42   | 1209.2102 | Link                | Submitted to PUR       |
| 2 photons + Elmiss (OOM) www                                                                                    | 09/2012 | T        | 47   | 1209.0753 | UHR .               | Submitted to PLS       |
| 1-2 leptone + >+2-4 jets + Etmiss                                                                               | 06/2012 | 7        | 47   | 1208.4608 | Link                | Accepted by PRD        |
| 2 leptons + >+1 jot + Etmiss (Very light stop)                                                                  | 06/2012 | 7        | 42   | 1208.4305 | Link (inc. HEPCate) | Submitted to EPUC      |
| 3 leptons + Etmise (Direct gaugines)                                                                            | 06/2012 | 7        | 47   | 1208.3144 | Link (inc. HEPOata) | Submitted to PLB       |
| 2 leptons - Etmiss (Direct gauginos/s/leptons)                                                                  | 06/2012 | 7        | 47   | 1208.2864 | Link                | Submitted to PLB       |
| 1 lepton + >+4 jets (>+1 b-jet) + Etmiss (Heavy site)                                                           | 06/2012 | T        | 47   | 1208.2900 | Les                 | Accepted by PR.        |
| D lepton + 1-2 b-jet + 5-4 jets = Dtrriss (Heavy stop)                                                          | 06/2012 | T        | 47   | 1200.1447 | Link                | Accepted by PRL        |
| 0 lapton + >+2-0 jets + Etmiss                                                                                  | 062012  | <b>x</b> | 42   | 1208.0948 | Link                | Submitted to PRD       |
| 0 lepton + i+3 b-jets + i++(1-3) jets + Elmiss (Sluino med. stopisb.)                                           | 07/2012 | T        | 47   | 1207.4656 | UHR .               | Accepted by EPUC       |
| Dispton + >=(8-8) jets + Etmiss                                                                                 | 06/2012 | 7        | 47   | 1200.1700 | Link (nc. HEPData)  | JHEP 1207 (2012) 167   |
| Electron-muon condinuum (RPN)                                                                                   | 06/2012 | 7        | 2.05 | 1205.0725 | Link (m. HEPCala)   | EPUC 72 (2012) 2040    |
| Z-+I + b-jet + jets + Ehmiss (Direct stop in natural GMS8)                                                      | 042012  | 7        | 2.05 | 1204.6736 | Link (mc. HEPOate)  | PLB 715 (2012)-44      |
| "3 leptons + Etnies (Direct gauginos)                                                                           | 049012  | 7        | 2.05 | 1254.5838 | Link (nc. HEPData)  | PRL 108 (2012) 201804  |
| ++1 lau + jets + Etmiss (CMSB)                                                                                  | 04/2012 | T        | 2.05 | 1204.3892 | Link (mc. HEPOate)  | PL8 714 (2012) 197     |
| ++2 taus + jets + Etmiss (Chit58)                                                                               | 03/2012 | T        | 2.05 | 1203.6500 | Link (nc. HEPData)  | PLB 714 (2012) 180     |
| b-jet(s) + 0-1 lepton + jets + Etmiss (Chains med. stop/s8.)                                                    | 032012  | <b>x</b> | 2.05 | 1203.6193 | Link                | PRD 86 (2012) 112006   |
| 2 same-sign leptons + jets + Ctimise                                                                            | 03/2012 | T        | 2.05 | 1203.5763 | Link (mc. HCPOate)  | PRI, 108 (2012) 241802 |
| 2 b-jeta - Etnisa (Direct abotton)                                                                              | 12/2011 | 7        | 2.05 | 1112.0602 | Link (nc. HEPData)  | PRL 108 (2012) 101002  |
| Disappearing hack + jets + Etmiss (AM88 Strong Prod.)                                                           | 02/2012 | 7        | 1.02 | 1202.4847 | Link (m. HEPOata)   | EPUC 72 (2012) 1983    |
| 2 photons + Etmiss (OGM)                                                                                        | 112211  | 7        | 1.07 | 1111.4115 | Link                | PLB 742 (2012) 519     |
| 2 leptons - jets - Stimiss                                                                                      | 10/2011 | 7        | 1.04 | 1112.0189 | Link (nc. HEPData)  | PLB 709 (2012) 137     |
| Dispton + i++(S-R) jobs + Etmiss                                                                                | 10/2011 | T        | 1.34 | 1111.2299 | Link (inc. HEPOate) | JHEP 11 (2011) 99      |
| 1 lepton + jeta + Ehmisa                                                                                        | 09/2011 | 7        | 1.04 | 1129,8000 | Link (nc. HEPData)  | PRD 85 (2912) 012005   |
| 0 lepton + >=(2-4) jets + Etmiss.                                                                               | 09/2011 | 7        | 1.04 | 1129.8572 | Link (no. HEPCate)  | PL8 710 (2012) 87      |
| Factors and an an an | 09/2011 | T        | 1.07 | 1129,3089 | Link Inc. HEPOatel  | EPUC 71 (2010) 1009    |



16

### **R-parity Conserving SUSY**

A De Santo, SUSY at ATLAS

♣

# + Strong production and RPC SUSY

### **Broad searches**

To cover as many signatures as possible from a broad range of scenarios

short / long cascades

high-pT jets (including b-jets)

possibly one or more leptons (different flavours)

possibly photons

moderate-to-large  $E_T^{miss}$ 

### **Understanding of SM backgrounds crucial**

QCD, W/Z+jets, ttbar, ...

From (or verified in) control regions





Jets from gluino and/or squark decays

Large missing trnsverse energy  $(E_t^{miss})$  from escaping neutralinos

Veto events with isolated electrons or muons

#### 12 signal regions

$$m_{eff}(Nj) = \sum_{i=1}^{Nj} p_T^{jet,i} + E_t^{miss}$$

Nj= all signal jets

$$\mathbf{m}_{eff}(incl.)$$
 : all jets with  $p_T > 40 \text{ GeV})$ 

|                                                                                        |                  |                 | Channel               |                        |                    |  |
|----------------------------------------------------------------------------------------|------------------|-----------------|-----------------------|------------------------|--------------------|--|
| Requirement                                                                            | А                | В               | С                     | D                      | Е                  |  |
|                                                                                        | 2-jets           | 3-jets          | 4-jets                | 5-jets                 | 6-jets             |  |
| $E_{\rm T}^{\rm miss}[{\rm GeV}] >$                                                    |                  |                 | 160                   |                        |                    |  |
| $p_{\mathrm{T}}(j_1) [\mathrm{GeV}] >$                                                 |                  |                 | 130                   |                        |                    |  |
| $p_{\rm T}(j_2) [{\rm GeV}] >$                                                         |                  |                 | 60                    |                        |                    |  |
| $p_{\rm T}(j_3) [{\rm GeV}] >$                                                         | -                | 60              | 60                    | 60                     | 60                 |  |
| $p_{\rm T}(j_4) [{\rm GeV}] >$                                                         | -                | _               | 60                    | 60                     | 60                 |  |
| $p_{\rm T}(j_5) [{\rm GeV}] >$                                                         | -                | _               | -                     | 60                     | 60                 |  |
| $p_{\rm T}(j_6) [{\rm GeV}] >$                                                         | -                | _               | -                     | -                      | 60                 |  |
| $\Delta \phi$ (jet, $\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$ ) <sub>min</sub> [rad] > | $0.4 (i = \{1$   | ,2,(3)})        | $0.4 (i = \{1, 2,\})$ | 3}), $0.2 (p_{\rm T})$ | > 40 GeV jets)     |  |
| $E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$                                               | 0.3/0.4/0.4 (2j) | 0.25/0.3/- (3j) | 0.25/0.3/0.3 (4j)     | 0.15 (5j)              | 0.15/0.25/0.3 (6j) |  |
| $m_{\rm eff}({\rm incl.})  [{\rm GeV}] >$                                              | 1900/1300/1000   | 1900/1300/-     | 1900/1300/1000        | 1700/-/-               | 1400/1300/1000     |  |

### 8 TeV, 5.8 fb<sup>-1</sup>

### 0-lepton + E<sup>miss</sup> – Background Estimation

Four **control regions** (CR) for each of the twelve signal regions (SR)

+

| CR  | SR background                   | CR process                          | CR selection                                                                                                                                           |
|-----|---------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| CRY | $Z(\rightarrow \nu\nu)$ +jets   | $\gamma$ +jets                      | Isolated photon                                                                                                                                        |
| CRQ | QCD jets                        | QCD jets                            | Reversed $\Delta \phi$ (jet, $\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$ ) <sub>min</sub> and $E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(Nj)$ cuts |
| CRW | $W(\rightarrow \ell \nu)$ +jets | $W(\rightarrow \ell \nu)$ +jets     | $30 \text{ GeV} < m_T(\ell, E_T^{\text{miss}}) < 100 \text{ GeV}, b$ -veto                                                                             |
| CRT | $t\bar{t}$ and single- $t$      | $t\bar{t} \rightarrow bbqq'\ell\nu$ | $30 \text{ GeV} < m_T(\ell, E_T^{\text{miss}}) < 100 \text{ GeV}, b\text{-tag}$                                                                        |

Background from combined likelihood fit to all CRs – accounting for all correlations



### + 0-lep + E<sup>miss</sup> – Results & Interpretation

Good agreement between observations and SM expectations

Data from all the channels are used to set limits on SUSY models Profile log-likelihood ratio test and CLs prescription to derive 95% CL exclusion regions

Exclusion limits obtained by using the SR with the best expected sensitivity at each point



#### Equal mass light-flavor squarks and gluinos excluded below 1500 GeV

1800



Limit on  $m_{1/2} \sim 340$  (710) GeV at high (low)  $m_0$  values

> Strong production of gluinos and 1st/2nd-generation squarks, with direct decays to jets and neutralino

(all other sparticles, including 3<sup>rd</sup>-generation squarks, are decoupled)



8 TeV, 5.8 fb<sup>-1</sup>

ATLAS Preliminary

SRB - 3 iets

 $10^{4}$ 

### Simplified models with m<sub>LSP</sub>=0 (1st/2nd generation squarks only)

21

4000

3500

L dt = 5.8 fb<sup>-1</sup>

— SM Total

• Data 2012 (\s = 8 TeV)





Models with compressed MSUGRA scenarios

See PRD84 (2011) 015004

 $\Delta M/MSUSY$  from 0.85 to 0.15

Basic sparticle content and spectrum similar to CMSSM, but sizes of all mass splittings controlled by a compression factor.

Signal regions with softer cuts allow to go to lower  $\Delta M/M_{SUSY}$ 

Gain in sensitivity for gluino masses below  ${\sim}1.2\,\text{TeV}$ 



### + 0-lepton + Multi-jets + $E_t^{miss}$ – Strategy



| Signal region                                          | 7j55                   | 8j55 | 9j55 | 6j80 | 7j80 | 8j80 |  |
|--------------------------------------------------------|------------------------|------|------|------|------|------|--|
| Number of isolated leptons $(e, \mu)$                  | = 0                    |      |      |      |      |      |  |
| Jet <i>p</i> <sub>T</sub>                              | > 55 GeV > 80          |      |      |      |      |      |  |
| Jet  η                                                 | < 2.8                  |      |      |      |      |      |  |
| Number of jets                                         | ≥7                     | ≥8   | ≥9   | ≥6   | ≥7   | ≥8   |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$ | > 4 GeV <sup>1/2</sup> |      |      |      |      |      |  |

23

#### **Extension of "classic" 0-lepton analysis**

Provides increased sensitivity to models with manybody decays or sequential cascade decays to coloured particles

$$\tilde{g} + \tilde{g} \rightarrow \left(t + \bar{t} + \tilde{\chi}_1^0\right) + \left(t + \bar{t} + \tilde{\chi}_1^0\right)$$

Direct stop, see also later...

Signal regions with many high- $p_{\rm T}$  jets, plus  $E_{\rm T}^{\rm miss}$  and lepton veto

#### Data-driven approach

 $\mathbf{E}_{\mathbf{T}}^{\text{miss}} / \sqrt{\mathbf{H}_{\mathbf{T}}}$  variable nearly independent of jet multiplicity and pileup

Use transfer factors from lower to higher jet multiplicities)

 $E_{T}^{miss}$  resolution dominated by stochastic fluctuations of jets

$$\sigma^2(E_T^{miss}) \sim H_T \equiv \sum_{jets} p_T$$

(sum over jets with:  $p_T$ >40 GeV,  $|\eta|$  <2.8)

### + 0-lepton + Multi-jets + $E_{t}^{miss}$ – Results



#### Small overlap with standard 0-lep+jets+Etmiss searches

| Background Sources                      |             |  |  |
|-----------------------------------------|-------------|--|--|
| Multi-jet QCD +<br>Fully hadronic ttbar | Dominant    |  |  |
| Semi- and fully<br>eptonic ttbar        | Significant |  |  |
| N/Z+jets                                | Small       |  |  |

### Simplified gluino-neutralino model





### + 1-lepton + jets + $E_{t}^{miss}$ – Strategy



**Presence of lepton provides extra** advantages compared to purely hadronic searches

#### **Triggering**

efficient single lepton triggers

#### **Background suppression**

QCD background greatly reduced by lepton requirement

#### **Background modelling**

using data-driven techniques

Additional variables used in the event selection:

$$m_{T} = \sqrt{2 \cdot p_{T}^{\ell} \cdot E_{T}^{miss} \left(1 - \cos\left(\Delta \phi(\vec{\ell}, \vec{E}_{T}^{miss})\right)\right)}$$

$$m_{eff} = p_{T}^{\ell} + \sum_{i=1}^{Njet} p_{T}^{jet(i)} + E_{T}^{miss}$$
De Santo, SUSY at ATLAS

**Transverse mass between** selected lepton and  $E_{\rm T}^{\rm miss}$  vector

> **Effective mass** (all jets >40 GeV)

I-lepton + jets + E<sup>miss</sup> – Event Selection and Backgrounds

### **One Signal Region**

|                                         | signal region    |
|-----------------------------------------|------------------|
| N <sub>lep</sub>                        | 1                |
| $p_{\rm T}^{\ell}$ (GeV)                | > 25             |
| $p_{\mathrm{T}}^{\ell_2}(\mathrm{GeV})$ | < 10             |
| N <sub>jet</sub>                        | ≥ 4              |
| $p_{\rm T}^{\rm jet}$ (GeV)             | > 80, 80, 80, 80 |
| $E_{\rm T}^{\rm miss}$ (GeV)            | > 250            |
| $m_{\rm T}~({\rm GeV})$                 | > 100            |
| $E_{\rm T}^{\rm miss}/m_{\rm eff}$      | > 0.2            |
| $m_{\rm eff}^{\rm inc}$ (GeV)           | > 800            |

8 TeV, 5.8 fb<sup>-1</sup>

### QCD background using "loose-tight" Matrix Method

use data with "loose" lepton to estimate data with "tight" lepton

## Non-QCD background dominated by top and W+jets

Use binned fit in CRs to adjust background normalisations

### All other backgrounds from simulation



### + 1-lepton + jets + $E_t^{miss}$ – Results

| Observed number of        |  |  |  |
|---------------------------|--|--|--|
| events in data consistent |  |  |  |
| with SM                   |  |  |  |

|                                     | Signal region |               |
|-------------------------------------|---------------|---------------|
|                                     | Electron      | Muon          |
| Observed events                     | 10            | 4             |
| Fitted background events            | 9.0 ± 2.8     | 7.7 ± 3.2     |
| Fitted <i>t</i> events              | $6.0 \pm 2.2$ | 2.6 ± 1.9     |
| Fitted $W/Z$ +jets events           | $1.5 \pm 0.7$ | $4.2 \pm 2.3$ |
| Fitted other background events      | $1.0 \pm 0.7$ | $0.9 \pm 0.3$ |
| Fitted multijet events              | $0.4 \pm 0.6$ | $0.0 \pm 0.0$ |
| MC expected SM events               | 9.5           | 11.5          |
| MC expected <i>tī</i> events        | 5.7           | 4.6           |
| MC expected $W/Z$ +jets events      | 2.4           | 6.0           |
| MC expected other background events | 1.0           | 0.8           |
| Data-driven multijet events         | 0.4           | 0.0           |

|          | $\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb] | S <sup>95</sup> <sub>obs</sub> | S <sup>95</sup> <sub>exp</sub> | 95  |
|----------|-------------------------------------------------------|--------------------------------|--------------------------------|-----|
| Electron | 1.69                                                  | 9.9                            | $9.3^{+3.3}_{-2.6}$            | cro |
| Muon     | 1.09                                                  | 6.4                            | $8.3^{+3.4}_{-2.3}$            |     |

8 TeV, 5.8 fb<sup>-1</sup>

## 95% CL limits on visible cross-section

MSUGRA/CMSSM limits from combination of statistically independent e & mu channels

1-lep competitive with 0-lep at high  $m_0$ , where gluino production is dominant



+ 2-SS-lep + jets +  $E_{t}^{miss}$ 



800

700

600

500 400 300

200 100

Observed limit (±1) Expected limit (±1 σ

SS dilepton, 2 fb<sup>-1</sup> \s=7 Te\ 3 b-iets 4.7 fb<sup>-1</sup> \s=7 All limits at 95% CI

800

**Simplified models** 

700

900

1000

1100

1200

m<sub>a</sub> [GeV]

28

#### In MSSM, gluino is Majorana Same-sign lepton pairs will be produced in half of the dilepton events originating $\widetilde{g}$ - $\widetilde{g}$ production, $\widetilde{g}$ $\rightarrow t\overline{t}\widetilde{\chi}_{.}^{0}$ , m( $\widetilde{q}$ ) >> m( $\widetilde{g}$ ) from a SUSY cascade m<sub>ã</sub>, [GeV] 900 **TLAS** Preliminar

Gluinos decay with equal probability to quark/anti-squark or anti-guark/sguark pairs

SS dilepton pairs can originate from

$$\tilde{g}\tilde{g} \to t\bar{t} \ \tilde{t}_1\tilde{t}_1^*, tt \ \tilde{t}_1^*\tilde{t}_1^*, t\bar{t} \ \tilde{t}_1\tilde{t}_1$$
  
Followed by  $\tilde{t}_1 \to b\tilde{\chi}_1^{\pm}$  or  $\tilde{t}_1 \to t \ \tilde{\chi}_1^0$ 

### **Event selection**

2 SS leptons (e, mu) with pT>20 GeV >=4 high-pT jets (>50 GeV) Etmiss > 150 GeV

Entries / 50 GeV

No significant excess observed







8 TeV, 5.8 fb<sup>-1</sup>

Competitive with 0-lep at high  $m_0$  where gluino production is dominant



# + GMSB 2-lepton Searches (including taus)

In Gauge-Mediated SUSY-Breaking (GMSB) models, the LSP is the gravitino, the next-to-lightest SUSY particle (NLSP) determines the phenomenology

7 TeV, 4.7 fb<sup>-1</sup>

60

Ъ







qluino masses up 870 GeV

![](_page_31_Figure_0.jpeg)

 $m_{\rm H}$  regularized by scalar top mass, still possible to have natural SUSY with a relatively light stop / sbottom

Naturalness achievable even if 1<sup>st</sup>/2<sup>nd</sup>-generation squark masses are O(TeV)

Relatively light gluino

Electroweak sector also light

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

## + Scalar Top (stop) Searches – Strategy

![](_page_34_Figure_1.jpeg)

Rich phenomenology, dependent on m(stop)-m(LSP) and on nature of intermediate particles (chargino, heavy neutralino, slepton,...)

- \* top+LSP if kinematically allowed, and no gauginos
- \* chargino+b, if chargino present
- \* virtual W, if no chargino
- \* charm+LSP (via loop) last option

![](_page_34_Figure_7.jpeg)

Variety of signatures requires range of strategies to cover all available possibilities (and challenges)

**Very light stop** – soft objects, large SM backgrounds

Light stop – very similar to ttbar

Heavy stop - low cross-sections

# + Searching for the Stop at 7 TeV

Searches tailored to stop mass range

### **Very Light stop – 2 soft leptons**

![](_page_35_Figure_3.jpeg)

![](_page_35_Figure_4.jpeg)

### Heavy stop – 0-lep+b-jets

7 TeV, 4.7 fb<sup>-1</sup>

![](_page_35_Figure_6.jpeg)

![](_page_35_Figure_7.jpeg)

### Light stop – 1-2 bjets + 1-2 lep

![](_page_35_Figure_9.jpeg)

Medium stop – 2 lep+mT2

![](_page_35_Figure_11.jpeg)

### Heavy stop - 1-lep+b-jets

![](_page_35_Figure_13.jpeg)

### + Summary of Stop Searches (7 TeV)

The absence of any significant excess above SM background expectations is translated into 95% CL exclusion limits for all the considered channels

### m(stop) < 200 GeV

Look at

$$\begin{split} &\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^{\pm}, \\ &\tilde{\chi}_1^{\pm} \rightarrow W^{(*)} + \tilde{\chi}_1^0 \end{split}$$

 $m_{\widetilde{\chi}^0_1} \left[ \text{GeV} \right]$ 

with

either 
$$m_{\tilde{\chi}_1^{\pm}} = 106 \text{ GeV}$$
  
or  $m_{\tilde{\chi}_1^{\pm}} = 2 \times m_{\tilde{\chi}_1^0}$ 

m(stop) > 200 GeV

$$\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0$$

assumed to dominate

![](_page_36_Figure_10.jpeg)

**7 TeV, 4.7 fb**<sup>-1</sup>

36

### + EW SUSY – Charginos, Neutralinos, Sleptons

37

![](_page_37_Figure_1.jpeg)

### + Weak SUSY – Charginos and Sleptons

Consider purely leptonic decays of chargino pairs

Simplified models with intermediate slepton

Signature: 2-lep + E<sub>t</sub><sup>miss</sup>

ΑD

7 TeV, 4.7 fb<sup>-1</sup>

38

Search also sensitive to direct slepton production (beyond LEP)

![](_page_38_Figure_6.jpeg)

## Weak SUSY – Charginos and Neutralinos

39

Expected limit  $(\pm 1 \sigma_{exp})$ LEP2  $\tilde{\chi}_{c}^{\pm}$  (103.5 GeV)

**M**<sub>1</sub>=100 GeV

450

μ [GeV] μ

M,

ATLAS

150 200

 $\int L dt = 4.7 \text{ fb}$ 

pMSSM, 2+3 leptons M. = 100 GeV tanß = I

250 300

Leptonic decays of chargino-neutralino pairs

Simplified models with/without intermediate slepton

Signature: 3-lep +  $E_t^{miss}$  + (Z-request/veto and/or  $m_T(v, lep) > 90 \text{ GeV}$ )

Gain from combining also with 2-lep signature (if one lepton is unseen) Also consider more complex models with intermediate slepton– **pMSSM** 

![](_page_39_Figure_5.jpeg)

### **RPV SUSY and All That**

A De Santo, SUSY at ATLAS

╋

![](_page_41_Picture_0.jpeg)

$$R = \left(-1\right)^{3(B-L)+2S}$$

41

### R-parity conservation is hinted by proton stability, but not strictly required

Proton decay can be prevented by other symmetries that require lepton or baryon number conservation but violate R-parity

(can also accommodate non-zero neutrino masses and neutrino mixing)

**General R-parity violating term** 

$$W_{RPV} = \lambda_{ijk} \hat{L}_i \hat{L}_j \hat{E}_k^C + \lambda'_{ijk} \hat{L}_i \hat{Q}_j \hat{D}_k^C + \varepsilon_i \hat{L}_i \hat{H}_u + \lambda''_{ijk} \hat{U}_i^C \hat{D}_j^C \hat{D}_k^C$$
Lepton Nr. violating terms
Bilinear Term Baryon Nr. violating term

#### If R-parity is violated

Sparticles can be produced in odd numbers

LSP can be coloured and/or electrically charged

LSP can be unstable

\* LSP mass peaks (from SM final-state particles)

- \* potentially, long-lived LSP
- \* missing transverse energy may be small

### + RPV 4-leptons

Trilinear lepton-number-violating RPV:  $W_{RPV} = \lambda_{ijk} L_i L_j ar{E_k}$ 

Can have both charged leptons and neutrinos in the LSP decay

 $\rightarrow$  high lepton multiplicity and moderate values of  $E_t^{miss}$ 

Assume single coupling dominance, with  $\lambda_{121}$  as the only non-zero coupling chosen as a representative model with multiple e /  $\mu$  in final state

![](_page_42_Figure_5.jpeg)

#### Scenario #1

Lightest chargino and neutralino only sparticles below the TeV scale RPV 3-body decay of LSP to eev or eµv states (BR = 50 % each)

#### Scenario #2

 $(m_{1/2}, \tan\beta)$  slice of MSUGRA/CMSSM (containing BC1 benchmark point [Allanach et al.])  $m_0=A_0=0, \mu>0, \lambda_{121}=0.032$ Both strong and weak production Light stau is LSP in most of parameter space

 $\tilde{\tau}_1 \to \tau e \mu \nu_e \text{ or } \tilde{\tau}_1 \to \tau e e \nu_\mu$ 

![](_page_43_Picture_0.jpeg)

>= 4 leptons (e, m) No SFOS pairs with mass below 20 GeV No SFOS pairs within +/- 10 GeV of Z mass

![](_page_43_Figure_2.jpeg)

![](_page_43_Figure_3.jpeg)

 $\sum p_{\rm T}^{\mu} + \sum E_{\rm T}^{e} + \sum E_{\rm T}^{j}$ 

**SR1:**  $E_T^{miss} > 50 \text{ GeV}$  (missing momentum from neutrinos)

**SR2** :  $m_{eff} > 300 \text{ GeV}$  (large multiplicity of high- $p_T$  objects)

![](_page_43_Figure_6.jpeg)

 ${\rm \ensuremath{\mathbb{A}}}$  Chargino masses up to 540 GeV excluded for LSP masses above 300GeV

![](_page_43_Figure_8.jpeg)

 $m_{\rm eff} = E_{\rm T}^{\rm miss} +$ 

![](_page_43_Figure_9.jpeg)

![](_page_44_Figure_0.jpeg)

Search for an excess at high values of the opposite-charge  $e\mu$  invariant mass spectrum

Signal possibly originating from resonant decays of neutral sparticles in RPV SUSY

![](_page_44_Figure_3.jpeg)

 $\lambda'_{311}$ 

44

 $\lambda_{312}$ 

 $\mu^{\gamma}$ 

![](_page_44_Figure_4.jpeg)

1000

Null result translates into limit on  $\sigma \times BR$  and on the coupling constants as a function of the mass of the scalar neutrino

1400

m<sub>eu</sub> [GeV]

1200

![](_page_44_Figure_6.jpeg)

400

600

800

200

10

10

10<sup>-2</sup>

Data/SM

# + RPV Scalar Top (eµ continuum)

![](_page_45_Figure_1.jpeg)

RPV SUSY models also allow for LFV interactions through the t-channel exchange of a scalar quark.

$$d\hat{\sigma}/d\hat{t} = |\lambda'_{131}\lambda'_{231}|^2 \hat{t}^2 / [64N_{\rm c}\pi\hat{s}^2 \left(\hat{t} - m_{\tilde{t}}^2\right)^2]$$

![](_page_45_Figure_4.jpeg)

![](_page_45_Figure_5.jpeg)

# + A Lot More Results...

46

# + RPV and Long-Lived Particles

### Various possibilities

RPV scenarios with  $\lambda, \lambda', \lambda'' < 10^{-7}$ 

Low chargino-neutralino mass splitting (~100 MeV)

Long-lived gluino from heavy-squark-mediated decay

Weak cupling of NLSP to gravitino in GMSB models

- $\rightarrow$  displaced vertex
- $\rightarrow$  "kink" from low-p<sub>T</sub>  $\pi$
- $\rightarrow$  R-hadrons
- $\rightarrow$  stable sleptons

![](_page_47_Figure_10.jpeg)

## Some results from LL particle searches

![](_page_48_Figure_1.jpeg)

![](_page_48_Figure_2.jpeg)

+

# + A Lot More Results...

... but...

![](_page_49_Picture_2.jpeg)

49

### Summary and Conclusions

A De Santo, SUSY at ATLAS

╋

### + SUSY Searches at ATLAS – Status

|                     |                                                                                                                                                     | ATLAS SUSY                                             | Searches* - 95% CL Lower Limits (Status:                                                                                                                                                                             | SUSY 2012)                           |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                     |                                                                                                                                                     |                                                        |                                                                                                                                                                                                                      |                                      |
| 60                  | MSUGRA/CMSSM : 0 lep + j's + E <sub>T,miss</sub>                                                                                                    | L=5.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-109]   | 1.50 TeV q = g mass                                                                                                                                                                                                  | ľ                                    |
| the                 | MSUGRA/CMSSM : 1 lep + j's + E <sub>7,miss</sub>                                                                                                    | L=5.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-104]   | 1.24 TeV q = g mass                                                                                                                                                                                                  | $Ldt = (1.00 - 5.8) \text{ fb}^{-1}$ |
| arc                 | Pheno model : 0 lep + j's + E <sub>7,miss</sub>                                                                                                     | L=5.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-109]   | 1.18 TeV $\tilde{g}$ mass $(m(\tilde{q}) \le 2$ TeV, light $\tilde{\chi}_1^0$ )                                                                                                                                      | J 200 (1100 010/10                   |
| Se                  | Pheno model : 0 lep + j's + $E_{T,miss}$                                                                                                            | L=5.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-109]   | 1.38 TeV $\vec{q}$ mass $(m(\tilde{g}) \le 2$ TeV, light $\vec{\chi}$                                                                                                                                                | ) (s = 7, 8 TeV                      |
| ive                 | Gluino med. $\tilde{\chi}^{\pm}$ ( $\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^{\pm}$ ) : 1 lep + j's + $E_{\gamma, miss}$                        | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-041]   | <b>900 GeV</b> $\tilde{g}$ mass $(m(\chi_1^{-1}) < 200 \text{ GeV}, m(\chi^{\pm}) = \frac{1}{2}(m_1^{-1})$                                                                                                           | m(x)+m(g))                           |
| lus                 | GMSB : 2 lep (OS) + j's + $E_{T,miss}$                                                                                                              | L=4.7 fb <sup>-1</sup> , 7 TeV [Preliminary]           | 1.24 TeV g mass (tanβ < 15)                                                                                                                                                                                          | AILAS                                |
| Inc                 | GMSB: $1-2\tau + 0-1$ lep + j's + E                                                                                                                 | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-112]   | 1.20 TeV g mass (tanβ > 20)                                                                                                                                                                                          | Preliminary                          |
|                     | $GGM: \gamma\gamma + E_{T,miss}$                                                                                                                    | L=4.8 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-072]   | <b>1.07 TeV</b> $\tilde{g}$ mass $(m(\chi_1^0) > 50 \text{ GeV})$                                                                                                                                                    |                                      |
|                     | $\tilde{g} \rightarrow b \overline{b} \chi_{\tilde{a}}^{\omega}$ (virtual b): 0 lep + 1/2 b-j's + $E_{T,miss}$                                      | L=2.1 fb <sup>-1</sup> , 7 TeV [1203.6193]             | 900 GeV g mass (m(x) < 300 GeV)                                                                                                                                                                                      |                                      |
| S D                 | $\tilde{g} \rightarrow b \bar{b} \chi_{\chi}^{\circ}$ (virtual b) : 0 lep + 3 b-j's + $E_{T,miss}$                                                  | L=4.7 fb <sup>-1</sup> , 7 TeV [1207.4686]             | 1.02 TeV $\tilde{g}$ mass $(m(\chi_{3}) < 400 \text{ GeV})$                                                                                                                                                          |                                      |
| arl                 | $\tilde{g} \rightarrow b \tilde{\chi}_{1}^{\circ}$ (real b) : 0 lep + 3 b-j's + $E_{T,miss}$                                                        | L=4.7 fb <sup>-1</sup> , 7 TeV [1207.4686]             | <b>1.00 TeV</b> $\tilde{g}$ mass $(m(\chi_1) = 60 \text{ GeV})$                                                                                                                                                      |                                      |
| squ                 | $\tilde{g} \rightarrow t t \tilde{\chi}_{10}^{\circ}$ (virtual t): 1 lep + 1/2 b-j's + $E_{T,miss}$                                                 | L=2.1 fb <sup>-1</sup> , 7 TeV [1203.6193]             | 710 GeV $\widetilde{g}$ mass $(m(\widetilde{\chi_1}) < 150 \text{ GeV})$                                                                                                                                             |                                      |
| n. 5                | $\tilde{g} \rightarrow t\bar{t}\chi^{\gamma}$ (virtual $\tilde{t}$ ) : 2 lep (SS) + j's + $E_{T,miss}$                                              | L=5.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-105]   | <b>850 GeV</b> $\widetilde{g}$ mass $(m(\overline{\chi}_1) \leq 300 \text{ GeV})$                                                                                                                                    |                                      |
| ge<br>ino           | g̃→tt̃x̃ (virtual t) : 3 lep + j's + E <sub>T,miss</sub>                                                                                            | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-108]   | 760 GeV $\tilde{g}$ mass (any $m(\tilde{\chi}_{1}) < m(\tilde{g})$ )                                                                                                                                                 |                                      |
| glui                | $\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_{j}^{\circ}$ (virtual t): 0 lep + multi-j's + $E_{T,miss}$                                             | L=5.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-103]   | <b>1.00 TeV</b> $\tilde{g}$ mass $(m(\chi_1^0) < 300 \text{ GeV})$                                                                                                                                                   |                                      |
| c) -,               | $\tilde{g} \rightarrow t t \tilde{\chi}_{1}^{v}$ (virtual t) : 0 lep + 3 b-j's + $E_{T,miss}$                                                       | L=4.7 fb <sup>-1</sup> , 7 TeV [1207.4686]             | 940 GeV $\widetilde{g}$ mass $(m(\chi)) < 50 \text{ GeV})$                                                                                                                                                           |                                      |
|                     | g̃→tť̃ų, (real t): 0 lep + 3 b-j's + E <sub>T,miss</sub>                                                                                            | L=4.7 fb <sup>-1</sup> , 7 TeV [1207.4686]             | <b>B20 GeV G</b> mass $(m(\tilde{\chi}_1) = 60 \text{ GeV})$                                                                                                                                                         |                                      |
| <i>(</i> <b>1</b> - | bb, $b_1 \rightarrow b \tilde{\chi}_{\downarrow}$ : 0 lep + 2-b-jets + $E_{T,\text{miss}}$                                                          | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-106]   | 480 GeV b mass $(m(\chi_1) < 150 \text{ GeV})$                                                                                                                                                                       |                                      |
| ion                 | bb, $b_1 \rightarrow t \overline{\chi}_1^{\perp}$ : 3 lep + j's + $E_{T,miss}$                                                                      | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-108]   | 380 GeV $\widetilde{g}$ mass $(m(\overline{\chi}_1^{\pm}) = 2 m(\overline{\chi}_1^{\cup}))$                                                                                                                          |                                      |
| uct                 | tt (very light), t $\rightarrow$ b $\tilde{\chi}_1^{\pm}$ : 2 lep + $E_{\gamma,\text{miss}}$                                                        | L=4.7 fb <sup>-1</sup> , 7 TeV [CONF-2012-059] 135 GeV | t mass $(m(\tilde{\chi}_1) = 45 \text{ GeV})$                                                                                                                                                                        |                                      |
| Dod Do              | tt (light), t $\rightarrow b\tilde{\chi}_1^{\pm}$ : 1/2 lep + b-jet + $E_{\gamma,\text{miss}}$                                                      | L=4.7 fb <sup>-1</sup> , 7 TeV [CONF-2012-070] 120-173 | Gev t mass $(m(\overline{\chi}_1) = 45 \text{ GeV})$                                                                                                                                                                 |                                      |
| t pi                | $\underbrace{t}$ (heavy), $\underbrace{t} \rightarrow t \overline{\chi}_{a}^{\circ}$ : 0 lep + b-jet + $E_{T,miss}$                                 | L=4.7 fb <sup>-1</sup> , 7 TeV [1208.1447]             | <b>380-465 GeV</b> t mass $(m(\chi_1) = 0)$                                                                                                                                                                          |                                      |
| d g                 | $\underbrace{\text{tt}}_{T,\text{miss}}$ (heavy), $\underbrace{t}_{T} \rightarrow t \widetilde{\chi}_{n}^{*}$ : 1 lep + b-jet + $E_{T,\text{miss}}$ | L=4.7 fb <sup>-1</sup> , 7 TeV [CONF-2012-073]         | <b>230-440 GeV</b> t mass $(m(\chi_1) = 0)$                                                                                                                                                                          |                                      |
| 3r<br>di            | tt (heavy), t $\rightarrow t \tilde{\chi}_1^*$ : 2 lep + b-jet + $E_{T,miss}$                                                                       | L=4.7 fb <sup>-1</sup> , 7 TeV [CONF-2012-071]         | <b>298-305 GeV</b> t mass $(m(\chi_1) = 0)$                                                                                                                                                                          |                                      |
|                     | tt (GMSB) : $Z(\rightarrow II)$ + b-jet + $E_{T \text{ mas}}$                                                                                       | L=2.1 fb <sup>-1</sup> , 7 TeV [1204.6736]             | 310 GeV t mass $(115 < m(\chi)) < 230 \text{ GeV})$                                                                                                                                                                  |                                      |
| of <                | $ _{L_{L}}   \rightarrow   \overline{\chi}_{d} : 2 \text{ lep } + E_{T,\text{miss}}$                                                                | L=4.7 fb <sup>-1</sup> , 7 TeV [CONF-2012-076] 93-180  | GeV I mass $(m(\overline{\chi}_1) = 0)$                                                                                                                                                                              |                                      |
| EV<br>lire          | $\tilde{\chi}_1 \tilde{\chi}_1, \tilde{\chi}_1 \rightarrow lv(l\tilde{v}) \rightarrow lv \tilde{\chi}_{h1}^*$ : 2 lep + $E_{T,miss}$                | L=4.7 fb <sup>-1</sup> , 7 TeV [CONF-2012-076]         | <b>120-330 GeV</b> $\widetilde{\chi}_{4}^{\perp}$ <b>mass</b> $(m(\widetilde{\chi}_{4}^{\vee}) = 0, m(\widetilde{l}, \widetilde{v}) = \frac{1}{2}(m(\widetilde{\chi}_{4}^{\vee}) + m(\widetilde{\chi}_{4}^{\vee})))$ |                                      |
|                     | $\tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow 3l(lvv)+v+2\tilde{\chi}_{1}^{*}): 3 lep + E_{T,miss}$                                         | L=4.7 fb <sup>-1</sup> , 7 TeV [CONF-2012-077]         | 60-500 GeV $\tilde{\chi}_1^{\perp}$ mass $(m(\tilde{\chi}_1^{\perp}) = m(\tilde{\chi}_2^{\cup}), m(\tilde{\chi}_1^{\cup}) = 0, m(\tilde{l}, \bar{v})$ as ab                                                          | ove)                                 |
| σ                   | AMSB (direct $\tilde{\chi}_1^+$ pair prod.) : long-lived $\tilde{\chi}_1^+$                                                                         | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-111]   | 210 GeV $\widetilde{\chi}_1^+$ mass $(1 < \tau(\widetilde{\chi}_1^+) < 10 \text{ ns})$                                                                                                                               |                                      |
| ive<br>les          | Stable g R-hadrons : Full detector                                                                                                                  | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-075]   | 985 GeV g mass                                                                                                                                                                                                       |                                      |
| ntic                | Stable t R-hadrons : Full detector                                                                                                                  | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-075]   | 683 GeV t mass                                                                                                                                                                                                       |                                      |
| pa                  | Metastable g R-hadrons : Pixel det. only                                                                                                            | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-075]   | 910 GeV g mass (τ(ĝ) > 10 ns)                                                                                                                                                                                        |                                      |
|                     | GMSB : stable ₹                                                                                                                                     | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-075]   | 310 GeV $\overline{\tau}$ mass (5 < tan $\beta$ < 20)                                                                                                                                                                |                                      |
|                     | RPV : high-mass eµ                                                                                                                                  | L=1.1 fb <sup>-1</sup> , 7 TeV [1109.3089]             | <b>1.32 TeV</b> $\tilde{V}_{q}$ mass $(\lambda_{311}^{2}=0.10, \lambda_{312}=0.0)$                                                                                                                                   | 5)                                   |
| 2                   | Bilinear RPV : 1 lep + j's + $E_{T,miss}$                                                                                                           | L=1.0 fb <sup>-1</sup> , 7 TeV [1109.6606]             | 760 GeV $\tilde{q} = \tilde{g} \text{ mass} (c\tau_{LSP} < 15 \text{ mm})$                                                                                                                                           |                                      |
| 2                   | BC1 RPV : 4 lep + E <sub>T,miss</sub>                                                                                                               | L=2.1 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-035]   | 1.77 TeV g mass                                                                                                                                                                                                      |                                      |
|                     | RPV $\tilde{\chi}_1^{\circ} \rightarrow qq\mu : \mu + heavy displaced vertex$                                                                       | L=4.4 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-113]   | <b>700 GeV</b> $\vec{q}$ mass (3.0×10 <sup>-6</sup> < $\lambda_{211}$ < 1.5×10 <sup>-5</sup> , 1 mm <                                                                                                                | cτ < 1 m, ĝ decoupled)               |
| er                  | Hypercolour scalar gluons : 4 jets, m                                                                                                               | L=4.6 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-110]   | 100-287 GeV Sgluon mass (incl. limit from 1110.2693)                                                                                                                                                                 |                                      |
| -th                 | Spin dep. WIMP interaction : monojet + $E_{T,miss}$                                                                                                 | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-084]   | 709 GeV M* SCale (m <sub>\chi</sub> < 100 GeV, vector D5, Dirac                                                                                                                                                      | x)                                   |
| ΥS                  | pin indep. WIMP interaction : monojet + E <sub>T.miss</sub>                                                                                         | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-084]   | 548 GeV M <sup>*</sup> SCale $(m_{\chi} < 100 \text{ GeV}, \text{ tensor D9}, \text{ Dirac } \chi)$                                                                                                                  |                                      |
|                     |                                                                                                                                                     |                                                        |                                                                                                                                                                                                                      |                                      |
|                     |                                                                                                                                                     | 10 <sup>-1</sup>                                       | 1                                                                                                                                                                                                                    | 10                                   |

A De Santo, SUSY <sup>\*</sup>Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

## + Desperately Searching SUSY (in Every Corner...)

52

![](_page_52_Figure_1.jpeg)

![](_page_53_Picture_0.jpeg)

ATLAS has produced an impressive range of results from SUSY searches in 2011 and 2012 collision data

Sadly, no SUSY just yet ⊗

![](_page_54_Picture_0.jpeg)

## ATLAS has produced an impressive range of results from SUSY searches in 2010 and 2011 collision data

Sadly, no SUSY just yet ⊗

It was not around the corner!!

![](_page_54_Picture_4.jpeg)

![](_page_55_Picture_0.jpeg)

ATLAS has produced an impressive range of results from SUSY searches in 2010 and 2011 collision data

Sadly, no SUSY just yet ⊗

It was not around the corner

**Plenty of corners still to explore...** 

![](_page_55_Picture_5.jpeg)

55

![](_page_56_Picture_0.jpeg)

ATLAS has produced an impressive range of results from SUSY searches in 2010 and 2011 collision data

Sadly, no SUSY just yet 😕

**Plenty of corners still to explore...** 

... and plenty of data too!

**Stay Tuned!** 

![](_page_56_Picture_6.jpeg)

+ Can't We See the Wood for the Trees ??

![](_page_57_Picture_1.jpeg)