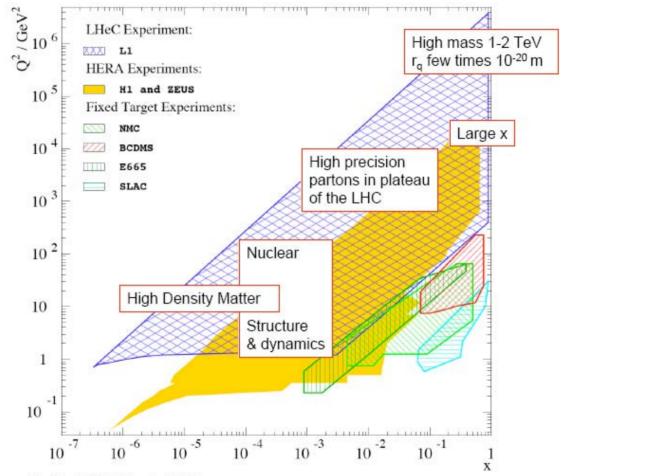
LHeC

Considerations for a Lepton Hadron Collider Option for the LHC


F. Willeke, BNL The 4th Electron Ion Collider Workshop Hampton University, 19-23 May, 2008

Ring–Ring Option

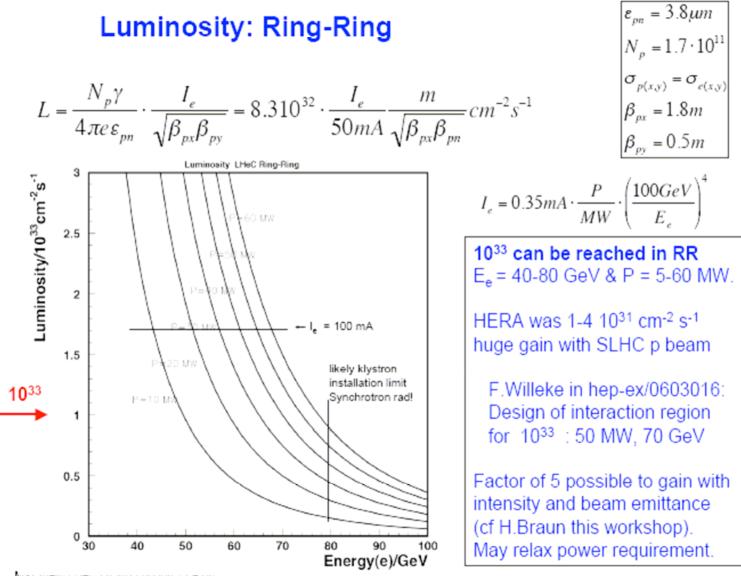
Linac Ring Option

LHeC a physics opportunity with a Threefold physical goal: New Physics - QCD and EW Physics – High Parton Density

Max Klein LHeC DIS08 London 11.4.08

Several Options under consideration:

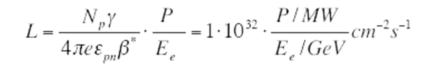
• p-Ring-e-Ring:

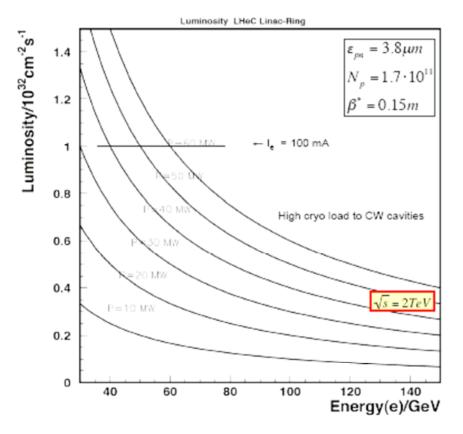

"conservative", limited in c.m. energy, luminosity limited by RF power, beam-beam limited

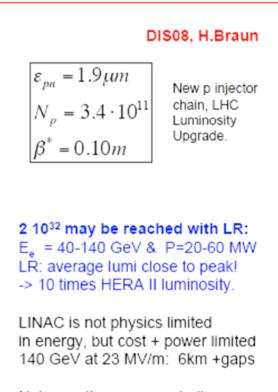
• p-Ring-e-Linac:

No energy limit (in principle), luminosity severely limited by RF power, beam-beam limit

• ERL Option:

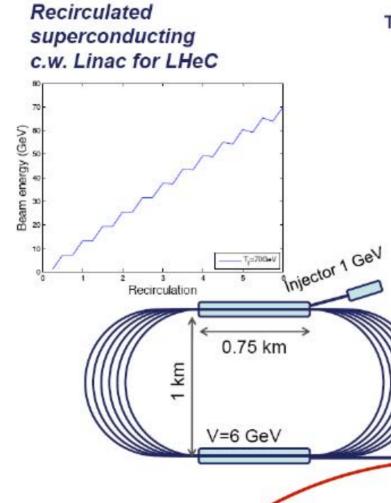

very exotic, energy limited, RF power limitation and beam-beam limit reduced




Max Mein Eneo Diobo Condon 11.4.00

cf also A.Verdier 1990, E.Keil 1986

Luminosity: Linac-Ring



Note: positron source challenge:

SLC 10¹³ /sec ILC 10¹⁴ /sec LHeC at 10³² needs 10¹⁵ /sec

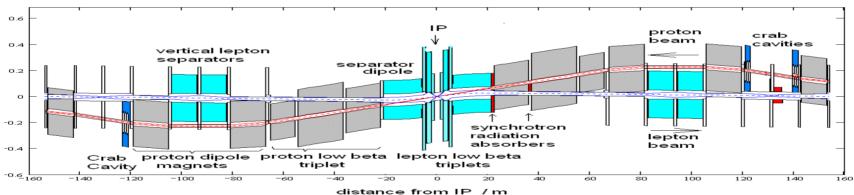
Recircularing Linac Scheme proposed by Hans Braun

Tentative parameter set for 1033 cm-2s-1

E	70 GeV		
E _{Injector}	1 GeV		
I _{Beam}	1.2mA		
N _B	1.87 10 ⁸		
Bunch spacing*	25ns		
P _{Beam}	84 MW		
P _{sR}	5.6 MW		
N _{Recirculation}	6		
V _{Linac}	2 x 6.14 GeV		
L _{linac}	2 x 750 m		
LArc	500 π		
L _{Tunnel}	≈5 km		
G	12 MV/m		
P _{AC} RF plant	236 MW		
P _{AC} cryogenic plant	29 MW		
P _{Beam} /P _{AC}	32%		

"here an uniform filling of LHC with proton bunches is assumed. Still needs to be adapted to real filling pattern.

IP


LHC

Max Klein LHeC DIS08 London 11.4.08

Ring – Ring Option

Design Study J.Dainton, M.Klein, P.Newman, E.Perez, F.Willeke

A high luminosity approach based on matured accelerator technology and on experience in operating HERA.

distance from IP / m

Design Goal: $L = 10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$ with 1.4 GeV centre of mass energy

Design Asumptions *)

based on LHC Proton beam parameters

Energy Particles per Bunch Emittance Bunch spacing Bunch Length

$$E_p = 7 \text{ TeV}$$

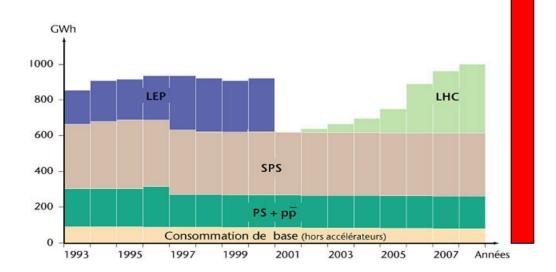
 $N_p = 1.68 \ 10^{11}$
 $\epsilon_{Np} = 3.75 \text{ rad}\mu\text{m}$
 $\tau_b = 25 \text{ ns}$
 $\sigma_p = 7.55 \text{ cm}$

*) There are more optimistic parameters under discussion for the LHC Upgrade

Circumference = 26658.883 m

E_o = 70 GeV

$$L = \frac{N_p \cdot N_e \cdot f_{rev} \cdot n_b}{2 \cdot \pi \cdot \sqrt{\varepsilon_{xp} \beta_{xp} + \varepsilon_{xe} \beta_{xe}} \cdot \sqrt{\varepsilon_{yp} \beta_{yp} + \varepsilon_{ye} \beta_{ye}}}$$


Matched beam cross sections at IP $\sigma_{xp} = \sigma_{xe}$, $\sigma_{yp} = \sigma_{ye}$ Lepton Beam-beam tune shift limit to be avoided

$$L = \frac{I_e \cdot N_p \cdot \gamma_p}{2\pi \cdot e \cdot \varepsilon_{Np} \cdot \sqrt{\beta_{xp} \cdot \beta_{yp}}}$$

With the proton beam brightness given by LHC, $N_p \gamma_p / \epsilon_{Np} = 3.2 \cdot 10^{20} \text{m}^{-1}$

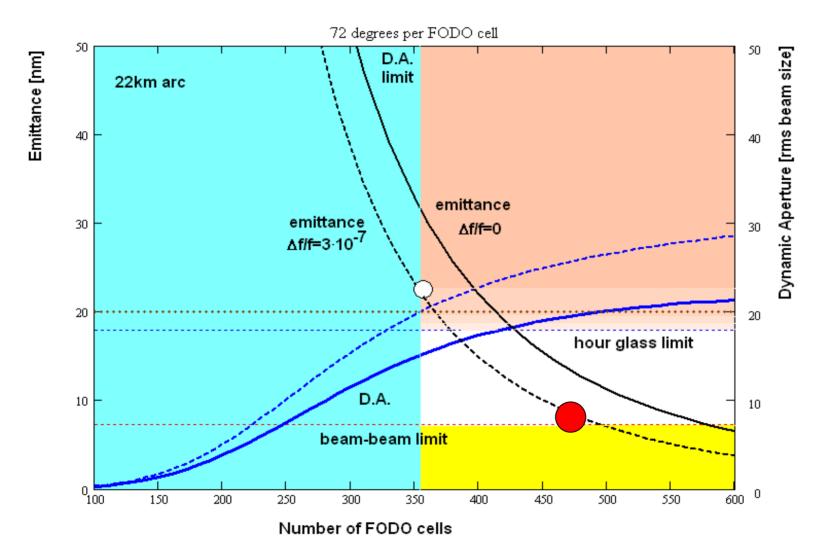
$$\frac{I_e}{\sqrt{\beta_{xp}\beta_{yp}}} = 0.063 \frac{A}{m}$$

Lepton Beam Current Assumptions: Limited by RF Power only depends on Bending radius $\rho = 80\% \cdot (C_{LHC} - 8 \cdot L_{straigth}) / 2\pi = 2886 \text{ m}$ $eU_{loss} = C_{g}E_{e}^{4} / (e\rho) = 734 \text{ MeV}$

If 50 MW beam power considered as a limit 5000 h/y x 50MW x 5 = 1250 GWh/y

 $I_e = 68mA$ (with $\Delta t = 25ns \rightarrow N_e = 1.3 \ 10^{10}$)

e-Ring Lattice Parameters

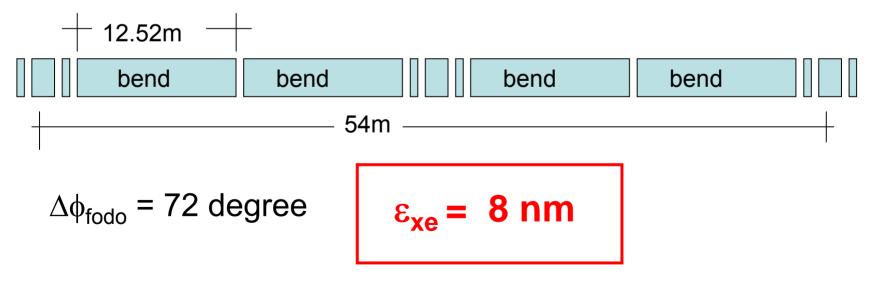

bend radius & circumference fixed by LHC effective FODO structure chosen (no alternative) the only choice to be made id the FODO cell length or the number of cell length of the arc

→ This determines the lepton beam emittance and the dynamic aperture

Constraints under the assumption of matched beam sizes at the IP:

Small emittance \rightarrow large $\beta^* \rightarrow$ strong beam-beam effect \rightarrow no stability large emittance \rightarrow small $\beta^* \rightarrow$ strong hourglass effect effect \rightarrow less lumi Long cells \rightarrow large emittance \rightarrow reduced dynamic aperture \rightarrow no stability Short cell \rightarrow small emittance, high cost

Choosing Lepton Ring Lattice Parameters



Main Parameters of LeHC

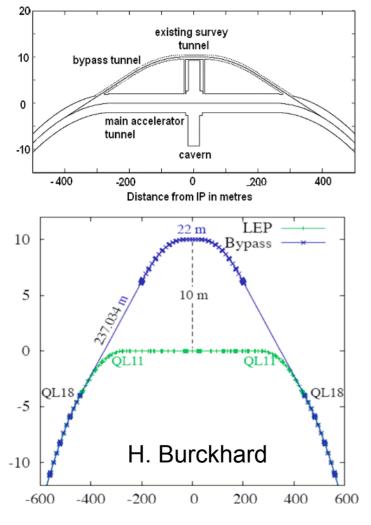
Property	Unit	Leptons	Protons
Beam Energies	GeV	70	7000
Total Beam Current	mA	74	544
Number of Particles / bunch	10 ¹⁰	1.04	17.0
Horizontal Beam Emittance	nm	7.6	0.501
Vertical Beam Emittance	nm	3.8	0.501
Horizontal β -functions at IP	cm	12.7	180
Vertical β -function at the IP	cm	7.1	50
Energy loss per turn	GeV	0.707	6·10-6
Radiated Energy	MW	50	0.003
Bunch frequency / bunch spacing	MHz / ns	40 / 25	
Center of Mass Energy	GeV	1400	
Luminosity	10^{33} cm ⁻² s ⁻¹	1.1	


e Lattice

8 Octants with 500m Straight section each 376 FODO cells, Cell length 60.3 m Dipole length 2 x 12.52 m B= 810 Gauss Quadrupole length 1.5 m (G = 8 T/m)

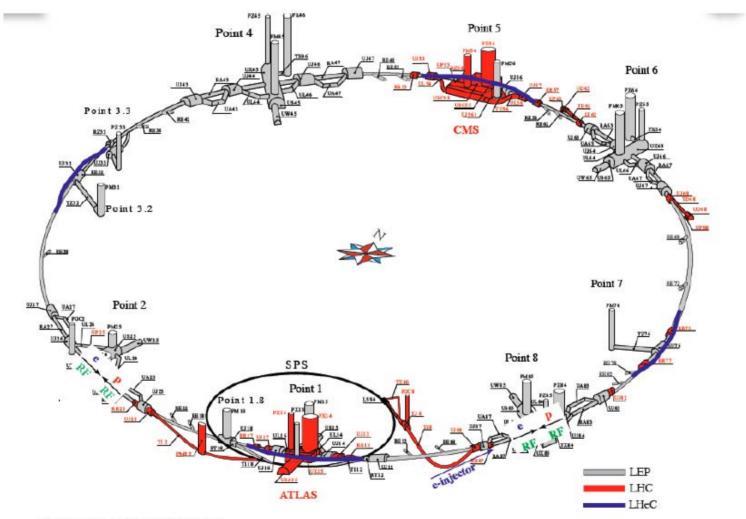


Electron Ring Parameters		
Parameter	Unit	Value
Circumference C	m	26658.86
Beam Energy E_e	GeV	70
Are Focusing		FODO
Cell length L _c	m	60.3
Bending radius ρ	m	2997
Horizontal betatron Phase Adv./cell $\Delta \phi_x$	degree	72
Vertical betatron Phase Adv./cell $\Delta \phi_y$	degree	72
Number of FODO cells in the Arcs N _{cell}		376
Are Chromaticity (hor/vert.) $\xi_{x,y}$		94/120
Beam Current I _c	mA	70.7
Bunch spacing τ_b	ns	25
Number of bunches n_b		2800
Number of particles per bunch N_e	10^{10}	1.4
Momentum compaction factor α	10^{-4}	1.34
Horizontal beam emittance ε_{xx}	nm	7.6
Vertical beam emittance ε_{pe}	nm	3.8
RMS energy spread σ_e	10^{-3}	2.4
RMS bunch length	mm	7.1
Particle Radiation energy loss per turn eU_{loss}	MeV/tun	706.8
Beam Power loss P _{loss}	MW	50
Circumferencial Voltage U	MV	1521
Synchronous Phase $\phi_{ m synch}$	degree	27
RF frequency f_{rf}	MHz	1000
Bucket height \mathbf{h}_b	σ_{e}	8.4
RF frequency shift	Hz	250
Synchrotron frequency \mathbf{f}_s	\mathbf{f}_{pev}	0.191


Tunnel Cross Section

Which IR?

Bypass around Atlas and CMS

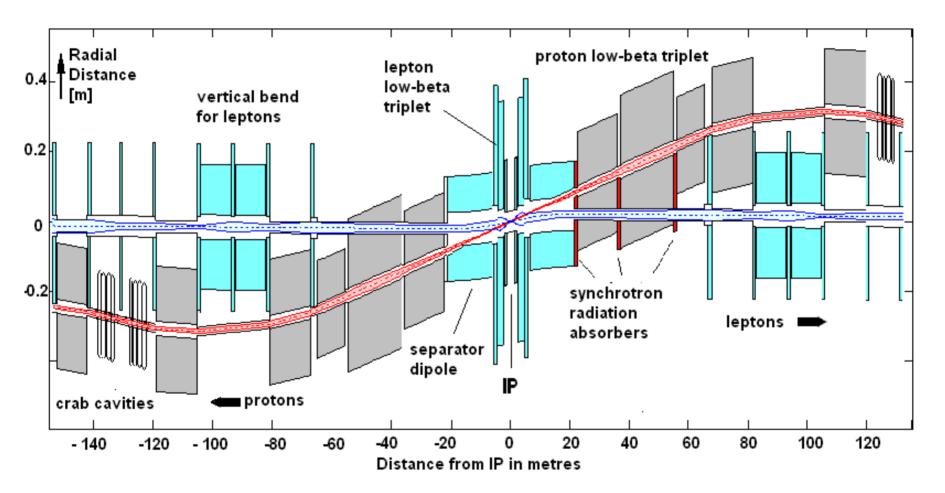

from J.A. Osborne CERN/TS

No additional radiation

Little, easy to correct influence on Circ.

But

Existing Bypass Tunnels probably not available

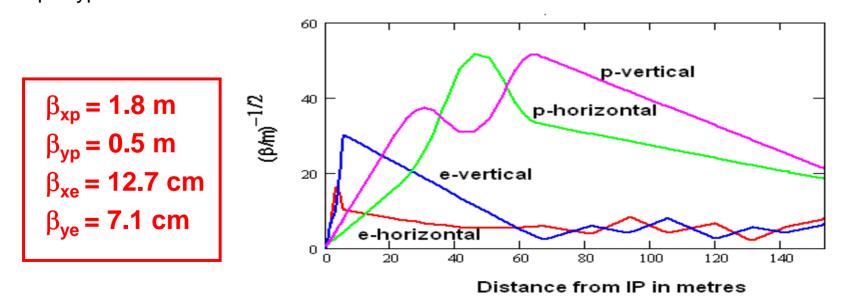


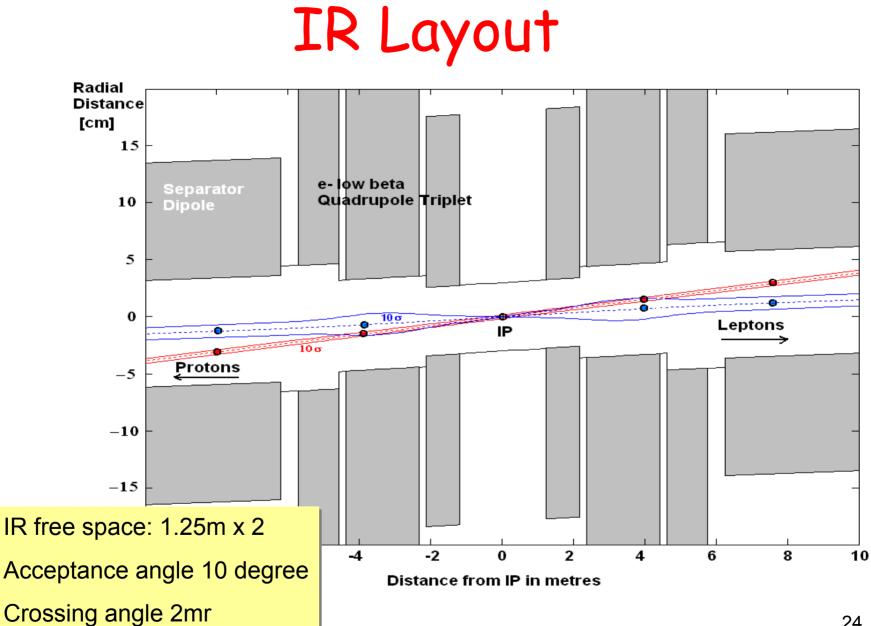
Max Klein LHeC DIS08 London 11.4.08

Additional Tunnels needed

	Point 1 ATLAS	Point 5 CMS	Point 2 and/or 8 RF	Point 3 Collimators	Point 7 Collimators	
Туре	Bypass Experiment	Bypass Experiment	Bypass ; allow for space for e - ring RF	Bypass Collimation	Bypass Collimation	
Approximate Tunnel length	500 m	500 m	500 m	500 m	500 m	2500 m - 3000 m
Diameter	4.40 m	3.80 m	5.50 m	4.20 m	3.80 m	
Distance to p- Ring axis	10 - 13 m	10 - 13 m				

IR Layout


Interaction region parameters				
property	unit	leptons	protons	
Horizontal Beta function at IP	cm	12.7	180	
Vertical beta function at IP	cm	7.07	50	
Horizontal IR Chromaticity		-7.5	-7.9	
Vertical IR chromaticity		-29.7	-7.7	
Maximum horizontal Beta	m	131.7	2279	
Maximum vertical Beta	m	704.4	2161	
Minimum of available Aperture	σ_x	16	13.5	
Low beta quadrupole gradient	T/m	93.3	115	
Separation dipole field	Т	0.033 -		
Sychrotron Radiation Power	kW	9.1	-	
Low beta quadrupole length	m	.96/2.43/1.14	16.5/18.6/11	
Low beta quadrupole apertures	mm	30/40/50	12/15/15	
Distance of first quadruple from IP	m	1.2	22	
Detector Acceptance Polar Angle	degree	9.4		
Crossing Angle	mrad	2		

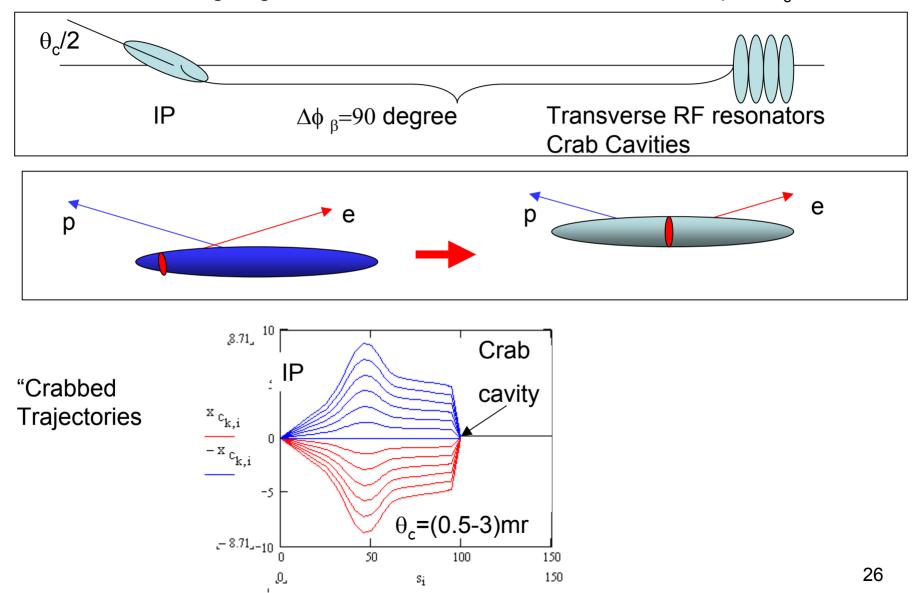

IR Parameters

$$\sigma_{xp} = \sigma_{xe}, \ \sigma_{yp} = \sigma_{ye}$$

 $\varepsilon_{xp} = 0.5 \text{ nm } \varepsilon_{xe} = 7.6 \text{ nm}$

Need to match "flat" e beam with "round" p beam

 $\beta_{xp}/\beta_{yp} \approx 4$ IR optics with low-beta tripletts for both e and p beams



Beam Separation

Vertically focussing Crossing angle 2mr e-low-beta Quadrupole magnet for **p** Other triplets Magnetic separation 2mr P beam → 60 mm separation @20m Radial Distance in metres 0.04 0.1 0.02 0.05 0 0 -0.02-0.05 separator dipole -0.04 -0.1-0.06 Main Absorber -0.15 -0.08 -30 -20 -10 0 10 20 30 Distance from IP in metres

Crab Crossing

Crossing angle will enhance effective beam size $\sigma^2 = \epsilon \beta + \theta^2 \sigma_s^2$

Crab Cavitiy Calculations

Required Crossing Angle k_s := 42

 $x_{p_{k_{\sigma}}} - x_{e_{k_{\sigma}}} = 65.571 \, \text{mm}$ $s_{k_{s}} = 22.232 \, \text{m}$ ep Separation

$$\Delta x_{sep} := x_{p_{k_s}} - x_{e_{k_s}} \qquad \theta_r := \theta_c \qquad \theta_r = -2 \operatorname{mrad}$$

required crab cavitiy orbit kick for $1\sigma \Delta \sigma \sigma$ particles

 $x_r := \frac{\theta_r}{2} \cdot \sigma_s$ $\beta_{px_0} = 1.8 \text{ m}$ $\beta_{px_{82}} = 708.766 \text{ m}$ $\theta_{cc} := \frac{-x_r}{\sqrt{\beta_{px_0} \cdot \beta_{px_{82}}}} \qquad \qquad \theta_{cc} = 2.1 \, \mu rad$

crac cavitiy frequency f_{cc}

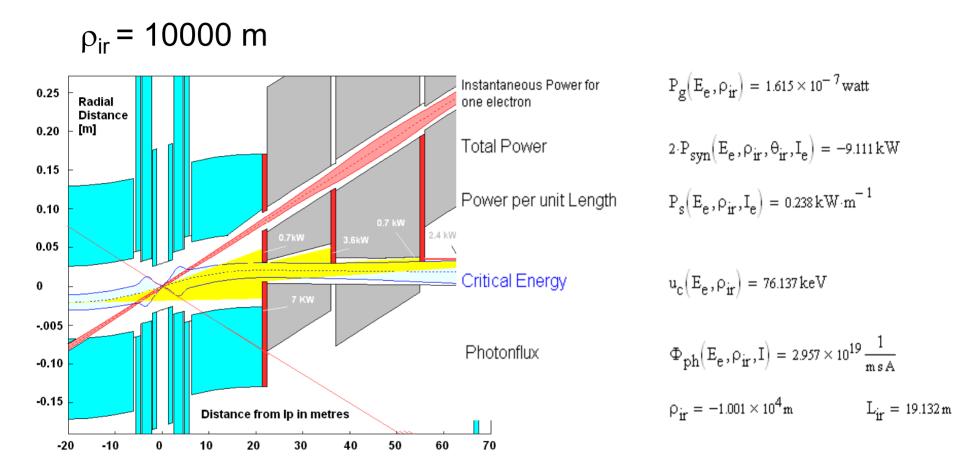
 $\lambda_{cc} := \frac{c}{f_{cc}}$ $\lambda_{cc} = 599.585 \, \text{mm}$ $\sigma_s = 75 \, \text{mm}$

 $\phi_{cc1s} := \frac{2 \cdot \pi \cdot \sigma_s}{\lambda_{cc}} \quad \phi_{cc1s} \cdot \frac{180}{\pi} = 45.031$ crabcavity phase of one sigma particle

 L_{cc}

Required cavitiy voltage:

$$\mathbf{U}_{cc} := \frac{\mathbf{\Theta}_{cc} \cdot \mathbf{E}_{p}}{\mathbf{e} \cdot \sin(\mathbf{\phi}_{cc1s})} \qquad \qquad \mathbf{U}_{cc} = 20.775 \, \mathrm{MV}$$


achievable gradient:
$$G_{cc} := 3.4 \cdot MV \cdot m^{-1}$$

Length of the cc structure:

$$:= \frac{U_{cc}}{G_{cc}} \qquad L_{cc} = 6.11 \, \mathrm{m}$$

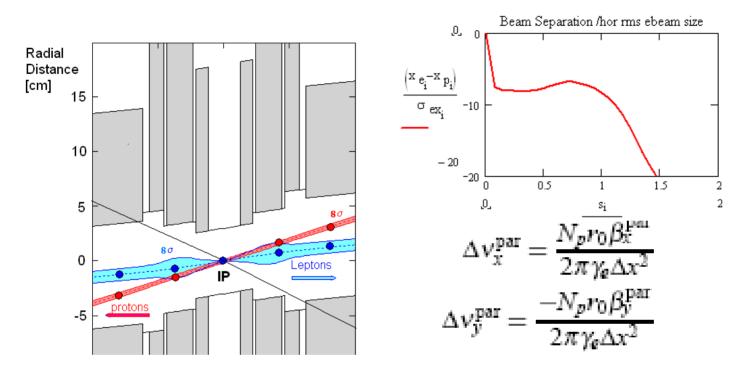
27

Synchrotron Radiation

SR Power Density on Absorber

ep Collision Parameters and Luminosity

Peak Luminosity	$L_{peak} = 1.$	$103 \times 10^{33} \mathrm{sec}^{-1} \cdot \mathrm{cm}^{-2}$	
Hourglass factor	$R(\sigma_s) = 0$		
Crossing Angle	$\theta_{\rm c} = -2{\rm mr}$		
Tuneshift	$\Delta\nu_{yp}=3.177\times10^{-4}$	$\Delta v_{ye} = 0.051$	$\Delta v_{\rm ypar} = -0.44410^{-3}$
beam-Beam	$\Delta\nu_{\rm XP}=8.318\times10^{-4}$	$\Delta v_{\rm xe} = 0.048$	$\Delta v_{xpar} = 0.029 10^{-3}$
	ξ _{pyIR} = -7.74	ξ _{eyIR} = −29.757	
IR Chromaticiy	ξ _{pxIR} = -7.969	$\xi_{exIR} = -7.517$	
	$\sigma_{\rm g} = 75{\rm mm}$	$\sigma_{be} = 7.085 \mathrm{mm}$	
	$\sigma_{yp} = 16.373 \mu m$	σ _{ye} = 16.373 µm	
Beam size	σ_{xp} = 31.066 $\mu\mathrm{m}$	σ_{xe} = 31.066 $\mu \mathrm{m}$	(* 192)
	$\beta_{yp} = 50 cm$	$\beta_{ye} = 7.072 cm$	$\max(\beta_{px}) = 2$
β*	$\beta_{\rm XP} = 180{\rm cm}$	$\beta_{\rm xe} = 12.73 \rm cm$	$\max(\beta_{py}) = 2$
Ν	$\mathrm{N_p}=1.7\times10^{11}$	$N_e = 1.404 \times 10^{10}$	
1	$I_{p} = 0.856 A$	I _e = 0.071 A	
E	$\rm E_p=7\times 10^3GeV$	$E_e = 70 GeV$	


$$\begin{split} &\max\left(\beta_{py}\right)=2.637\times10^3\,\text{m} \quad \max\left(\beta_{ey}\right)=704.454\,\text{m} \\ &\max\left(\beta_{px}\right)=2.668\times10^3\,\text{m} \quad \max\left(\beta_{ex}\right)=131.728\,\text{m} \end{split}$$

Beam-Beam Effect

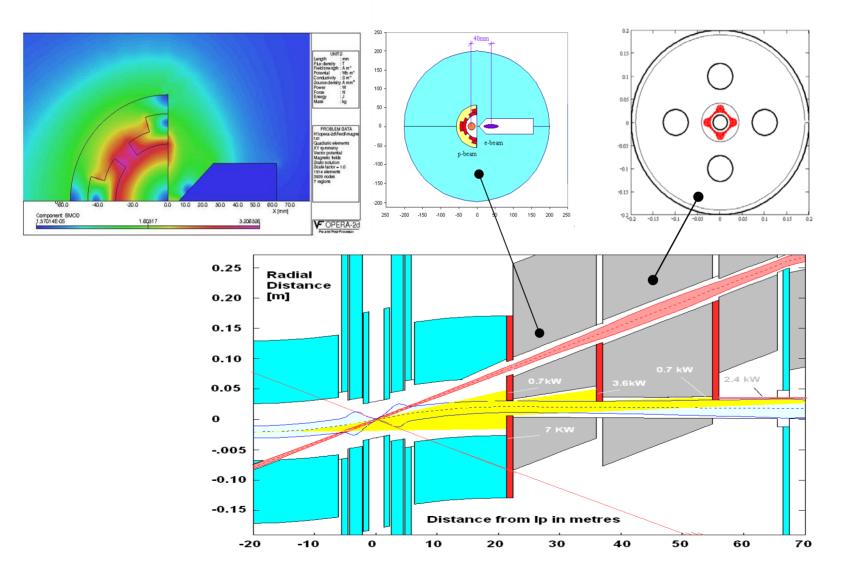
Central crossing beam-beam parameters well within the HERA range

$$\begin{array}{ll} \text{e-hor bb tuneshift} & \Delta\nu_{xe} \coloneqq \frac{r_e \cdot N_p \cdot \beta_{xe}}{2 \cdot \pi \cdot \gamma_e \cdot \sigma_{xp} \cdot (\sigma_{xp} + \sigma_{yp})} & \Delta\nu_{xe} = 0.048 \\ \\ \text{e ver bb tuneshift} & \Delta\nu_{ye} \coloneqq \frac{r_e \cdot N_p \cdot \beta_{ye}}{2 \cdot \pi \cdot \gamma_e \cdot \sigma_{yp} \cdot (\sigma_{xp} + \sigma_{yp})} & \Delta\nu_{ye} = 0.051 \\ \\ \text{p-hor bb tuneshift} & \Delta\nu_{xp} \coloneqq \frac{r_p \cdot N_e \cdot \beta_{xp}}{2 \cdot \pi \cdot \gamma_p \cdot \sigma_{xe} \cdot (\sigma_{xe} + \sigma_{ye})} & \Delta\nu_{xp} = 5.122 \times 10^{-4} \\ \\ \text{p ver bb tuneshift} & \Delta\nu_{yp} \coloneqq \frac{r_p \cdot N_e \cdot \beta_{yp}}{2 \cdot \pi \cdot \gamma_p \cdot \sigma_{ye} \cdot (\sigma_{xe} + \sigma_{ye})} & \Delta\nu_{yp} = 2.7 \times 10^{-4} \end{array}$$

Parasitic Crossings

Bunch	Crossing	Separation	Separation	Horizont. parasitic	Vertical parasitic
spacing	angle			beam-beam tune	beam-beam tune
				shift	shift
[ns]	[mrad]	[mm]	$[\sigma_{ex}]$		
25	2.0	7.7	8.3	0.0011	-0.0015
50	2.0	15	23	0.0001	-0.002
75	2.0	27	50	0.00003	-0.0004

Luminosity vs Bunch Spacing


L independent of bunch spacing as long as I_e total can be maintained

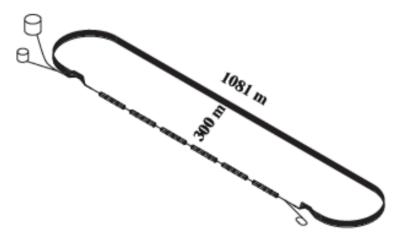
At very large bunch spacings limitations by

- Proton beam-beam effect

 Single bunch instabilities of e-beam (up to 75ns bunch spacing far from becoming a problem)

Quadrupole Magnets

ELFE@CERN


 $f_{rf} = 352 \text{ MHz}, \text{ gradient } 8 \text{ MV} / \text{m}$

V_{rf} = 3.5 GV, 72 rf-modules

7 passes (last at 21.5 GeV)

L = 3924 m of which Linac 1081 m

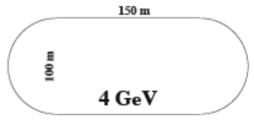
ę = 56.9 m

From H. Burckhard, DIS08

LHeC injector

 $f_{rf} \sim 1 \text{ GHz}, \text{ gradient } 31.5 \text{ MV/m}$

Linac L = 150 m 7× shorter


V_{rf} = 4 GV, 5 passes ; last 16 GeV

 $\varrho = (16/21.5)^{4\times56.9} \text{ m} = 17.5 \text{ m}$

or 3.3× shorter

significantly downscaled $\mathbf{L} \approx 600 \ \mathbf{m}$

and simplified (5 passes) version of ELFE@CERN

recirculating LINAC

more cost effective (?) than single LINAC + extra phys. potential

LHeC Activities

The first ECFA-CERN workshop on the LHeC is announced,: <u>http://www.lhec.org.uk</u>

The workshop takes place at Divonne, not far from CERN, Monday-Wednesday 1.-3.9.2008.

The working group convenors are nominated and can be found on the web page.

The LHeC work will focus on the work of these groups in the preparation for the workshop and beyond.

Meeting on exchange of information on the LHeC project status and on the NuPECC long range planning. NuPECC expressed an interest in the LHeC. NuPECC has formed a study group on the future of lepton-hadron colliders, which will investigate the potential of the EIC (eRHIC/ELIC) and the LHeC as part of NuPECC's long range planning.

At the DIS08 meeting new physics studies and updates on the two machine options were presented by Helmut Burkardt (Ring-Ring) and by Hans Braun(Linac-Ring).

Conclusions

- Comparison of different options ring-ring, ring linac and ERL show specific advantages of each of the options. The final physics case, and the cost/luminosity and energy trade off will decide which option is the most favorable one.
- A first look at a ring-ring based lepton proton collider in the LHC tunnel with a luminosity of 10³³cm⁻²s⁻¹ appears to be technical possible
- Simultaneous operation of pp and ep should be possible (however with reduced pp luminosity)
- More work is needed to determine the most optimum parameters, the optimum technical choices and the cost of such a facility, a workshop had been held, several working groups (CERN, CI, DESY) have started to work out scenarios in more detail
- Further activities on the layout of the accelerator should b coordinated with and integrated into the discussions on LHC upgrades