Study of the Luminosity of LHeC, a Lepton Proton Collider in the LHC Tunnel

CERN June 14 2006 F. Willeke, DESY

LHeC Design Goals

Luminosity $L = 1 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ Energy $E_{cm} = 1.4 \text{ TeV}$

These input parameters are subject to be altered by further iterations

But this study assumes these parameters to be fixed

Design Asumptions

based on LHC Proton beam parameters

Energy Particles per Bunch Emittance Bunch spacing Bunch Length

$$E_p = 7 \text{ TeV}$$

 $N_p = 1.68 \ 10^{11}$
 $\epsilon_{Np} = 3.75 \text{ rad}\mu\text{m}$
 $\tau_b = 25 \text{ ns}$
 $\sigma_p = 7.55 \text{ cm}$

Circumference = 26658.883 m

Luminosity

$$L = \frac{N_p \cdot N_e \cdot f_{rev} \cdot n_b}{2 \cdot \pi \cdot \sqrt{\varepsilon_{xp} \beta_{xp} + \varepsilon_{xe} \beta_{xe}} \cdot \sqrt{\varepsilon_{yp} \beta_{yp} + \varepsilon_{ye} \beta_{ye}}}$$

Matched beam cross sections at IP $\sigma_{xp} = \sigma_{xe}$, $\sigma_{yp} = \sigma_{ye}$ Lepton Beam-beam tune shift limit to be avoided

$$L = \frac{I_e \cdot N_p \cdot \gamma_p}{2\pi \cdot e \cdot \varepsilon_{Np} \cdot \sqrt{\beta_{xp} \cdot \beta_{yp}}}$$

With the proton beam brightness given by LHC, $N_p \gamma_p / \epsilon_{Np} = 3.2 \cdot 10^{20} \text{m}^{-1}$

$$\frac{I_e}{\sqrt{\beta_{xp}\beta_{yp}}} = 0.063 \frac{A}{m}$$

Lepton Beam Current

Assumptions: Limited by RF Power only depends on Bending radius $\rho = 80\% \cdot (C_{LHC}-8\cdot L_{straigth}) / 2\pi = 2886 \text{ m}$ $eU_{loss} = C_g E_e^4 / (e\rho) = 734 \text{ MeV}$

If **50 MW** beam power considered as a limit \rightarrow $I_e = 68mA$ $N_e = 1.3 \ 10^{10}$

5000 h/y x 50MW x 10 = 250 GWh/y

Design Task: e-Ring and IR Design which provides

$$\sqrt{\beta_{xp} \cdot \beta_{yp}} = 1m$$

- sufficient dynamic aperture
- •With matched beams,
- Small crossing angle $\theta < \sigma_{xe}/\sigma_{p}$
- Small hour glass effect $\beta_{ye} \ge \sigma_p$
- tolerable synchrotron radiation background
- feasible components

e-Ring Lattice Parameters

bend radius & circumference fixed by LHC effective FODO structure chosen (no alternative) the only choice to be made id the FODO cell length or the number of cell length of the arc

→ This determines the lepton beam emittance and the dynamic aperture

Constraints under the assumption of matched beam sizes at the IP:

Small emittance \rightarrow large $\beta^* \rightarrow$ strong beam-beam effect \rightarrow no stability large emittance \rightarrow small $\beta^* \rightarrow$ strong hourglass effect effect \rightarrow less lumi Long cells \rightarrow large emittance \rightarrow reduced dynamic aperture \rightarrow no stability Short cell \rightarrow small emittance, high cost

Dynamic Aperture Scaling

$$n_{\sigma}(N,\phi) = \frac{\zeta}{ml_{x}(N,\phi) \sqrt{\epsilon(N,\phi) \beta_{f}(N,\phi)^{3}}} \qquad from HERA: 0.2$$

Taken

assumes a

Plain FODO

for FODO cell structure, N number of FODO Cells

$$n_{\sigma}(N,\phi) = \frac{\left(1 + \frac{1}{2} \cdot \sin\left(\frac{\phi}{2}\right)\right) \cdot \zeta \cdot \cos\left(\frac{\phi}{2}\right) \cdot \sqrt{2 \cdot \sin\left(\frac{\phi}{2}\right)^{2} - \frac{\pi \cdot (C - L_{s})}{N^{2} \cdot \rho}} \right)}{\left[tan\left(\frac{1}{2} \cdot \phi\right) + \frac{D_{eff}\left[C_{q} \cdot \gamma^{2} \cdot \frac{(2\pi)^{2}}{2 \cdot N^{4}} \cdot \frac{C - L_{s}}{\rho} \cdot \left(1 - \frac{1}{2} \cdot \sin\left(\frac{\phi}{2}\right)^{2}\right)\right]}{\sum \left[v_{p} \cdot \beta_{p} \cdot \sin(\phi) \cdot \left[2 \cdot \sin\left(\frac{\phi}{2}\right)^{2} - \frac{\pi \cdot (C - L_{s})}{N^{2} \cdot \rho}\right]\right]}\right] \cdot \sqrt{C_{q} \cdot \gamma^{2} \cdot \frac{8}{\rho} \cdot \left(1 - \frac{1}{2} \cdot \sin\left(\frac{\phi}{2}\right)^{2}\right) \cdot \left(1 + \sin\left(\frac{\phi}{2}\right)\right)^{3}}$$

Arc chromaticity

IR chromaticity for matched beams

Choosing Lepton Ring Lattice Parameters

Main Parameters of LeHC

Property	Unit	Leptons	Protons
Beam Energies	GeV	70	7000
Total Beam Current	mA	74	544
Number of Particles / bunch	10 ¹⁰	1.04	17.0
Horizontal Beam Emittance	nm	7.6	0.501
Vertical Beam Emittance	nm	3.8	0.501
Horizontal β -functions at IP	cm	12.7	180
Vertical β -function at the IP	cm	7.1	50
Energy loss per turn	GeV	0.707	6·10-6
Radiated Energy	MW	50	0.003
Bunch frequency / bunch spacing	MHz / ns	40 /	25
Center of Mass Energy	GeV	14	00
Luminosity	$10^{33} \text{cm}^{-2} \text{s}^{-1}$	1.	1

e Lattice

8 Octants with 500m Straight section each 376 FODO cells, Cell length 60.3 m Dipole length 2 x 12.52 m B= 810 Gauss Quadrupole length 1.5 m (G = 8 T/m)

Electron Ring Parameters		
Parameter	Unit	Value
Circumference C	m	26658.86
Beam Energy E_e	GeV	70
Are Focusing		FODO
Cell length L _c	m	60.3
Bending radius ρ	m	2997
Horizontal betatron Phase Adv./cell $\Delta \phi_x$	degree	72
Vertical betatron Phase Adv./cell $\Delta \phi_r$	degree	72
Number of FODO cells in the Arcs N _{cell}		376
Are Chromaticity (hor/vert.) $\xi_{x,y}$		94/120
Beam Current I_e	mA	70.7
Bunch spacing τ_b	ns	25
Number of bunches n_b		2800
Number of particles per bunch N_e	10 ¹⁰	1.4
Momentum compaction factor α	10^{-4}	1.34
Horizontal beam emittance ε_{xx}	nm	7.6
Vertical beam emittance ε_{pe}	nm	3.8
RMS energy spread σ_e	10-3	2.4
RMS bunch length	mm	7.1
Particle Radiation energy loss per turn eU _{loss}	MeV/tum	706.8
Beam Power loss Ploss	MW	50
Circumferencial Voltage U	MV	1521
Synchronous Phase ϕ_{synch}	degree	27
RF frequency f_{rf}	MHz	1000
Bucket height h _b	σ_e	8.4
RF frequency shift	Hz	250
Synchrotron frequency f_s	f _{rev}	0.191

Tunnel Cross Section

Bypass around Atlas and CMS

Which IR?

IR Layout

Interaction region parameters			
property	unit	leptons	protons
Horizontal Beta function at IP	cm	12.7	180
Vertical beta function at IP	cm	7.07	50
Horizontal IR Chromaticity		-7.5	-7.9
Vertical IR chromaticity		-29.7	-7.7
Maximum horizontal Beta	m	131.7	2279
Maximum vertical Beta	m	704.4	2161
Minimum of available Aperture	σ_x	16	13.5
Low beta quadrupole gradient	T/m	93.3	115
Separation dipole field	Т	0.033	-
Sychrotron Radiation Power	kW	9.1	-
Low beta quadrupole length	m	.96/2.43/1.14	16.5/18.6/11
Low beta quadrupole apertures	mm	30/40/50	12/15/15
Distance of first quadruple from IP	m	1.2	22
Detector Acceptance Polar Angle	degree	9.4	
Crossing Angle	mrad	2	

IR Parameters

$$\sigma_{xp} = \sigma_{xe}, \ \sigma_{yp} = \sigma_{ye}$$

 $\varepsilon_{xp} = 0.5 \text{ nm } \varepsilon_{xe} = 7.6 \text{ nm}$

Need to match "flat" e beam with "round" p beam

 $\beta_{xp}/\beta_{yp} \approx 4$ IR optics with low-beta tripletts for both e and p beams

Distance from IP in metres

Beam Separation

Vertically focussing Crossing angle 2mr e-low-beta Quadrupole magnet for **p** Other triplets Magnetic separation 2mr P beam → 60 mm separation @20m Radial Distance in metres 0.04 0.1 0.02 0.05 0 0 -0.02-0.05 separator dipole -0.04 -0.1-0.06 Main Absorber -0.15 -0.08 -30 -20 -10 0 10 20 30 Distance from IP in metres

Crab Crossing

Crossing angle will enhance effective beam size $\sigma^2 = \epsilon \beta + \theta^2 \sigma_s^2$

Crab Cavitiy Calculations

Required Crossing Angle k_s := 42

ep Separation $x_{p_{k_s}} - x_{e_{k_s}} = 65.571 \, \text{mm}$ $s_{k_s} = 22.232 \, \text{m}$

$$\Delta x_{sep} := x_{p_{k_s}} - x_{e_{k_s}} \qquad \theta_r := \theta_c \qquad \theta_r = -2 \, \text{mrad}$$

required crab cavitiy orbit kick for $1\sigma \Delta \sigma \sigma$ particles

 $x_{r} := \frac{\theta_{r}}{2} \cdot \sigma_{s} \qquad \beta_{px_{0}} = 1.8 \text{ m} \qquad \beta_{px_{82}} = 708.766 \text{ m}$ $\theta_{cc} := \frac{-x_{r}}{\sqrt{\beta_{px_{0}} \cdot \beta_{px_{82}}}} \qquad \theta_{cc} = 2.1 \,\mu\text{rad}$

crac cavitiy frequency f_{cc}

 $\lambda_{cc} := \frac{c}{f_{cc}}$ $\lambda_{cc} = 599.585 \, mm$ $\sigma_s = 75 \, mm$

Ucc

crabcavity phase of one sigma particle $\phi_{cc1s} := \frac{2 \cdot \pi \cdot \sigma_s}{\lambda_{cc}} - \phi_{cc1s} \cdot \frac{180}{\pi} = 45.031$ $\theta_{cc} \cdot E_{cc}$

Required cavitiy voltage:

$$:= \frac{\theta_{cc} \cdot E_{p}}{e \cdot \sin(\phi_{cc1s})} \qquad \qquad U_{cc} = 20.775 \, \text{MV}$$

rtequired curring voltage.

Length of the cc structure:

$$L_{cc} := \frac{U_{cc}}{G_{cc}} \qquad L_{cc} = 6.11 \, m$$

Synchrotron Radiation

SR Power Density on Absorber

ep Collision Parameters and Luminosity

Peak Luminosity	$L_{peak} = 1.1$	$103 \times 10^{33} \mathrm{sec}^{-1} \cdot \mathrm{cm}^{-2}$	
Hourglass factor	$R(\sigma_s) = 0$	947	
Crossing Angle	$\theta_{c} = -2 \text{mr}$		
Iuneshift	$\Delta v_{yp} = 3.177 \times 10^{-4}$	$\Delta v_{ye} = 0.051$	$\Delta v_{\rm ypar} = -0.44410^{-3}$
beam-Beam	$\Delta\nu_{\rm XP}=8.318\times10^{-4}$	$\Delta v_{\rm xe} = 0.048$	$\Delta v_{\rm xpar} = 0.029 10^{-3}$
	ξ _{pyIR} = -7.74	ξ _{eyIR} = −29.757	
IR Chromaticiy	ξ _{pxIR} = -7.969	$\xi_{exIR} = -7.517$	
	$\sigma_{\rm g} = 75{\rm mm}$	$\sigma_{be} = 7.085 \text{mm}$	
	$\sigma_{yp} = 16.373 \mu m$	$\sigma_{ye} = 16.373 \mu m$	
Beam size	$\sigma_{\rm XP}$ = 31.066 μm	σ_{xe} = 31.066 µm	(F **)
	$\beta_{yp} = 50 \text{ cm}$	$\beta_{ye} = 7.072 \text{cm}$	$\max(\beta_{px}) = 2$
β*	$\beta_{\rm XP} = 180{\rm cm}$	$\beta_{\rm xe} = 12.73{\rm cm}$	$\max(\beta_{py}) = 2$
Ν	$N_{\rm p} = 1.7 \times 10^{11}$	$N_{e} = 1.404 \times 10^{10}$	
I	$I_{p} = 0.856 A$	I _e = 0.071 A	
E	$E_p = 7 \times 10^3 \text{GeV}$	$E_e = 70 GeV$	

$$\begin{split} &\max\left(\beta_{py}\right)=2.637\times10^3\,\text{m} \quad \max\left(\beta_{ey}\right)=704.454\,\text{m} \\ &\max\left(\beta_{px}\right)=2.668\times10^3\,\text{m} \quad \max\left(\beta_{ex}\right)=131.728\,\text{m} \end{split}$$

Beam-Beam Effect

Central crossing beam-beam parameters well within the HERA range

$$\begin{array}{ll} \text{e-hor bb tuneshift} & \Delta\nu_{xe} \coloneqq \frac{r_e \cdot N_p \cdot \beta_{xe}}{2 \cdot \pi \cdot \gamma_e \cdot \sigma_{xp} \cdot (\sigma_{xp} + \sigma_{yp})} & \Delta\nu_{xe} = 0.048 \\ \\ \text{e ver bb tuneshift} & \Delta\nu_{ye} \coloneqq \frac{r_e \cdot N_p \cdot \beta_{ye}}{2 \cdot \pi \cdot \gamma_e \cdot \sigma_{yp} \cdot (\sigma_{xp} + \sigma_{yp})} & \Delta\nu_{ye} = 0.051 \\ \\ \text{p-hor bb tuneshift} & \Delta\nu_{xp} \coloneqq \frac{r_p \cdot N_e \cdot \beta_{xp}}{2 \cdot \pi \cdot \gamma_p \cdot \sigma_{xe} \cdot (\sigma_{xe} + \sigma_{ye})} & \Delta\nu_{xp} = 5.122 \times 10^{-4} \\ \\ \text{p ver bb tuneshift} & \Delta\nu_{yp} \coloneqq \frac{r_p \cdot N_e \cdot \beta_{yp}}{2 \cdot \pi \cdot \gamma_p \cdot \sigma_{ye} \cdot (\sigma_{xe} + \sigma_{ye})} & \Delta\nu_{yp} = 2.7 \times 10^{-4} \end{array}$$

Parasitic Crossings

Bunch	Crossing	Separation	Separation	Horizont. parasitic	Vertical parasitic
spacing	angle			beam-beam tune	beam-beam tune
				shift	shift
[ns]	[mrad]	[mm]	$[\sigma_{ex}]$		
25	2.0	7.7	8.3	0.0011	-0.0015
50	2.0	15	23	0.0001	-0.002
75	2.0	27	50	0.00003	-0.0004

Luminosity vs Bunch Spacing

L independent of bunch spacing As long as le total can be maintained At very large bunch spacings limitations by Proton beam-beam effect Single bunch instabilities of e-beam

up to 75ns bunch spacing far from becoming a problem

Quadrupole Magnets

Conclusions

A first look at a possible lepton proton collider in the LHC tunnel with a luminosity of 10^{33} cm⁻²s⁻¹ appears to be technical possible

Simultaneous operation of pp and ep should be possible (however with reduced pp luminosity)

More work is needed to determine the most optimum parameters, the optimum technical choices and the cost of such a facility

A workshop to discuss this exciting option together with experimental physicists and accelerator scientists is envisioned

Further activities on the layout of the accelerator should be coordinated with and integrated into the discussions on LHC upgrades