# Diffraction and forward physics in ep collisions at the LHeC



### Pierre Van Mechelen





### LHeC Conceptual Design Report

#### ISSN 0954-3899

### Journal of Physics G

Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group



iopscience.org/jphysg

IOP Publishing

#### **Forward Physics?**

- Diffraction (obviously)
- Small x (cf. LHC)

#### This talk:

#### **Physics at High Parton Densities**

- Physics at small x
- Jet and multi-jet observables
- Inclusive diffraction
- Exclusive production

#### **Disclaimer:**

Lots of material taken from LHeC CDR Refer to ~200 authors and 900+ bibliography contained therein



# Physics at small x

3

### QCD description of hadronic scattering

#### Fixed-order perturbation theory and collinear factorization

• factorization of weak and strong coupling dynamics:



- collinear factorization: PDFs do not depend on parton transverse momentum  $k_T \Rightarrow$  also X must be collinear with the incoming protons
- leading twist: a single parton is picked from the proton
- valid for hard momentum scales and hadrons consisting of a dilute set of partons
- works well for inclusive cross sections!



### Implementation in Monte Carlo models

#### Parton Showers add transverse momentum to the final state!

- high-x partons at the starting scale radiate secondary partons via parton showers
- parton looses longitudinal momentum (decreases x) and gains transverse momentum  $k_T$
- transverse momentum enters hard scattering system and produces final state X with  $p_T$
- PDF4MC: possible to extract a k<sub>T</sub> dependent PDF from DGLAP Parton Showers

 $ightarrow f(x,k_T^2,\mu^2)$ 

• in pure collinear factorization, this can only be achieved with NLO matrix elements (e.g.  $qg \rightarrow Zq$ )  $\Rightarrow k_T$  dependent PDFs contain some higher order effects already at LO







### Parton evolution schemes

#### DGLAP

- Valid for medium to large x, large  $Q^2$
- Contributions leading in  $log(Q^2)$
- Parton showers strongly ordered with increasing  $k_{\rm T}$



#### BFKL

- Valid for low x, medium  $Q^2$
- Re-summation of log(1/x) terms to all orders in  $a_s$
- Parton showers exhibit random walk in  $k_{\rm T}$ 
  - $\Rightarrow$  diffusion of  $k_{T}$  towards small x
- BFKL naturally incorporates unintegrated PDFs!
- Any approach using unintegrated PDFs calls for a precise measurement of semi-inclusive processes in a wide kinematic range

### Saturation

### HERA: proton becomes increasingly densely packed!

- Parton densities from HERA exhibit a strong rise towards low x and fixed  $Q^2$ 
  - $\Rightarrow$  this will eventually violate unitarity
- Non-linear evolution must eventually become relevant and parton densities must saturate
- Parton recombinations will lead to non-linear terms in evolution equations
- Note:  $Q^2$  is still large and the coupling is still weak  $\Rightarrow$  parton level understanding of dense limit of QCD
- Saturation scale: defined by packing factor  $\sim 1$

$$rac{ ext{density}}{ ext{unit transverse area}} \sim 1 \quad \Rightarrow \quad rac{xg(x,Q_s^2)}{Q_s^2} \sim 1 \quad \Rightarrow \quad Q_s^2 \sim Q_0^2 igg(rac{1}{x}igg)^\lambda$$



### QCD phase diagram



What is the interplay between re-summation (BFKL) and nonlinear effects?

# Jet and multi-jet observables

### Dijet azimuthal de-correlation

#### **Effect of parton transverse momentum**

 $k_{T} \neq 0$ 

- Jets are back-to-back if no  $k_{\rm T}$  is entering the hard scattering system
- A small x, gluons may gain sizable  $k_T$  through diffusion along the gluon chain
- De-correlation becomes visible in azimuthal separation  $\Delta \phi$

 $egin{aligned} -1 < \eta_{
m jet} < 2.5, \ E_{
m T, jet1} > 7~{
m GeV}, E_{
m T, jet2} > 5~{
m GeV}, \ 0.1 < y < 0.6, Q^2 > 5~{
m GeV}^2 \end{aligned}$ 

- MEPS: O(a<sub>s</sub>) ME+DGLAP parton showers
- CDM: Color Dipole Model, includes some diffusion in  $k_{\rm T}$
- CASCADE: off-shell matrix elements+CCFM
- Discrepancies become visible at low x
- Azimuthal de-correlation offers direct determination of k<sub>T</sub>-dependence of the unintegrated PDF



### Forward jets

### ffect of parton showers unordered in $k_{T}$

- $Q^2 \sim p_T^2 \Rightarrow$  suppress collinear (DGLAP) configurations
- Jet longitudinal momentum fraction  $x_1$  as large as possible and  $x/x_1$  as small as possible  $\Rightarrow$  select BFKL phase space
- From HERA we know that standard DGLAP fails to describe the forward jet cross section



large x

 $Q^2$ 

small x

- Lowest x is explored with small angle scenario for detector acceptance
- Large differences between MEPS, CDM and CASCADE



### **Di-hadron correlations**

### **Effect of saturation**

- Semi-inclusive di-hadron production
  - $\Rightarrow$  angular correlation function:

$$C(\phi_{12}) = rac{1}{d\sigma(\gamma^*N o h_1X)/dz_{h1}} \, rac{d\sigma(\gamma^*N o h_1h_2X)}{dz_{h1}dz_{h2}d\phi_{12}}$$

- $z_h$ : longitudinal momentum fraction of hadrons w.r.t. photon momentum,  $\varphi_{12}$ : azimuthal angle between them
- GBW dipole model predicts wider correlation function for nuclei than for the proton
  - ⇒ can be interpreted as due to stronger saturation in nuclei
- GBW dipole model also predicts mild dependence on proton beam energy ⇒ indicative of log(1/x) effects



 $p_{
m T,h1} > 3~{
m GeV}, p_{
m T,h2} > 2~{
m GeV},$ 

 $z_{
m h1} = z_{
m h2} = 0.3,$ 

 $Q^2=4~{
m GeV}^2, y=0.7$ 

#### Di-hadron correlation provides additional way to constrain unintegrated PDF

# Inclusive diffraction



### Inclusive Diffraction

### Diffractive deep inelastic scattering: a quick recap

• HERA: 10% of DIS is diffractive!

 $\mathrm{ep} \to \mathrm{eXp}$ 

with a large rapidity gap between X and p

- Can be described by the exchange of a color neutral "pomeron"
- Can be characterized via a factorization theorem by diffractive PDFs

$$f^{\mathrm{D}}(eta,Q^2,x_{{\rm I\!\!P}},t)$$

• Kinematic variables:

$$eta = rac{Q^2}{Q^2 + M_X^2 - t} \quad x_{{
m I\!P}} = rac{x}{eta} = rac{Q^2 + M_X^2 - t}{Q^2 + W^2 - m_p^2}$$

At lowest order, the exchange must consist of at least two gluons
 ⇒ expect enhanced sensitivity to saturation effects!



### Kinematic range at the LHeC

#### Vast increase of phase space!



 Large Q<sup>2</sup> allows weak boson exchange
 ⇒ possible to do quark flavor decomposition  Mass of diffractive dissociation system of up to 250 GeV (for E<sub>e</sub> = 50 GeV)
 ⇒ possible to have diffractive production of beauty, W, Z, exotic states with JP=1-, ...



Testing of collinear and proton vertex factorization in significantly increased phase space domain

### Diffractive event selection



#### Leading proton detection

- Using proton spectrometer at 420 m from the interaction point
- Overlap in x<sub>IP</sub> with LRG method can be used for cross-calibration

### Large rapidity gap technique

- Exploit correlation between  $x_{\rm IP}$  and rapidity of most forward particle  $\eta_{\rm max}$
- $\eta_{\text{max}} < 5$  (implying forward instrumentation down to 1°) allows measurements up to  $x_{\text{IP}} \sim 0.001$





### Example of diffractive *F*<sup>2</sup> measurement

#### LHeC pseudodata

- $E_{\rm e} = 150 \text{ GeV}, L = 2 \text{ fb}^{-1}$
- Extrapolation from "H1 fit B"
- Large difference between kinematic range accessible with backward instrumentation up to 170° or 179°!

#### Large extension of HERA measurements!



### Diffractive dijet and charm production

#### Test of collinear factorization in diffractive ep scattering

- Experimental confirmation of factorization in diffractive dijet photoproduction from HERA is somewhat confusing
- Role of resolved photons: provides a link to diffractive hadron-hadron scattering
  - ⇒ multi-parton interactions and gap survival probability
- LHeC: measurements up to  $p_T = 50$  GeV are possible, much smaller scale uncertainties than at HERA
- LHeC gives access to much lower  $z_{IP}/x_{Y}$  than HERA
- Diffractive dijet photoproduction at the LHeC is dominated by resolved photons!





### Saturation in diffraction

### Looking for the onset of non-linear evolution/higher twist effects...

- Diffractive DIS sensitive to power corrections of order  $Q^2_{sat}/Q^2$
- LHeC gives access to semi-hard regime  $Q^2 < 10 \text{ GeV}^2$  and low x
- Pseudo-data can distinguish between a range of models with and without saturation effects



# Exclusive production



### Exclusive J/ $\psi$ and Y production at the LHeC

### Studying the transition from dilute to dense parton densities

- Extremely clean final state: 2µ + p
- Access low x and  $Q^2$ , while varying W and t

$$x_{ ext{eff}} = rac{Q^2 + m_V^2}{Q^2 + W^2} \qquad \quad Q_{ ext{eff}}^2 = rac{Q^2 + m_V^2}{4}$$

- Assume  $\mu$  detection down to 1°  $\Rightarrow$  W up to 1 TeV and higher
- LHeC pseudodata obtained from power-law extrapolation, stat. error from DIFFVM
- b-sat dipole model:
  - eikonalized dipole scattering amplitude
  - including only 1-pomeron exchanges
     ⇒ importance of unitarity corrections
- Sensitivity is reduced for exclusive Y photoproduction due to the higher mass and lower cross section
- Exclusive J/ψ photoproduction may be the ideal observable to investigate unitarity corrections at a perturbative scale



### Exclusive J/ $\psi$ and Y production at the LHeC

#### **Impact parameter dependence**

 Saturation effects are most important towards the centre of the proton

*t* is the Fourier conjugate variable to impact parameter *b* 

- Difference in b-sat model between fully eikonalized and 1-pomeron exchanges increases with t
- Errors in LHeC pseudo-data small enough to differentiate between models
- measuring exclusive J/ψ production in bins of t, one can extract the impact parameter profile of the interaction region





### Deeply virtual Compton scattering

### Generalized parton densities (GPDs)

• Factorization between pQCD scattering process and universal GPDs defined as

 $\langle P',\lambda'|\hat{O}|P,\lambda
angle$ 

- Fourier transform of GDP w.r.t. transverse momentum transfer ~ transverse spatial distribution of partons
  - impact parameter dependence of saturation scale
  - UE structure and rapidity gap survival probability in hard diffraction
- Need measurement up to high |t|
  - Large systematic due to proton dissociation at large |t| -> good scattered proton detection is needed

### **Observable processes**

- VM and heavy quarkonia probe gluon GPD
- DVCS adds singlet quark GDPs



#### **MILOU** simulation

Low  $Q^2$  (2.5 GeV<sup>2</sup>) low x (10<sup>-5</sup>) can only be reached with  $p_{T,Y} > 2$  GeV and detector acceptance to 1°



### Summary

We know that the collinear, leading twist description of hadron collisions based on DGLAP evolution is only an approximation and that it has to fail eventually...

- Re-summation -
  - Saturation -
  - Higher twist -
- Multi-parton interactions -

Discrepancies are expected to be seen first in **semi-inclusive and exclusive** observables

But we need high energy (low x) and/or high A to firmly establish physics beyond leading twist, collinear factorization

The LHeC is able to take us to the next step in high density QCD!

