## Prospects for Higgs Physics at LHeC

Uta Klein (University of Liverpool) for the LHeC Study Group



ICHEP 2012, Melbourne, July 7th, 2012

# LHOA Large Hadron Electron Collider at CERNJ. Phys. G: Nucl. Part. Phys. 39 (2012) 075001 [arXiv:1206.2913]

#### LHeC Study Group CDR : About 200 experimentalists and theorists from 69 institutes

J.L.Abelleira Fernandez<sup>16,23</sup>, C.Adolphsen<sup>57</sup>, A.N.Akay<sup>03</sup>, H.Aksakal<sup>39</sup>, J.L.Albacete<sup>52</sup>, S.Alekhin<sup>17,54</sup>, P.Allport<sup>24</sup>, V.Andreev<sup>34</sup>, R.B.Appleby<sup>14,30</sup>, E.Arikan<sup>39</sup>, N.Armesto<sup>53</sup>, G.Azuelos<sup>33,64</sup>, M.Bai<sup>37</sup>, D.Barber<sup>14,17,24</sup>, J.Bartels<sup>18</sup>, O.Behnke<sup>17</sup>, J.Behr<sup>17</sup>, A.S.Belvaev<sup>15,56</sup>, I.Ben-Zvi<sup>37</sup>, N.Bernard<sup>25</sup>, S.Bertolucci<sup>16</sup>, S.Bettoni<sup>16</sup>, S.Biswal<sup>41</sup> J.Blümlein<sup>17</sup>, H.Böttcher<sup>17</sup>, A.Bogacz<sup>36</sup>, C.Bracco<sup>16</sup>, G.Brandt<sup>44</sup>, H.Braun<sup>65</sup>, S.Brodsky<sup>57</sup>, O.Brüning<sup>16</sup>, E.Bulvak<sup>12</sup>, A.Buniatyan<sup>17</sup>, H.Burkhardt<sup>16</sup>, I.T.Cakir<sup>02</sup>, O.Cakir<sup>01</sup>, R.Calaga<sup>16</sup>, V.Cetinkaya<sup>01</sup>, E.Ciapala<sup>16</sup> R.Ciftci<sup>01</sup>, A.K.Ciftci<sup>01</sup> B A Colo<sup>38</sup> I.C.Collins<sup>48</sup> O Dadoun<sup>42</sup> I Dainton<sup>24</sup> A Do Roock<sup>16</sup> D.d'Enterria<sup>16</sup> A.Dudarev<sup>16</sup>, A.Eide Further LHeC talks at ICHEP2012:  $te^{32}$ , A.Gaddi<sup>16</sup> P.Gambino<sup>59</sup>, H.Gar  $B.Goddard^{16}$ T.Greenshaw<sup>24</sup>, A.G QCD studies, jets and  $\alpha_s$  by Claudia Glasman  $err^{16}$ , A.Hervé<sup>27</sup>. ng<sup>17</sup>, H.Karadeniz<sup>02</sup> B.J.Holzer<sup>16</sup>, M.Ishit Low-x and eA physics by Paul Newman D.Kayran<sup>37</sup>, A.Kilic ev<sup>24</sup>. A.Kosmicki<sup>16</sup> P.Kostka<sup>17</sup>, H.Kowa Detector design by Alessandro Polini E.Levichev<sup>40</sup>. S.Levonian<sup>17</sup>, V.N.L Iess<sup>16</sup>. A.Milanese<sup>16</sup> S.Moch<sup>17</sup>, I.I.Moroze Accelerator overview by Max Klein mori<sup>61</sup>, J.Osborne<sup>16</sup>, E.Paoloni<sup>49</sup>, Y.Papapninppou<sup>---</sup>, U.Pascaud<sup>---</sup>, H.Paukkunen<sup>---</sup>, E.Perez<sup>---</sup>, I.Pieloni<sup>---</sup>, E.Pincer<sup>62</sup>, B.Pire<sup>45</sup>, R.Placakyte<sup>17</sup>, A.Polini<sup>07</sup>, V.Ptitsyn<sup>37</sup>, Y.Pupkov<sup>40</sup>, V.Radescu<sup>17</sup>, S.Raychaudhuri<sup>35</sup>, L.Rinolfi<sup>16</sup>, R.Rohini<sup>35</sup>, J.Rojo<sup>16,31</sup>, S.Russenschuck<sup>16</sup>, M.Sahin<sup>03</sup>, C.A.Salgado<sup>53</sup>, K.Sampei<sup>58</sup>, R.Sassot<sup>09</sup>, E.Sauvan<sup>04</sup>, U.Schneekloth<sup>17</sup>, T.Schörner-Sadenius<sup>17</sup>, D.Schulte<sup>16</sup>, A.Senol<sup>22</sup>, A.Seryi<sup>44</sup>, P.Sievers<sup>16</sup>, A.N.Skrinsky<sup>40</sup>, W.Smith<sup>27</sup>, H.Spiesberger<sup>29</sup>, A.M.Stasto<sup>48</sup>, M.Strikman<sup>48</sup>, M.Sullivan<sup>57</sup>, S.Sultansoy<sup>03</sup>, Y.P.Sun<sup>57</sup>, B.Surrow<sup>11</sup>, L.Szymanowski<sup>66</sup>, P.Taels<sup>05</sup> I.Tapan<sup>62</sup>, T.Tasci<sup>22</sup>, E.Tassi<sup>10</sup>, H.Ten.Kate<sup>16</sup>, J.Terron<sup>28</sup>, H.Thiesen<sup>16</sup>, L.Thompson<sup>14,30</sup>, K.Tokushuku<sup>61</sup> R.Tomás García<sup>16</sup>, D.Tommasini<sup>16</sup>, D.Trbojevic<sup>37</sup>, N.Tsoupas<sup>37</sup>, J.Tuckmantel<sup>16</sup>, S.Turkoz<sup>01</sup>, T.N.Trinh<sup>47</sup> K.Tywoniuk<sup>26</sup>, G.Unel<sup>20</sup>, J.Urakawa<sup>61</sup>, P.VanMechelen<sup>05</sup>, A.Variola<sup>52</sup>, R.Veness<sup>16</sup>, A.Vivoli<sup>16</sup>, P.Vobly<sup>40</sup>. J.Wagner<sup>66</sup>, R.Wallny<sup>68</sup>, S.Wallon<sup>43,46</sup>, G.Watt<sup>16</sup>, C.Weiss<sup>36</sup>, U.A.Wiedemann<sup>16</sup>, U.Wienands<sup>57</sup>, F.Willeke<sup>37</sup>, B.-W.Xiao<sup>48</sup>, V.Yakimenko<sup>37</sup>, A.F.Zarnecki<sup>67</sup>, F.Zimmermann<sup>16</sup>, R.Zlebcik<sup>51</sup>, F.Zomer<sup>42</sup>

#### http://cern.ch/lhec

Supported by CERN, ECFA, NuPECC

# LHO Light SM Higgs production in ep

Higgs at ~126 GeV : dominant decay to bb



√s=1 – 2 TeV :

- LHeC : up to 100 times HERA luminosity! (no pile-up)
- CC: σ~ 200 fb (@HERA ~0.5 fb)
- NC: σ~ 50 fb (Z heavier than W and couplings to fermions smaller)



# LHO Light SM Higgs production in ep



→ In ep, direction of quark (FS) is well defined.

• NC:  $\sigma^{\sim}$  50 fb (Z heavier than W and couplings to fermions smaller)

# **LHO** Total SM Higgs cross sections

Total CC e<sup>-</sup>p Higgs production cross section using design LHC protons of 7 TeV SM Higgs with  $M_H = 120$  GeV

| Electron beam         | 50  | 100 | 150 |
|-----------------------|-----|-----|-----|
| energy                | GeV | GeV | GeV |
| cross section<br>[fb] | 81  | 165 | 239 |

•Scale dependencies of the LO calculations are in the range of 5-10%.

• QCD and QED corrections are moderate but sensitive to experimental cuts.

• NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20%. QED corrections up to -5%.

[J. Blumlein, G.J. van Oldenborgh , R. Ruckl, Nucl.Phys.B395:35-59,1993][B.Jager, arXiv:1001.3789]







- Calculate cross section with tree-level Feynman diagrams (PDF CTEQ6L1)
- Generate final state of outgoing particles

Input parameters for initial studies (CC e<sup>-</sup>p):

- 150 GeV electron beam [60 GeV configuration as comparison]
- 7 TeV proton beam
- 120 GeV SM Higgs boson mass

#### Generator level cuts

- $\mathbf{p}_{\tau} > 5 \text{ GeV}$  (for partons besides b)
- $|\eta| < 5.0$
- For NC: Number of b quarks  $\geq 2$





### **Kinematic distributions**

 $[M_{H}=120 \text{ GeV}, E_{e}=150 \text{ GeV}, E_{p}=7 \text{ TeV}]$ 

a-b) Kinematic distributions of generated Higgs Generated events passed to Pythia c-d) Reconstructed y<sub>IB</sub> and Q<sup>2</sup><sub>IB</sub> and to generic LHC-style detector: 1400 autrie 1800E **10°** Coverage: 1600F 1200  $\eta_{T}^{\ H}$ p<sub>T</sub><sup>H</sup> 1400F Tracking: |η| < 3 1000 50 1200F Calorimeter:  $|\eta| < 5$ 800 1000F 600 800F Calorimeter resolution 600F 400 EM: 1% ⊕ 5%/VE 400F 200 200F Hadron: 60%/√E 150 200 250 300 100 Cell size: (Δη,Δφ) = (0.03, 0.03) **b**) a) p<sub>T</sub><sup>H</sup> [GeV] nH Jet reconstructed (cone  $\Delta R=0.7$ ) 2500 900E b-tag performance  $Q^{2}_{JB}$ **Y**<sub>JB</sub> 2000 Flat efficiency for  $|\eta| < 3$ 700Ē 600E Efficiency/mis-ID 1500 500 **у**<sub>ЈВ</sub><0.9  $Q^{2}>400 \text{ GeV}^{2}$ b-jet: 60% 400<sup>|</sup> 1000 300<sup>|</sup> 10% c-jet: 500 200E Other jets: 1% 100Ē 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3 4  $log_{10}(Q^2_{JB})$ d) c) y<sub>JB</sub>





# $(H_{H}=120 \text{ GeV}, E_{p}=7 \text{ TeV})$





- Case study for electron beam energy of 60 GeV using same analysis strategy
  - Iuminosity values of 100 fb<sup>-1</sup> (10 fb<sup>-1</sup>/year) are feasible



■ Linac with high electron polarisation of about 90% → enhancement by factor 1.9 feasible, i.e. around 500 Higgs candidates for E<sub>e</sub>=60 GeV allowing to measure Hbb coupling with 4 % statistical precision.

■ Conservative estimate of S/N → more detailed study using OWN detector required. ICHEP2012, Uta Klein, Higgs@LHeC

# **L**He**O CP Nature of a SM Higgs and BSM**

- In SM, the only fundamental neutral scalar is a  $J^{PC} = 0^{++}$ .
- Various extensions of the SM can have several Higgs bosons with different *CP* properties : e.g. MSSM has two *CP*-even and one *CP*-odd states.
- Therefore, should a neutral spin-0 particle be detected, a study of its *CP*-properties would be essential to establish it as *the* SM Higgs boson.
- To study the effects beyond SM, we need to establish the *CP* eigenvalues for the Higgs states if *CP* is conserved, and measure the mixing between *CP*-even and *CP*-odd states if it is not.

# LHO Measure CP properties of Higgs

- Higgs couplings with a pair of gauge bosons (WW/ZZ) and a pair of heavy fermions  $(t/b/\tau)$  are largest.
- Higgs@LHeC allows uniquely to access HWW vertex  $\rightarrow$  explore the CP properties of HVV couplings: BSM will modify CP-even ( $\lambda$ ) and CP-odd ( $\lambda$ ') states differently

$${}^{(1)}(p,q) = \frac{-g}{M_W} \left[ \lambda \left( p.q \, g_{\mu\nu} - p_\nu q_\mu \right) + i \, \lambda' \, \epsilon_{\mu\nu\rho\sigma} p^\rho q^\sigma \right]$$

• Study *shape changes* in DIS normalised CC Higgs  $\rightarrow$  bb cross section versus the azimuthal angle between  $E_{T,miss}$  and forward jet,  $\Delta \phi_{MET,J}$ 



In ep, full Δφ range can be explored, here not shown yet. 13



- Limits on effective coupling strengths of CP-even and CP-odd couplings are correlated.
- At LHeC, with 5-10 fb<sup>-1</sup>, |λ| values up to 0.2 to 0.4 can be uniquely probed for both the CP-even and CP-odd states of a light SM Higgs for electron beam energies in the range of 50 to 150 GeV.





- LHeC, in ep(A) collisions synchronous with pp running, could deliver fundamentally new insights on the structure of the proton (and nucleus) with high precision.
- At LHeC, a light Higgs boson and its CP eigenstates could be uniquely accessed via WW and ZZ fusion - complementary to LHC experiments.
- Sensitivity to H → bb is estimated by an initial simulation study: LHeC has the potential to measure H → bb coupling to ~4% accuracy with 60 GeV electron beam. Other production and decay channels have to be explored still using dedicated LHeC detector simulation, instead of the PGS used so far.
- With the isolation of the H→bb signal at the LHeC, a window of opportunity opens for the exploration of the CP properties of the HVV vertex: LHeC offers a number of advantages
  - Clear separation of HWW and HZZ couplings
  - Very good signal to background ratio
  - Identification of backward forward directions (and full azimuthal coverage)
- Detector design is crucial for an efficient H→ bbar signal selection and CC/NC multi-jet background rejection. Prospects have just started to be explored.





 SM Higgs cross section predictions [fb] for various electron beam energies

|           | 100 GeV | 120 GeV | 160 GeV | 200 GeV | 240 GeV | 280 GeV |
|-----------|---------|---------|---------|---------|---------|---------|
|           |         |         |         |         |         |         |
| E=50 GeV  | 102.4   | 80.6    | 50.3    | 31.6    | 19.9    | 12.5    |
|           |         |         |         |         |         |         |
| E=100 GeV | 201.3   | 165.3   | 113.2   | 78.6    | 55.2    | 39.1    |
|           |         |         |         |         |         |         |
| E=150 GeV | 286.3   | 239.5   | 170.4   | 123.3   | 90.5    | 67.1    |



| LHC       | ! parameter set name                                           |                                     |  |  |
|-----------|----------------------------------------------------------------|-------------------------------------|--|--|
| 320       | ! eta cells in calorimeter                                     |                                     |  |  |
| 200       | ! phi cells in calorimeter                                     |                                     |  |  |
| 0.0314159 | ! eta width of calorimeter cells  eta  < 5                     |                                     |  |  |
| 0.0314159 | ! phi width of calorimeter cells                               |                                     |  |  |
| 0.01      | ! electromagnetic calorimeter resolution const                 |                                     |  |  |
| 0.2       | ! electromagnetic calorimeter resolution * sqrt(E)             | 20%→ 5%                             |  |  |
| 0.8       | ! hadronic calolrimeter resolution * sqrt(E)                   | n * sqrt(E) $80\% \rightarrow 60\%$ |  |  |
| 0.2       | ! MET resolution                                               |                                     |  |  |
| 0.01      | ! calorimeter cell edge crack fraction                         |                                     |  |  |
| cone      | ! jet finding algorithm (cone or ktjet) jets: cone<0.7         |                                     |  |  |
| 5.0       | ! calorimeter trigger cluster finding seed threshold (         | GeV)                                |  |  |
| 1.0       | ! calorimeter trigger cluster finding shoulder threshold (GeV) |                                     |  |  |
| 0.5       | ! calorimeter kt cluster finder cone size (delta R)            |                                     |  |  |
| 2.0       | ! outer radius of tracker (m)                                  | Disclaimer :                        |  |  |
| 4.0       | ! magnetic field (T)                                           | PGS of LHC detector                 |  |  |
| 0.000013  | ! sagitta resolution (m)                                       | I flat b tagging                    |  |  |
| 0.98      | ! track finding efficiency                                     |                                     |  |  |
| 1.00      | ! minimum track pt (GeV/c)                                     | in the full tracking range of       |  |  |
| 3.0       | ! tracking eta coverage                                        | η <3.0                              |  |  |
| 3.0       | ! e/gamma eta coverage                                         | b: 60%, c: 10%, udsg: 1%            |  |  |
| 2.4       | ! muon eta coverage                                            | CAL coverage until $\ln 1 < 5.0$    |  |  |
| 2.0       | ! tau eta coverage                                             |                                     |  |  |



• M<sub>ij,W</sub> > 130 GeV







# LH<sub>0</sub> Case Study for M<sub>H</sub>=120 GeV

- Measure deviation of the Higgs production with respect to the SM using the absolute rate of events
- The ratio of the number of events in region B to that of region A in the  $\Delta \phi_{MET,J}$  spectrum



- Assume Gaussian errors and the following systematics:
  - 10% on the background rate
  - 5% on the shape of the  $\Delta \varphi_{\text{MET,J}}$  in background
  - 5% on the rate of the SM Higgs
- Evaluating theoretical error on  $\Delta\varphi_{\text{MET,J}}$  shape ICHEP2012, Uta Klein, Higgs@LHeC