Light SM Higgs in epcollisions at the TeV scale

- Motivation
- Methodology
- Results for CC e-p
- Outlook

Uta Klein

Motivation

- SM mass generation mechanism needs the Higgs boson
- LHC and Tevatron experiments will have the capability to observe or exclude the Higgs
- EW precision data and direct searches suggest a mass range m_H≥114 GeV, see e.g. recent review by J.Ellis [arXiv:1004.0648]

Higgs Boson Couplings

Higgs couplings to both gauge bosons and fermions determine the Higgs production cross sections.

- → Measurements of those provide crucial tests of the mass generation mechanism realised in nature!
- → If a Higgs with mass < 200 GeV is discovered at LHC, Higgs boson couplings and the total width may be extracted after several years of running, see e.g. M. Duhrssen et al. [hep-ph/0406323]
- \rightarrow However, even then will be a measurement of the bottom Yukawa coupling extremely challenging since the H \rightarrow bb dominant at $m_H \le 130$ GeV is overwhelmed by QCD backgrounds for b-jets.
- LHeC is an LHC upgrade proposal focusing on precision measurements of the partonic substructure of the proton and the strong coupling at \sqrt{s} of 1 to 2 TeV.
- An ep collider can add on valuable information w.r.t. LHC measurements in particular if a light SM Higgs was discovered and some knowledge on the total width and some boson couplings are known.

SM Higgs Production Examples

~0.2 fb

Decay depends strongly on m_H

- low masses : bbar, but also $\gamma\gamma$, $\tau+\tau$ -
- high masses: WW, ZZ ... ttbar

Variety of search topologies with different S/B

SM Higgs Branching Fractions (HDECAY 2.0)

Methodology

MadGraph: tree level calculations of various processes

SM parameters can be steered via SM parameter calculator (change m_H) Beam energy, phase space cuts, PDF, scales etc. via steering card Madgraph produced all Feynman diagrams shown in this talk.

Use version 4.4.17 including pythia-pgs interface modified for DIS → Higgs decay is done via Pythia

PDF : CTEQ6L1 (LO PDF and LO α_s =0.13)

Factorisation and renormalisations scales set to partonic c.m.s.

→ Generator and detector-level Higgs search studies done by M.Ishitsuka, K.Kimura, M Kuze, J. Maeda [Tokyo Institute of Technology] and U.Klein, C.Hengler [University of Liverpool]

Higgs decay modes can be considered (package DECAY).

- → Generator based studies using 4-vector smearing for detector by T. Han and B. Mellado [arxiv:0909.2460] using Madgraph but fixed renormalisation and factorisation scales.
- → investigated Higgs searches at LHEC assuming Higgs mass is known

CC: LO SM Higgs Production

ep

~ 200 fb

e-p (swap charges for e+p)
e- u -> ve h d

around 90-80%

e- d~ -> ve h u~

around 10-20%

NC: LO SM Higgs Production

e-p (swap charges for e+p)

~ 50 fb
(Z heavier than W and couplings to fermions smaller)

around 1/3

around 1/3

Total LO Higgs Cross Sections vs M_H 140 GeV x 7000 GeV

Effect of Detector Acceptance $M_H = 120 \text{ GeV}$

→ Detector design will be crucial for signal detection and background rejection efficiency.

Total CC e-p Higgs Cross Sections (fb) versus Electron Beam Energy

	100 GeV	120 GeV	160 GeV	200 GeV	240 GeV	280 GeV
50 GeV	102.4	80.6	50.3	31.6	19.9	12.5
100 GeV	201.3	165.3	113.2	78.6	55.2	39.1
150 GeV	286.3	239.5	170.4	123.3	90.5	67.1

- \rightarrow Scale dependencies of the LO calculations are in the range of 5-10%.
- → QCD and QED corrections are moderate but sensitive to experimental cuts. NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20%. QED corrections up to -5%.
- [J. Blumlein, G.J. van Oldenborgh, R. Ruckl, Nucl.Phys.B395:35-59,1993.] [B.Jager, arXiv:1001.3789.]

Higgs Kinematics in e-p CC

- 50 k Higgs events, m_H=120 GeV, 150 GeV x 7000 GeV
- Higgs decay via Pythia:
- ~68% into bbar + other decay modes

...somewhat lower than expected, similar number via DECAY in Madgraph (~72%)

Higgs rapidity in central to forward region

'Detector'

...events passed thru PGS generic LHC detector

```
LHC
                ! parameter set name
320
             ! eta cells in calorimeter
200
             ! phi cells in calorimeter
0.0314159
                ! eta width of calorimeter cells | leta | < 5
0.0314159
                ! phi width of calorimeter cells
0.01
             ! electromagnetic calorimeter resolution const
                                                                        E<sub>ele</sub> 20%→ 10%
0.2
             ! electromagnetic calorimeter resolution * sqrt(E)
8.0
                                                                        E<sub>had</sub> 80%→40%
             ! hadronic calolrimeter resolution * sqrt(E)
0.2
             ! MET resolution
0.01
             ! calorimeter cell edge crack fraction
                                                                       jets: cone < 0.5
              ! jet finding algorithm (cone or ktjet)
cone
5.0
             ! calorimeter trigger cluster finding seed threshold (GeV)
                                                                        → Use kT
             ! calorimeter trigger cluster finding shoulder threshold (GeV)
1.0
             ! calorimeter kt cluster finder cone size (delta R)
0.5
2.0
             ! outer radius of tracker (m)
                                                              Disclaimer:
4.0
             ! magnetic field (T)
                                                              PGS of LHC detector
0.000013
               ! sagitta resolution (m)
0.98
                                                              + CDF type b-tagging
              ! track finding efficiency
1.00
              ! minimum track pt (GeV/c)
                                                              will be replaced
3.0
             ! tracking eta coverage
                                                              by LHeC detector!
3.0
             ! e/gamma eta coverage
                                                              (work is ongoing, possible
2.4
             ! muon eta coverage
                                                              values given in green)
2.0
             ! tau eta coverage
```

Inclusive Kinematics (rec=Jaquet-Blondel)

Search for Higgs: Invariant Dijet Mass

Q²>400 GeV², y_{JB} <0.9, E_{jet}^{T} >20 GeV, E_{miss}^{T} >20 GeV, θ_{iet} >1° (CAL), NO b-tagging (!), no Higgs mass constraint (!)

RED: 2 jets with lowest rapidity & E^Ttotal > 100 GeV

BLUE: 2 jets with highest p_T

Background

~100 k CC dijet+spectator events, $E_{jet}>5$ GeV, $\theta_{jet}>0.5$ deg, $M_{jj}>30$ GeV 58.8 pb (LO cross section, scale uncertainty expected to be 50-100%) MadGraph generated 542 diagrams including higgs, single top, single W \rightarrow After 'simple' dijet-selection: BG ~100 times larger than Higgs signal!

Remaining Background

after kinematic and b-tagging cuts

80 GeV
$$< M_H < 125 GeV (10 fb^{-1})$$

Higgs / CC 3jets BG
$$S/(S+N) = 46.9 / 229 = 0.20$$

- dominant CC 3-jets bgd due bcs processes (c-jet had high b-tag efficiency)
- 95% of bcs processes from single-top events
- → reject single top events using

 $Q^{2}_{1B}>400 \text{GeV}^{2}$, $y_{1B}<0.9$,

 $E_{Tmiss} > 20 GeV$

 $N_{Jet} \ge 3$, $M_{top} > 200$ GeV, $M_W > 130$ GeV

Background and Hadronic Energy Resolution after kinematic, b-tagging & single top cuts

Higgs events — CC 3jet BG $(Z \rightarrow bb!)$

Resolution	Higgs event	CC 3jet BG	S/(S+N)	S/√(S+N)
80 %	20.0	12.5	1.60	5.67
60 %	20.5	10.1	2.02	6.43
40 %	20.2	7.64	2.62	7.24

B-Tagging in PGS $f_b(E_p, \eta)$

Higgs Search at LHeC for 10 fb⁻¹

 $M_W > 130 GeV \& M_{top} > 200 GeV$

150 GeV X 7000 GeV
CDF-type b-tagging
extended in η
8ε(ηmax) = 60%

	Cut	bb decays			
	Cut		90 <m<sub>H<120</m<sub>		
	no cut	1690			
	Q ² >400GeV ² & y<0.9	1520			
	E _{T,miss} > 20 GeV	1390			
	$N_{trk,electron} = 0$	1370			
	E _{T,total} > 100GeV	1060			
	$N_{jet} \ge 2$	1030	443		
be	N _{bjet} ≥ 2	328	160		
	N _{jet} ≥ 3	256	121		

111

67.3

→extended b-tagging improves signal extraction by more than factor 3.
 →work is ongoing!

→light SM Higgs could be (re)discovered in Hbb-channel at LHeC ...

Another Promising Study

- m_H=120 GeV, ep: 140 Gev X 7000 GeV using Madgraph and DECAY
- generated parton energies and angles smeared by resolutions, e.g. $\delta E_{had} = 60\%$ yields $\delta m_H = 7\%$ (w/o angular smearing)
- 60% b-tagging efficiency applied on b-quarks and rejection factors of 10 and 100 for c and light quarks, resp., for $|\eta| < 2.5$
- require mass of 2 b-partons to be within 120±10 GeV (assume known m_H)
- tag the forward spectator parton within $1 < \eta < 5$ and $p_T > 30$ GeV
- high invariant mass of H-candidate and spectator jet, M_{HJ}>250 GeV

inspired from VBF@LHC: Phys. Lett. B611(2005)60

Outlook

- A first look to CC e-p higgs production confirms the early LEP+LHC studies on dominant dijet+spectator jet background and the importance of the b-tagging, hadronic energy resolution and forward jet tagging.
 - → first results are very encouraging! It is all work in progress!
- Full MadGraph + Pythia + PGS chain is working for DIS and Pythia-Madevent files can be read in into detector simulation tools
 - → Higgs channel can be used to optimise LHeC detector!
- More detailed background sources for CC e-p higgs has to be studied in particular beauty in photoproduction, but <u>we need our own detector</u> <u>simulation</u> for realistic estimates of rejection factors or tagging possibilities.
- Study also NC Higgs searches which is an important benchmark process for understanding the HZZ coupling.
- Study the extraction of Hbb coupling using LHeC Higgs cross sections in NC and CC in combination with LHC Higgs signal projections!

Special thanks to

```
E.Perez, G.Azuelos, G.Grindhammer, B.Kniehl, G.Kramer, H.Spiesberger, G.Weiglein, W.Khater, B.Mellado, O.Behnke, M.Kuze, M.Ishitsuka, K.Kimura, J.Maeda, C.Hengler, P.Kostka, M.Klein ... and others
```

for contributions and fruitful discussions.

Material

1st LHeC workshop, 1st - 3rd September 2008, Divonne.

http://indico.cern.ch/conferenceDisplay.py?confId=31463

Talks by E.Perez and G.Weiglein; M.Kuze et al.; U.Klein

LHeC pre Meeting at DIS 2009, 25th April 2009, Madrid.

http://indico.cern.ch/conferenceOtherViews.py?
 view=cdsagenda&confId=55684

Talks by M.Ishitsuka et al.; U.Klein

2nd LHeC workshop, 1st - 3rd September 2009, Divonne.

http://indico.cern.ch/conferenceDisplay.py?confId=59304

Talks by M.Kuze et al.; B.Mellado and T.Han; U.Klein

LHeC Mini_workshop, 8th April 2010, Hamburg.

http://indico.cern.ch/conferenceDisplay.py?confId=83882
Talk by K.Kimura et al.

More material on the LHeC project can be found here:

http://www.ep.ph.bham.ac.uk/exp/LHeC/

Some inspiring previous studies

Searching for the Higgs in e p collisions at LEP / LHC.

G.Grindhammer, D. Haidt, J. Ohnemus, (Florida State U.), J. Vermaseren, D. Zeppenfeld. MAD-PH-618, Nov 1990. Contribution to Proc. of Large Hadron Collider Workshop, Aachen, Germany, Oct 4-9, 1990. Published in Aachen ECFA Workshop 1990:0967-985.

Standard-model Higgs boson production at HERA.

Bernd A. Kniehl

Prepared for Workshop on Future Physics at HERA (Preceded by meetings 25-26 Sep 1995 and 7-9 Feb 1996 at DESY), Hamburg, Germany, 30-31 May 1996.

In *Hamburg 1995/96, Future physics at HERA, vol. 1* 219-221.

Additional Slides

CC Dijet Subprocess Cross Sections

Large cross-sction of bcs or bud 3 Jets events.

95% of these processes was single-top production $\bar{t} \to W\bar{b} \to (\bar{c}s \text{ or } \bar{u}d) \bar{b}$ They were suspected 3Jets background for Higgs discovery.