# Parton distributions and small-x physics at the Large Hadron Electron Collider

### Juan Rojo

INFN, Sezione di Milano

DIS 2009 Future Facilities Session 28/04/2009, Madrid





# **MOTIVATION**



Introduction

### TOTAL CONSTITUTION EFFECT Small-x QCD at the Effect

- The LHeC has the potential to constrain the proton (and nuclei) PDFs to an unprecedent level of accuracy, with important implications for LHC phenomenology
- small-x/BFKL resummation, non-linear QCD effects, saturation
- We report ongoing work on these issues within the NNPDF approach framework
- These studies will be part of the LHeC Conceptual Design Report



- The LHeC has the potential to constrain the proton (and nuclei) PDFs to an unprecedent level of accuracy, with important implications for LHC phenomenology
- The LHeC will also be sensitive to deviations from DGLAP evolution: small-x/BFKL resummation, non-linear QCD effects, saturation
- We report ongoing work on these issues within the NNPDF approach framework
- These studies will be part of the LHeC Conceptual Design Report



- The LHeC has the potential to constrain the proton (and nuclei) PDFs to an unprecedent level of accuracy, with important implications for LHC phenomenology
- The LHeC will also be sensitive to deviations from DGLAP evolution: small-x/BFKL resummation, non-linear QCD effects, saturation
- We report ongoing work on these issues within the NNPDF approach framework
- These studies will be part of the LHeC Conceptual Design Report



- The LHeC has the potential to constrain the proton (and nuclei) PDFs to an unprecedent level of accuracy, with important implications for LHC phenomenology
- The LHeC will also be sensitive to deviations from DGLAP evolution: small-x/BFKL resummation, non-linear QCD effects, saturation
- We report ongoing work on these issues within the NNPDF approach framework
- These studies will be part of the LHeC Conceptual Design Report



Introduction

#### Standard PDF determinations suffer of several drawbacks

- ① Fixed functional forms,  $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$ . Are they flexible enough?
- ② Artificially large tolerances  $\Delta \chi^2 \gg 1$ Are they really needed due to incompatible data?
- Gaussian linear error propagation Is this really enough for all observables?
- Summary  $\rightarrow$  Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of  $\Delta \chi^2$ ) need to be tuned to experimental data
- Situation not satisfactory, especially problematic to predict behaviour of PDFs in extrapolation regions like for the LHeC ...
- ... or when searching for non-standard DGLAP effects (saturation, small-x)
- Large tolerances  $\rightarrow$  Error blow-up by a factor  $S=\sqrt{\Delta\chi^2/2.7}$   $\rightarrow S_{\rm cteq} \sim$  6,  $S_{\rm mstw} \sim$  4.5 both in input data and in PDFs



- Standard PDF determinations suffer of several drawbacks
  - **1** Fixed functional forms,  $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$ . Are they flexible enough?
- Summary → Both the PDF input parametrization (and flavour assumptions) and
- Situation not satisfactory, especially problematic to predict behaviour of PDFs in
- ... or when searching for non-standard DGLAP effects (saturation, small-x)
- Large tolerances  $\rightarrow$  Error blow-up by a factor  $S = \sqrt{\Delta \chi^2/2.7}$



- Standard PDF determinations suffer of several drawbacks
  - Fixed functional forms,  $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$ . Are they flexible enough?
  - ② Artificially large tolerances  $\Delta \chi^2 \gg 1$ Are they really needed due to incompatible data?
  - Gaussian linear error propagation Is this really enough for all observables?
- Summary  $\to$  Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of  $\Delta\chi^2$ ) need to be tuned to experimental data
- Situation not satisfactory, especially problematic to predict behaviour of PDFs in extrapolation regions like for the LHeC ...
- ... or when searching for non-standard DGLAP effects (saturation, small-x)
- Large tolerances  $\rightarrow$  Error blow-up by a factor  $S = \sqrt{\Delta \chi^2/2.7}$   $\rightarrow S_{\rm cteq} \sim$  6,  $S_{\rm mstw} \sim$  4.5 both in input data and in PDFs



- Standard PDF determinations suffer of several drawbacks
  - **1** Fixed functional forms,  $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$ . Are they flexible enough?
  - ② Artificially large tolerances  $\Delta \chi^2 \gg 1$ Are they really needed due to incompatible data?
  - Gaussian linear error propagation Is this really enough for all observables?
- Summary  $\to$  Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of  $\Delta\chi^2$ ) need to be tuned to experimental data
- Situation not satisfactory, especially problematic to predict behaviour of PDFs in extrapolation regions like for the LHeC ...
- ullet ... or when searching for non-standard DGLAP effects (saturation, small-x)
- Large tolerances  $\rightarrow$  Error blow-up by a factor  $S = \sqrt{\Delta \chi^2/2.7}$   $\rightarrow S_{\rm cteq} \sim$  6,  $S_{\rm mstw} \sim$  4.5 both in input data and in PDFs



- Standard PDF determinations suffer of several drawbacks
  - Fixed functional forms,  $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$ . Are they flexible enough?
  - ② Artificially large tolerances  $\Delta \chi^2 \gg 1$ Are they really needed due to incompatible data?
  - Gaussian linear error propagation Is this really enough for all observables?
- Summary  $\rightarrow$  Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of  $\Delta\chi^2$ ) need to be tuned to experimental data
- Situation not satisfactory, especially problematic to predict behaviour of PDFs in extrapolation regions like for the LHeC ...
- ullet ... or when searching for non-standard DGLAP effects (saturation, small-x)
- Large tolerances  $\rightarrow$  Error blow-up by a factor  $S = \sqrt{\Delta \chi^2/2.7}$   $\rightarrow S_{\rm cteq} \sim$  6,  $S_{\rm mstw} \sim$  4.5 both in input data and in PDFs



- Standard PDF determinations suffer of several drawbacks
  - **1** Fixed functional forms,  $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$ . Are they flexible enough?
  - 2 Artificially large tolerances  $\Delta \chi^2 \gg 1$ Are they really needed due to incompatible data?
  - Gaussian linear error propagation Is this really enough for all observables?
- Summary → Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of  $\Delta \chi^2$ ) need to be tuned to experimental data
- Situation not satisfactory, especially problematic to predict behaviour of PDFs in extrapolation regions like for the LHeC ...
- ... or when searching for non-standard DGLAP effects (saturation, small-x)
- Large tolerances  $\rightarrow$  Error blow-up by a factor  $S = \sqrt{\Delta \chi^2/2.7}$



- Standard PDF determinations suffer of several drawbacks
  - Fixed functional forms,  $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$ . Are they flexible enough?
  - ② Artificially large tolerances  $\Delta \chi^2 \gg 1$ Are they really needed due to incompatible data?
  - Gaussian linear error propagation Is this really enough for all observables?
- Summary  $\rightarrow$  Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of  $\Delta\chi^2$ ) need to be tuned to experimental data
- Situation not satisfactory, especially problematic to predict behaviour of PDFs in extrapolation regions like for the LHeC ...
- ... or when searching for non-standard DGLAP effects (saturation, small-x)
- Large tolerances  $\rightarrow$  Error blow-up by a factor  $S = \sqrt{\Delta \chi^2/2.7}$   $\rightarrow S_{\rm cteq} \sim$  6,  $S_{\rm mstw} \sim$  4.5 both in input data and in PDFs



- Standard PDF determinations suffer of several drawbacks
  - Fixed functional forms,  $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$ . Are they flexible enough?
  - ② Artificially large tolerances  $\Delta \chi^2 \gg 1$ Are they really needed due to incompatible data?
  - Gaussian linear error propagation Is this really enough for all observables?
- Summary  $\rightarrow$  Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of  $\Delta\chi^2$ ) need to be tuned to experimental data
- Situation not satisfactory, especially problematic to predict behaviour of PDFs in extrapolation regions like for the LHeC ...
- ... or when searching for non-standard DGLAP effects (saturation, small-x)
- Large tolerances  $\rightarrow$  Error blow-up by a factor  $S = \sqrt{\Delta \chi^2/2.7}$   $\rightarrow S_{\rm cteq} \sim$  6,  $S_{\rm mstw} \sim$  4.5 both in input data and in PDFs



# • Generate $N_{\text{rep}}$ Monte Carlo replicas $F_i^{(\text{art})(k)}$ of the original data $F_i^{(\text{exp})}$

• Generate  $N_{\text{rep}}$  Monte Carlo replicas  $F_i^{(a)}$  of the original data  $F_i^{(a)}$ . Avoid gaussian/linearized assumptions

$$F_{i}^{(\text{art})(k)} = \left(1 + r_{N}^{(k)} \sigma_{N}\right) \left(F_{i}^{(\text{exp})} + \sum_{\rho=1}^{N_{\text{sys}}} r_{\rho}^{(k)} \sigma_{i,\rho} + r_{i}^{(k)} \sigma_{i,s}\right)$$

ullet Evolve each PDF parametrized with Neural Networks o Unbiased parametrization

$$F_i^{(\mathrm{net})(k)}(x,Q^2) = C_{i\alpha}(x,\alpha(Q^2)) \otimes q_\alpha^{(\mathrm{net})(k)}(x,Q^2)$$

ullet Minimization of  $\chi^2$  with Genetic Algorithms. + Dynamical Stopping:

$$\chi^{2(k)} = rac{1}{N_{
m dat}} \sum_{i,j=1}^{N_{
m dat}} \left( F_i^{({
m art})(k)} - F_i^{({
m net})(k)} 
ight) \left( {
m cov}_{ij}^{-1} 
ight) \left( F_j^{({
m art})(k)} - F_j^{({
m net})(k)} 
ight)$$

INFN
Diffusio Maclinealle
di Fisica Nucleare

See my talk and M. Ubiali's one in the PDF sessior

• Generate  $N_{\text{rep}}$  Monte Carlo replicas  $F_i^{(\text{art})(k)}$  of the original data  $F_i^{(\text{exp})}$  Avoid gaussian/linearized assumptions

$$F_i^{(\mathrm{art})(k)} = \left(1 + r_N^{(k)} \sigma_N\right) \left(F_i^{(\mathrm{exp})} + \sum_{p=1}^{N_{\mathrm{sys}}} r_p^{(k)} \sigma_{i,p} + r_i^{(k)} \sigma_{i,s}\right)$$

ullet Evolve each PDF parametrized with Neural Networks o Unbiased parametrization

$$F_i^{(\mathrm{net})(\mathrm{k})}(x,Q^2) = C_{i\alpha}(x,\alpha(Q^2)) \otimes q_{\alpha}^{(\mathrm{net})(k)}\left(x,Q^2\right)$$

ullet Minimization of  $\chi^2$  with Genetic Algorithms. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i=1}^{N_{\text{dat}}} \left( F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left( \text{cov}_{ij}^{-1} \right) \left( F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

INFN

District Machinelle
dil Finica Nucleare

See my talk and M. Ubiali's one in the PDF session

• Generate  $N_{\text{rep}}$  Monte Carlo replicas  $F_i^{(\text{art})(k)}$  of the original data  $F_i^{(\text{exp})}$  Avoid gaussian/linearized assumptions

$$F_i^{(\mathrm{art})(k)} = \left(1 + r_N^{(k)} \sigma_N\right) \left(F_i^{(\mathrm{exp})} + \sum_{p=1}^{N_{\mathrm{sys}}} r_p^{(k)} \sigma_{i,p} + r_i^{(k)} \sigma_{i,s}\right)$$

ullet Evolve each PDF parametrized with Neural Networks o Unbiased parametrization

$$F_i^{(\mathrm{net})(k)}(x,Q^2) = C_{i\alpha}(x,\alpha(Q^2)) \otimes q_{\alpha}^{(\mathrm{net})(k)}\left(x,Q^2\right)$$

ullet Minimization of  $\chi^2$  with Genetic Algorithms. + Dynamical Stopping

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i=1}^{N_{\text{dat}}} \left( F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left( \text{cov}_{ij}^{-1} \right) \left( F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$



See my talk and M. Ubiali's one in the PDF sessior

# ne min Di appioaci

• Generate  $N_{\text{rep}}$  Monte Carlo replicas  $F_i^{(\text{art})(k)}$  of the original data  $F_i^{(\text{exp})}$  Avoid gaussian/linearized assumptions

$$F_i^{(\mathrm{art})(k)} = \left(1 + r_N^{(k)} \sigma_N
ight) \left(F_i^{(\mathrm{exp})} + \sum_{
ho=1}^{N_{\mathrm{sys}}} r_{
ho}^{(k)} \sigma_{i,
ho} + r_i^{(k)} \sigma_{i,s}
ight)$$

Evolve each PDF parametrized with Neural Networks → Unbiased parametrization

$$F_i^{(\mathrm{net})(\mathrm{k})}(x,Q^2) = C_{i\alpha}(x,\alpha(Q^2)) \otimes q_{\alpha}^{(\mathrm{net})(k)}(x,Q^2)$$

• Minimization of  $\chi^2$  with Genetic Algorithms. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left( F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left( \text{cov}_{ij}^{-1} \right) \left( F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

INFN
biliseo Madionale
di Fisica Nathere

See my talk and M. Ubiali's one in the PDF session



# LHeC Scenarios

Several scenarios for LHeC under investigation (M. Klein):

| config. | E(e) | E(N) | N  | ∫L(e <sup>+</sup> ) | JL(e <sup>-</sup> ) | Pol  I | L/10 <sup>32</sup> P/ | MW | yea | rs type      |
|---------|------|------|----|---------------------|---------------------|--------|-----------------------|----|-----|--------------|
| A       | 20   | 7    | p  | 1                   | 1                   | -      | 1                     | 10 | 1   | SPL          |
| В       | 50   | 7    | p  | 50                  | 50                  | 0.4    | 25                    | 30 | 2   | $RR\; hiQ^2$ |
| C       | 50   | 7    | p  | 1                   | 1                   | 0.4    | 1                     | 30 | 1   | RR lo x      |
| D       | 100  | 7    | p  | 5                   | 10                  | 0.9    | 2.5                   | 40 | 2   | LR           |
| Е       | 150  | 7    | p  | 3                   | 6                   | 0.9    | 1.8                   | 40 | 2   | LR           |
| F       | 50   | 3.5  | D  | 1                   | 1                   |        | 0.5                   | 30 | 1   | eD           |
| G       | 50   | 2.7  | Pb | 0.1                 | 0.1                 | 0.4    | 0.1                   | 30 | 1   | ePb          |
| Н       | 50   | 1    | p  |                     | 1                   |        | 25                    | 30 | 1   | lowEp        |
|         |      |      |    |                     |                     |        |                       |    |     |              |



### PDF constraints from the LHeC - Small-x

#### Methodology:

• Generate predictions for  $F_2(x, Q^2)$  and  $F_L(x, Q^2)$  at small-x with NLO DGLAP and NNPDF1.0 as input PDF set for small-x LHeC kinematics

$$\left. F_k(x,Q^2) \right|_{\mathrm{lhec}} = F_k(x,Q^2) \Big|_{\mathrm{nnpdf1.0}} + r^{(I)} \sigma_{k,\mathrm{lhec}}^{\mathrm{tot}}$$

accounting for statistical fluctuations

- Incorporate these pseudo-data sets into latest NNPDF release
- Investigate error reduction of PDFs at small-x
- Consider extreme DGLAP scenarios, *i.e.* generate pseudo data with NNPDF1.0 gluon  $g^{\pm}(x,Q_0^2) \equiv \langle g(x,Q_0^2) \rangle \pm \sigma_g(x,Q_0^2)$ . Can LHeC discriminate between maximal and minimal gluons?



# PDF constraints from the LHeC - Small-x

Consider LHeC  $F_2$  and  $F_L$  pseudo-data at small-x (P. Newmann) Scenario  $\rightarrow E_e = 70$  GeV,  $\int \mathcal{L} = 1$  fb<sup>-1</sup>,  $\theta_e \leq 179^{\circ}$ ,  $x \leq 0.01$ ,  $Q^2 \leq 50$  GeV<sup>2</sup>







Generated pseudo-data (including statistical fluctuations) for  $F_2$  and  $F_L$  at small-x





PDF constrains from LHeC

# Constraining PDFs at the LHeC - Results

Generated pseudo-data (including statistical fluctuations) for  $F_2$  and  $F_L$  at small-x







# Constraining PDFs at the LHeC - Results

 $F_2^p$  and  $F_2^L$  NLO DGLAP in NNPDF analysis:

Before the fit ... (Notice small statistical errors at low-x)







# Constraining PDFs at the LHeC - Results

 $F_2^p$  and  $F_2^L$  NLO DGLAP in NNPDF analysis:

... and after the fit  $\rightarrow$  Huge error reduction in  $F_2^p$  predictions





Introduction PDF constrains from LHeC Small-x QCD at the LHeC Outlook

# Constraining PDFs at the LHeC - Results

 $F_2^p$  and  $F_2^L$  NLO DGLAP in NNPDF analysis: Gluon uncertainties with  $F_2^p$  LHeC data only





Modest error reduction of gluon at small-x, need  $F_L$  for more

Introduction PDF constrains from LHeC Small-x QCD at the LHeC Outloo

# Constraining PDFs at the LHeC - Results

 $F_2^P$  and  $F_2^L$  NLO DGLAP in NNPDF analysis: Gluon uncertainties with  $F_2^P$  and  $F_L^P$  LHeC data



ightarrow Sizable error reduction of gluon at small-x requires LHeC  $F_L$  data



11 / 21

PDF constrains from LHeC

# The small-x gluon at the LHeC

Can the LHeC disentangle between extreme DGLAP scenarios?

→ Generate LHeC pseudo-data based on two extreme gluons from NNPDF1.0







# The small-x gluon at the LHeC

Can the LHeC disentangle between extreme DGLAP scenarios?

→ Generate LHeC pseudo-data based on two extreme gluons from NNPDF1.0 Extreme gluons affect mostly  $F_L$  at small-x







PDF constrains from LHeC

# The small-x gluon at the LHeC

Small-x data can unambigously determine the low-x gluon behaviour with very precision Next step → Implications for LHC phenomenology







# LHeC Scenarios

Several scenarios for LHeC under investigation (M. Klein):

| config. | E(e) | E(N) | N  | $\int L(e^+)$ | JL(e) | Pol | L/10 <sup>32</sup> 1 | P/MW | yea | rs type      |
|---------|------|------|----|---------------|-------|-----|----------------------|------|-----|--------------|
| A       | 20   | 7    | p  | 1             | 1     | -   | 1                    | 10   | 1   | SPL          |
| В       | 50   | 7    | p  | 50            | 50    | 0.4 | 25                   | 30   | 2   | $RR\; hiQ^2$ |
| C       | 50   | 7    | p  | 1             | 1     | 0.4 | 1                    | 30   | 1   | RR lo x      |
| D       | 100  | 7    | p  | 5             | 10    | 0.9 | 2.5                  | 40   | 2   | LR           |
| E       | 150  | 7    | p  | 3             | 6     | 0.9 | 1.8                  | 40   | 2   | LR           |
| F       | 50   | 3.5  | D  | 1             | 1     |     | 0.5                  | 30   | 1   | eD           |
| G       | 50   | 2.7  | Pb | 0.1           | 0.1   | 0.4 | 0.1                  | 30   | 1   | ePb          |
| Н       | 50   | 1    | p  |               | 1     |     | 25                   | 5 30 | 1   | lowEp        |



# LHeC Scenarios

Assume scenario E: Linac-Ring option  $\textit{E}_{e} = 150 \textit{GeV}$ 

| config. | E(e) | E(N) | N  | ∫L(e <sup>+</sup> ) | JL(e) | Pol | L/10 <sup>32</sup> | P/MW | yeaı | rs type      |
|---------|------|------|----|---------------------|-------|-----|--------------------|------|------|--------------|
| A       | 20   | 7    | p  | 1                   | 1     | -   | 1                  | 10   | 1    | SPL          |
| В       | 50   | 7    | p  | 50                  | 50    | 0.4 | 25                 | 30   | 2    | $RR\; hiQ^2$ |
| C       | 50   | 7    | p  | 1                   | 1     | 0.4 | . 1                | 30   | 1    | RR lo x      |
| D       | 100  | 7    | p  | 5                   | 10    | 0.9 | 2.5                | 40   | 2    | LR           |
| Е       | 150  | 7    | p  | 3                   | 6     | 0.9 | 1.8                | 40   | 2    | LR           |
| F       | 50   | 3.5  | D  | 1                   | 1     |     | 0.5                | 30   | 1    | eD           |
| G       | 50   | 2.7  | Pb | 0.1                 | 0.1   | 0.4 | 0.1                | 30   | 1    | ePb          |
| Н       | 50   | 1    | p  |                     | 1     |     | 2                  | 5 30 | 1    | lowEp        |



PDF constrains from LHeC

# Constraining PDFs at the LHeC - Full kinematics

Methodology → Same as for the small-x data, but now full NC and CC datasets included







# Constraining PDFs at the LHeC - Full kinematics

LHeC will provide accurate CC data up to low-x Precise quark flavour separation possible within a single experiment



Work in progress with pseudo-data in other scenarios





- Proceed as for the DGLAP case, but now take central predictions for  $F_2(x, Q^2)$  and  $F_L(x, Q^2)$  at small-x from dipole/saturation models
  - FS04 Dipole model (Forshaw and Shaw, JHEP 0412:052,2004)
  - AAMS09 Model based on BK equation with running coupling effects (Albacete et al., arXiv:0902.1112)
- Added these pseudo-data sets into current NNPDF analysis
- Investigate if a DGLAP analysis finds evidence from deviations from standard evolution  $\rightarrow$  Value of  $\chi^2$ , data inconsistency ...  $\rightarrow$  Disentangling non-standard effects in inclusive data requires special techniques
- DGLAP with small-x BFKL resummed results for DIS structure funtions recently available (ABF, Altarelli at al., NPB799:199-240,2008) → Determine their impact for LHeC physics (see my talk this afternoon in the PDF session)



- Proceed as for the DGLAP case, but now take central predictions for  $F_2(x, Q^2)$  and  $F_L(x, Q^2)$  at small-x from dipole/saturation models
  - 1 FS04 Dipole model (Forshaw and Shaw, JHEP 0412:052,2004)
  - AAMS09 Model based on BK equation with running coupling effects (Albacete et al., arXiv:0902.1112)
- Added these pseudo-data sets into current NNPDF analysis
- Investigate if a DGLAP analysis finds evidence from deviations from standard evolution  $\rightarrow$  Value of  $\chi^2$ , data inconsistency ...  $\rightarrow$  Disentangling non-standard effects in inclusive data requires special techniques
- DGLAP with small-x BFKL resummed results for DIS structure funtions recently available (ABF, Altarelli at al., NPB799:199-240,2008) → Determine their impact for LHeC physics (see my talk this afternoon in the PDF session)



- Proceed as for the DGLAP case, but now take central predictions for  $F_2(x, Q^2)$  and  $F_L(x, Q^2)$  at small-x from dipole/saturation models
  - FS04 Dipole model (Forshaw and Shaw, JHEP 0412:052,2004)
  - AAMS09 Model based on BK equation with running coupling effects (Albacete et al., arXiv:0902.1112)
- Added these pseudo-data sets into current NNPDF analysis
- Investigate if a DGLAP analysis finds evidence from deviations from standard evolution  $\rightarrow$  Value of  $\chi^2$ , data inconsistency ...  $\rightarrow$  Disentangling non-standard effects in inclusive data requires special techniques
- DGLAP with small-x BFKL resummed results for DIS structure funtions recently available (ABF, Altarelli at al., NPB799:199-240,2008) → Determine their impact for LHeC physics (see my talk this afternoon in the PDF session)



- Proceed as for the DGLAP case, but now take central predictions for  $F_2(x, Q^2)$ and  $F_L(x, Q^2)$  at small-x from dipole/saturation models
  - FS04 Dipole model (Forshaw and Shaw, JHEP 0412:052,2004)
  - AAMS09 Model based on BK equation with running coupling effects (Albacete et al., arXiv:0902.1112)
- Added these pseudo-data sets into current NNPDF analysis
- DGLAP with small-x BFKL resummed results for DIS structure funtions recently



- Proceed as for the DGLAP case, but now take central predictions for  $F_2(x, Q^2)$ and  $F_L(x, Q^2)$  at small-x from dipole/saturation models
  - FS04 Dipole model (Forshaw and Shaw, JHEP 0412:052,2004)
  - AAMS09 Model based on BK equation with running coupling effects (Albacete et al., arXiv:0902.1112)
- Added these pseudo-data sets into current NNPDF analysis
- Investigate if a DGLAP analysis finds evidence from deviations from standard evolution  $\rightarrow$  Value of  $\chi^2$ , data inconsistency ...  $\rightarrow$  Disentangling non-standard effects in inclusive data requires special techniques
- DGLAP with small-x BFKL resummed results for DIS structure funtions recently



- Proceed as for the DGLAP case, but now take central predictions for  $F_2(x, Q^2)$ and  $F_L(x, Q^2)$  at small-x from dipole/saturation models
  - FS04 Dipole model (Forshaw and Shaw, JHEP 0412:052,2004)
  - AAMS09 Model based on BK equation with running coupling effects (Albacete et al., arXiv:0902.1112)
- Added these pseudo-data sets into current NNPDF analysis
- Investigate if a DGLAP analysis finds evidence from deviations from standard evolution  $\rightarrow$  Value of  $\chi^2$ , data inconsistency ...  $\rightarrow$  Disentangling non-standard effects in inclusive data requires special techniques
- DGLAP with small-x BFKL resummed results for DIS structure funtions recently available (ABF, Altarelli at al., NPB799:199-240,2008) → Determine their impact for LHeC physics (see my talk this afternoon in the PDF session)



Comparison between NNPDF1.0 and FS04 pseudo-data for  $F_2(x, Q^2)$  before the fit ....

F2 at the LHeC - Simulated data from FS04 saturation model





and after the fit

F2 at the LHeC - Simulated data from FS04 saturation model





Comparison between NNPDF1.0 and FS04 pseudo-data for  $F_L(x, Q^2)$  before the fit ....

F<sub>I</sub> at the LHeC - Simulated data from FS04 saturation model





and after the fit

F<sub>I</sub> at the LHeC - Simulated data from FS04 saturation model







Х

ntroduction PDF constrains from LHeC Small-x QCD at the LHeC

## Small-x models at the LHeC





- F<sub>2</sub> alone not enough discrimination power (at least with the *Hypothesis Testing Criterion*)
- $F_L$  measurements vital to disentangle between scenarios  $\rightarrow$  But precise data with large lever arm in  $Q^2$  required



Same for AAMS09 (BK equation with running coupling)  $\rightarrow$  For  $F_2$  alone:





Same for AAMS09 (BK equation with running coupling)  $\rightarrow$  For joint  $F_2 + F_L$  fit:





### Small-x resummation

Compare predictions at LHeC from NLO, NNLO and NLO+small-x resummation (ABF) in NNPDF1.0 for  $F_2(x,Q^2)$ 



Experimental LHeC uncertainties smaller than spread between small-x QCD scenarios (NNLO vs. NLOres)

### Small-x resummation

Compare predictions at LHeC from NLO, NNLO and NLO+small-x resummation (ABF) in NNPDF1.0 for  $F_L(x,Q^2)$ 



The LHeC has the potential to disentangle between different scenarios for small-x pQCD

→ But this requires a fully small-x resummed global PDF analysis!

18 / 21

### Deviations from DGLAP in inclusive observables

- BFKL/non-linear effects are difficult to identify in inclusive observables since they
  can be absorved in the initial condition for flexible enough parametrizations
- This might be the case at HERA, also at the LHeC for  $F_2^p$
- New statistical approaches required
   A possible approach is the following: (Caola, Forte, Rojo, in progress)
  - Repeat PDF analysis removing subsets of data (Reference analysis NNPDF1.2)
  - 2 Determine if NLO DGLAP extrapolation predicts excluded subsets
  - Assess fit quality in fitted data region → Should improve if there is tension between DGLAP and other scenarios

Note that a PDF analysis with no parametrization bias and faithful uncertainty estimation is mandatory in such analysis



PDF constrains from LHeC Small-x QCD at the LHeC

## Deviations from DGLAP in inclusive observables

Kinematical cuts for  $Q^2 \ge Q_5^2(x) \equiv A \cdot x^{-0.3}$  GeV<sup>2</sup> (saturation-inspired)







#### Deviations from DGLAP in inclusive observables

Compare distances for points excluded in DGLAP analysis  $Q^2 > 1.5 \cdot x^{-0.3}$  GeV<sup>2</sup>

$$d(x,Q^2) \equiv \sqrt{rac{\left(F^{
m net}(x,Q^2) - F^{
m dat}(x,Q^2)
ight)^2}{\sigma^{
m net,2} + \sigma^{
m dat,2}_{
m tot}}}$$





Distances worsen in region of larger  $Q^2$ , x

→ Hints of BFKL resummation/non-linear effects present in HERA data?



## **OUTLOOK**



- The LHeC will probe the structure of the proton and QCD dynamics at the smallest-x even considered
- Low-x inclusive measurents severely constrain the low-x gluon, while precision NC and CC data allows quark flavour separation within a single experiment
- ullet  $F_L$  measurents mandatory both to pin down the gluon PDF at small-x and to disentangle small-x QCD scenarios
- New theoretical developements (small-x resummed DIS structure functions) should be studied in the context of LHeC physics
- New statistical techniques being developed to determine deviations from DGLAP evolution in inclusive observables
- ToDo: Comparison between various LHeC scenarios, implications for LHC phenomenology, resummed small-x PDF analysis ....



- The LHeC will probe the structure of the proton and QCD dynamics at the smallest-x even considered
- Low-x inclusive measurents severely constrain the low-x gluon, while precision NC and CC data allows quark flavour separation within a single experiment
- ullet  $F_L$  measurents mandatory both to pin down the gluon PDF at small-x and to disentangle small-x QCD scenarios
- New theoretical developements (small-x resummed DIS structure functions) should be studied in the context of LHeC physics
- New statistical techniques being developed to determine deviations from DGLAP evolution in inclusive observables
- ToDo: Comparison between various LHeC scenarios, implications for LHC phenomenology, resummed small-x PDF analysis ....

### Thanks for your attention!



Outlook

- The LHeC will probe the structure of the proton and QCD dynamics at the smallest-x even considered
- Low-x inclusive measurents severely constrain the low-x gluon, while precision NC and CC data allows quark flavour separation within a single experiment
- F<sub>L</sub> measurents mandatory both to pin down the gluon PDF at small-x and to disentangle small-x QCD scenarios
- New theoretical developements (small-x resummed DIS structure functions) should be studied in the context of LHeC physics
- New statistical techniques being developed to determine deviations from DGLAP evolution in inclusive observables
- ToDo: Comparison between various LHeC scenarios, implications for LHC phenomenology, resummed small-x PDF analysis ....

## Thanks for your attention!



Outlook

- The LHeC will probe the structure of the proton and QCD dynamics at the smallest-x even considered
- Low-x inclusive measurents severely constrain the low-x gluon, while precision NC and CC data allows quark flavour separation within a single experiment
- ullet  $F_L$  measurents mandatory both to pin down the gluon PDF at small-x and to disentangle small-x QCD scenarios
- New theoretical developements (small-x resummed DIS structure functions) should be studied in the context of LHeC physics
- New statistical techniques being developed to determine deviations from DGLAP evolution in inclusive observables
- ToDo: Comparison between various LHeC scenarios, implications for LHC phenomenology, resummed small-x PDF analysis ....



- The LHeC will probe the structure of the proton and QCD dynamics at the smallest-x even considered
- Low-x inclusive measurents severely constrain the low-x gluon, while precision NC and CC data allows quark flavour separation within a single experiment
- $\bullet$   $F_L$  measurents mandatory both to pin down the gluon PDF at small-x and to disentangle small-x QCD scenarios
- New theoretical developements (small-x resummed DIS structure functions) should be studied in the context of LHeC physics
- New statistical techniques being developed to determine deviations from DGLAP evolution in inclusive observables
- ToDo: Comparison between various LHeC scenarios, implications for LHC phenomenology, resummed small-x PDF analysis ....



- The LHeC will probe the structure of the proton and QCD dynamics at the smallest-x even considered
- Low-x inclusive measurents severely constrain the low-x gluon, while precision NC and CC data allows quark flavour separation within a single experiment
- ullet  $F_L$  measurents mandatory both to pin down the gluon PDF at small-x and to disentangle small-x QCD scenarios
- New theoretical developements (small-x resummed DIS structure functions) should be studied in the context of LHeC physics
- New statistical techniques being developed to determine deviations from DGLAP evolution in inclusive observables
- ToDo: Comparison between various LHeC scenarios, implications for LHC phenomenology, resummed small-x PDF analysis ....



- The LHeC will probe the structure of the proton and QCD dynamics at the smallest-x even considered
- Low-x inclusive measurents severely constrain the low-x gluon, while precision NC and CC data allows quark flavour separation within a single experiment
- $\bullet$   $F_L$  measurents mandatory both to pin down the gluon PDF at small-x and to disentangle small-x QCD scenarios
- New theoretical developements (small-x resummed DIS structure functions) should be studied in the context of LHeC physics
- New statistical techniques being developed to determine deviations from DGLAP evolution in inclusive observables
- ToDo: Comparison between various LHeC scenarios, implications for LHC phenomenology, resummed small-x PDF analysis ....



- The LHeC will probe the structure of the proton and QCD dynamics at the smallest-x even considered
- Low-x inclusive measurents severely constrain the low-x gluon, while precision NC and CC data allows quark flavour separation within a single experiment
- $\bullet$   $F_L$  measurents mandatory both to pin down the gluon PDF at small-x and to disentangle small-x QCD scenarios
- New theoretical developements (small-x resummed DIS structure functions) should be studied in the context of LHeC physics
- New statistical techniques being developed to determine deviations from DGLAP evolution in inclusive observables
- ToDo: Comparison between various LHeC scenarios, implications for LHC phenomenology, resummed small-x PDF analysis ....

