

Parton distributions in the proton from the LHeC

V. Radescu, M. Klein

Warsaw, 28 April - 2 May 2014

XXII. International Workshop on Deep-Inelastic Scattering and

Voica Radescu| DESY 🎼 |DIS – Warsaw | LHeC 1

Parton Distribution Functions

 Current knowledge and uncertainties display differences that need to be understood and that may have substantial impact.

LHC 8 TeV - Ratio to NNPDF2.3 NNLO - $\alpha_s = 0.119$

particles

Snowmass13 QCD WG repor J.Rojc

14TeV

Parton Distribution Functions

 Current knowledge and uncertainties display differences that need to be understood and that may have substantial impact.

LHC 8 TeV - Ratio to NNPDF2.3 NNLO - $\alpha_s = 0.119$

particles

NNPDF PDFs, Ratio to NNPDF2.3, u_n = 0.118

100TeV

The LHeC program

Design Report 2012

http://cern.ch/lhec

ISSN 0954-3899 Journal of Physics G Nuclear and Particle Physics Volume 39 Number 7 July 2012 Article 075001 A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group arXiv:1206.2913 iopscience.org/jphysg IOP Publishing arXiv:1206:2913

075001

July 20 12

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, P.Adzic⁷⁴, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², B.Allanach⁷³, S.Alekhin^{17,54}, P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁶, C.Bracco¹⁶, J.Bracinik⁶⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, A.Caldwell⁷⁰, V.Cetinkaya⁰¹, V.Chekelian⁷⁰, E.Ciapala¹⁶, R.Ciftci⁰¹, A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, P.DiNezza⁷², M.D'Onofrio²⁴, A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasma²⁸, A.Glazov¹⁷, R.Godbol³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶, E.Jensen¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, R.Klee⁷⁵, M.Klein²⁴, U.Klein²⁴, T.Kuge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmick¹⁶, P.Kosta¹⁷, H.Kowalski¹⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mæs¹⁶, A.Milanese¹⁶, J.G.Milhano⁷⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilice⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷, V.Pitisyn³⁷, Y.Pupkov⁴⁰, V.Radesu¹⁷, S.Raychaudhuri³⁵, L.Rinoffi¹⁶, E.Rizvi⁷¹, R.Rohini³⁵, J.Rojo V.Radescu^{1,7}, S.Raychaudhuri^{3,7}, L.Rinoli^{1,8}, E.Rizvi^{1,7}, R.Rohimi^{3,5}, J.Rojo^{60,3,7}, S.Russenschuck^{3,7}, M.Sahin^{5,3}, C.A.Salgado^{5,3,4},
 K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, M.Schaefer⁷⁵, U.Schneekloth¹⁷, T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Seryi⁴⁴,
 P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷, D.South¹⁷, H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e},
 Y.P.Sun⁵⁷, B.Surrow¹¹, L.Szymanowski^{66,f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶,
 L.Thompson^{14,30}, P.Thompson⁰⁶, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶, D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶,
 S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰, T.Ullrich³⁷, J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶,
 A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶, R.Wallny⁶⁸, S.Wallon^{43,46,f}, G.Watt⁶⁹, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷,
 E.Wille³⁷, D.W. Yiso⁴⁸, W.Yeisurela³⁷, A. B.Zomest^{46,7}, Z.Zhoure⁴², P.Zieruerszenen¹⁶, P.Usbil⁴¹, P.Zane⁴², P.Zieruerszenen⁴⁵, P.Zieruerszene⁴², P.Zieruerszene⁴², P.Zieruerszene⁴⁵, P.Zieruerszene⁴⁴, P.Zieruerszene⁴⁴, P.Zieruerszene⁴⁵, P.Zieruerszene⁴⁵, P.Zieruerszene⁴⁵, P.Zieruerszene⁴⁵, P.Zieruerszene⁴⁴, P.Zieruerszene⁴⁵, P.Zier F.Willeke³⁷, B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, F.Zomer⁴²

Present LHeC Study group and CDR authors

About 200 Experimentalists and Theorists from 76 Institutes

Supported by CERN, ECFA, NuPECC

Since then the proposal re-evaluated by CERN: CERN has launched the FCC design study in which he is an integral part \rightarrow gives the LHeC 60 GeV ERL design of a new electron accelerator, a long term perspective

LHeC ep kinematics

Simulated LHeC Data

Studied scenarios (described in CDR)

Scenario B: (Lumi $e^{+/-}p = 50 \text{ fb}^{-1}$) Ep=7 TeV, Ee=50 GeV, Pol=±0.4

o Kinematic region: $2 < Q^2 < 500\ 000\ GeV^2$ and 0.000002 < x < 0.8

Scenario H: (Lumi e⁻p = 1 fb⁻¹) Ep=1TeV, Ee=50 GeV, Pol=0

o Kinematic region: $2 < Q^2 < 100\ 000\ GeV^2$ and 0.000002 < x < 0.8

Typical uncertainties:

Full simulation of NC and CC inclusive cross section measurements including statistics, uncorrelated and correlated uncertainties – based on typical best values achieved by H1

- o Statistical uncertainty ranges from 0.1% (low Q^2) to ~10% for x=0.7 in CC
- o Uncorrelated systematic: 0.7 %

o Correlated systematic: typically 1-3% (for CC high x up to 9%)

source of uncertainty	error on the source or cross section		
scattered electron energy scale $\Delta E_e'/E_e'$	0.1 %		
scattered electron polar angle	$0.1\mathrm{mrad}$		
hadronic energy scale $\Delta E_h/E_h$	0.5%		
calorimeter noise (only $y < 0.01$)	1-3 %		
radiative corrections	0.5%		
photoproduction background (only $y > 0.5$)	1 %		
global efficiency error	0.7%		

QCD Settings for the PDF determination [HERAFitter framework] HERAFitter

Data:

- LHeC simulated data:
 - NC e⁺p, NC, e⁻p, CC e⁺p, CC e⁻p postive and negative polarisations P=±0.4
- Published HERA I (NC, CC e[±]p data, P=0)
 - Kinematics of HERA data: 0.65>x>10⁻⁴, 30 000 >Q²>3.5 GeV²
- Fixed target data from BCDMS,
- ATLAS W asymmetry (with adjusted improved uncertainties stat, unc 0.5 and total 1)
 - New ATLAS W, Z 2010 data (with adjusted lumi uncertainty from 3.4 to 1.4)
- Q²_{min}=3.5 GeV² (and W²>15 GeV² for BCDMS data)
- Full experimental Uncertainties

Theory settings:

- NLO DGLAP [QCDNUM package], RT scheme
- Fitted PDFs:
 - uval, dval, g, Ubar=ubar+cbar, Dbar=dbar+sbar
 - ⊶ Sea=Ubar+Dbar
 - ✤ sbar=s=fsDbar=dbar fs/(1-fs) with fs=0.31 at starting scale

$$egin{array}{rll} xg(x)&=&A_gx^{B_g}(1-x)^{C_g}(1+D_gx)\,,\ xu_v(x)&=&A_{u_v}x^{B_{u_v}}(1-x)^{C_{u_v}}(1+E_{u_v}x^2)\,,\ xd_v(x)&=&A_{d_v}x^{B_{d_v}}(1-x)^{C_{d_v}}\,,\ xar{U}(x)&=&A_{ar{U}}x^{B_{ar{U}}}(1-x)^{C_{ar{U}}}\,,\ xar{D}(x)&=&A_{ar{D}}x^{B_{ar{D}}}(1-x)^{C_{ar{D}}}\,. \end{array}$$

Impose the fermion and momentum sum rules

→ LHAPDF grid

Voica Radescu| DESY 🙀 |DIS – Warsaw | LHeC 8

Valence distribution

н

1

Gluon PDF at low x

Gluon PDF at high x

Currently, high x gluon is quite uncertain due to limited statistics and reduced sensitivity:

 the gluon effects at high x are in the DGLAP formalism from sea

(valence and gluon are evolved independently)

LHeC can reduce this significantly and it is important to disentangle sea from valence at high x to get precise gluon at high x:

 Measurements such CC+, CC-, F2, F2yZ, xF3 help to provide this decoupling

Higgs at the LHeC

 The preferred channel for low mass Higgs is in the bbar decay (BR 60%), but at LHC the Hbbar couplings are challenging

 At the LHeC the Higgs boson is cleanly produced via ZZ or WW fusion and it is complementary to the dominant gg fusion at pp

Figure 5.25: Feynman diagrams for CC (left) and NC (right) Higgs production in leadin order QCD at the LHeC. Diagrams produced using MadGraph.

14 TeV gg \rightarrow H total cross section at the LHC calculated for a variety of PDFs at 68% CL

• precision from LHeC can add a very significant constraint on the mass of the Higgs

NNLO pp—Higgs Cross Sections at 14 TeV

So MK

Releasing further PDF constraints

Releasing further the assumptions:

- o Removing the correlation that ubar=dbar at low x
- o Free parameters for the strange quark are introduced
- This study was driven by the recent ATLAS results on strange determination, hence we have repeated the impact of LHeC study under the new conditions.

Note that in these studies, only the inclusive measurements were included, however there are high Q2 reach of LHeC together with the charm taggers that allow for xs determination.

Unconstrained PDFs

Inclusive LHeC data leads to very precise determination of all PDFs even after removing large bulk of assumptions:

- LHeC ep data constrain better U than D distributions, however deuteron data would symmetrise our understanding.
- Determination of the strange can complement the strange determination from the charm data

New Configuration

- The ERL configuration does not provide polarised positrons at comparable L
- The interest in the Higgs prefers electrons with negative, high polarisation:

all for ep:	Ee=60 G	eV, Ep=7000GeV	, MSTWLO	
acronym	charge	polarisation	luminosity	(fb-1)
mimi	-	-0.8	500	
mipl	-	+0.8	50	
plnu	+	0	5	

PDF uncertainties at high x

Gluon distribution for the new scenario:

Impact of LHeC deuteron data

• 3.5 TeV x 60 GeV,e-, P=-0.8, 1fb-1 Neutral and Charged Current, exp uncertainties

Voica Radescu| DESY 🛞 |DIS – Warsaw | LHeC 17

With the LHeC the determination of the PDFs, quarks and gluons, will be put on a completely new base:

- Determination of all quark PDFs, including d/u, s, c, b
- Mapping of the gluon distribution from nearly 10⁻⁵ to x=1
- Determination of the strong coupling to permille level (CDR)

This puts severe requirements to detector design, precision of tracking and calorimetry in large acceptance and to QCD.

Besides the classic PDFs, the LHeC provides much further insight to photon, neutron, nuclear, Pomeron structure and to the extension of the collinear approximation to generalised PDs.

Further studies are envisaged (data optimisation, role of e+, d..)

Extra Studies

NOT with any precision NO !

Present LHC W,Z data and jet data are included and LHC ultimate precision is extrapolated according to our current experience- we are systematics limited already

PDFs come from DIS

F2charm and F2beauty from LHeC

Hugely extended range and much improved precision ($\delta M_c = 60 \text{ HERA} \rightarrow 3 \text{ MeV}$) will pin down heavy quark behaviour at and far away from thresholds, crucial for prec In MSSM, Higgs is produced dominantly via bb \rightarrow H , but where is the MSSM.

Voica Radescu| DESY 🙀 |DIS – Warsaw | LHeC 20

Strangeness from LHeC

JPhysG 39(2012)7

Initial study (CDR): Charm tagging efficiency of 10% and 1% light quark ckground in impact parameter

Alphas from DIS

Precise Alphas from DIS at the LHeC

Strong coupling from DIS processes still seem to prefer smaller values

• Results from HERA show that even with precise HERA data one has to rely on jet measurements in order to constrain gluon PDFs

The strong coupling "constant"

Method	Current relative precision	Future relative precision	
at a - art shapes	$expt \sim 1\%$ (LEP)		< 1% possible (ILC/TLEP)
e e evi snapes	thry $\sim 3\%$ (NNLO+NLL, n.p. signif.)	[24]	$\sim 1.5\%$ (control n.p. via $Q^2\text{-dep.})$
+	$expt \sim 2\%$ (LEP)		<1% possible (ILC/TLEP)
e e jet rates	thry $\sim 1\%$ (NNLO, n.p. moderate)	[25]	$\sim 0.5\%$ (NLL missing)
precision EW	expt ~ 3% (R_Z , LEP)		0.1% (TLEP [8]), 0.5% (ILC [9])
	thry $\sim 0.5\%$ (N ³ LO, n.p. small)	[26, 7]	$\sim 0.3\%$ (N4LO feasible, ~ 10 yrs)
τ decays	expt $\sim 0.5\%$ (LEP, B-factories)		< 0.2% possible (ILC/TLEP)
	thry $\sim 2\%$ (N ³ LO, n.p. small)	[6]	$\sim 1\%$ (N ⁴ LO feasible, $\sim 10~{\rm yrs})$
ep colliders	$\sim 12\%$ (pdf fit dependent)		0.1% (LHeC + HERA [21])
	(mostly theory, NNLO)	[27, 28, 29, 30]	$\sim 0.5\%$ (at least $\rm N^3LO$ required)
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t})$		< 1% challenging
	(NLO jets, NNLO $t\bar{t}$, gluon uncert.)	[15, 19, 31]	(NNLO jets imminent [20])
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)		$\sim 0.3\%$
	(limited by accuracy of pert. th.)	[32, 33, 34]	(~ 5 yrs [35])

Table 1-1. Summary of current uncertainties in extractions of $\alpha_s(M_Z)$ and targets for future (5-25 years) determinations. For the cases where theory uncertainties are considered separately, the theory uncertainties for future targets reflect a reduction by a factor of about two.

Snowmass QCD WG report 9/2013

Prospects to measure $\alpha_s(M_Z^2)$ to per mille precision with future ep and ee colliders Important for gauge unification, precision Higgs at LHC, and to overcome the past.

The determination of the strong _

Expected precision on alphas(Mz) from DIS

 A dedicated study to determine the accuracy of alphas from the LHeC was performed using for the central values the SM prediction smeared within its uncertainties assuming Gauss distribution and taking into account correlations (accuracy reflects the total experimental uncertainty)

case	cut $[Q^2 \ {\rm in} \ {\rm GeV^2}]$	relative precision in $\%$
HERA only (14p)	$Q^{2} > 3.5$	1.94
HERA+jets (14p)	$Q^2>3.5$	0.82
LHeC only (14p)	$Q^{2} > 3.5$	0.15
LHeC only (10p)	$Q^{2} > 3.5$	0.17
LHeC only (14p)	$Q^2 > 20.$	0.25
LHeC+HERA (10p)	$Q^{2} > 3.5$	0.11
LHeC+HERA (10p)	$Q^{2} > 7.0$	0.20
LHeC+HERA (10p)	$Q^2 > 10.$	0.26

LHeC promises per mille accuracy on alphas!

- Previously (HERA, fixed target) limited by uncertainty of low x, which LHeC can cure;
- full exploitation of this requires pQCD at NNNLO;
- LHeC can provide a new level of predicting grand unification

Figure 4.17: Ratios to MSTW08 of gluon distribution and uncertainty bands, at $Q^2 = 1.9 \,\text{GeV}^2$, for most of the available recent PDF determinations. Left: logarithmic x, right: linear x.

Figure 4.12: Sum of the strange and anti-strange quark distribution as embedded in the NLO QCD fit sets as noted in the legend. Left: $s + \bar{s}$ versus Bjorken x at $Q^2 = 1.9 \,\text{GeV}^2$; right: ratio of $s + \bar{s}$ of various PDF determinations to MSTW08. In the HERAPDF1.0 analysis (green) the strange quark distribution is assumed to be a fixed fraction of the down quark distribution which is conventionally assumed to have the same low x behaviour as the up quark distribution, which results in a small uncertainty of $s + \bar{s}$.

Strange

Gluon-Gluon Luminosity

 Parton parton luminosity functions provide an easy way to assess the uncertainty on cross sections due to uncertainties in the pdfs

$$rac{\partial \mathcal{L}_{ab}}{\partial au} = \int_{ au}^1 rac{dx}{x} \ f_a(x,Q^2) f_b(au/x,Q^2)$$

 gg luminosity is a measure of the gluino pair production – one of the interesting SUSY channels with high masses accessible in the HL-LHC phase.

LHeC studies scenarios

Set	$E_e/{ m GeV}$	$E_N/{ m TeV}$	N	$L^+/{ m fb}^{-1}$	$L^-/{ m fb}^{-1}$	Pol
Α	20	7	7	1	1	0
B	50	7	7	50	50	0.4
C	50	7	7	1	1	0.4
D	100	7	7	5	10	0.9
E	150	7	7	3	6	0.9
F	50	3.5	7	1	1	0
G	50	2.7	7	0.1	0.1	0.4
H	50	1	7	-	1	0

Table 4.2: Conditions for simulated NC and CC data sets for studies on the LHeC physics. Here, A defines a low electron beam energy option which is of interest to reach lowest Q^2 because Q_{min}^2 decreases $\propto E_e^{-2}$; B is the standard set, with a total luminosity split between different polarisation and charge states. C is a lower luminosity version which was considered in case there was a need for a dedicated low/large angle acceptance configuration, which according to more recent findings could be avoided since the luminosity in the restricted acceptance configuration is estimated, from the β functions obtained in the optics design, to be half of the luminosity in the full acceptance configuration; D is an intermediate energy linac-ring version, while E is the highest energy version considered, with the luminosities as given. It is likely that the assumptions for D and E on the positron luminosity are a bit optimistic. However, even with twenty times lower positron than electron luminosity one would have 0.5 fb⁻¹, i.e. the total HERA luminosity equivalent available in option D for example. F is the deuteron and G the lead option; finally H was simulated for a low proton beam energy configuration as is of interest to maximise the acceptance at large x.

Parton Distribution Functions

 Current knowledge and uncertainties display differences that need to be understood and that may have substantial impact

Impact on d/u ratios

Constrained decomposition:

