

The Large Hadron electron **Collider at CERN**

A. Polini

(for the LHeC Collaboration)

Outline:

- Introduction
- Accelerator, Interaction Region and Detector
- Physics Highlights
- **Future and Outlook**

LHeC Challenge

Add an electron beam to the LHC

- Next generation $e^{\pm}p$ collider
- e[±] polarized beam
- eA collider

Rich physics program: eq physics at TeV energies

- precision QCD & electroweak physics
- boosting precision and range of LHC physics results
- beyond the Standard Model
- high density matter: low x and eA

Tevatron/LEP/HERA (Fermiscale) → LHC/LC/LHeC (Terascale)

100 fold increase in luminosity, in Q² and 1/x w.r.t. HERA

LHeC Context

_uminosity (10°cm-2s-1)

Latest & most promising idea to take lepton-hadron physics to the TeV centre-of-mass scale ... at high luminosity

Designed to exploit intense hadron beams in high luminosity phase of LHC running from mid 2020s

Conceptual Design Report

I - Introduction

- Lepton-Hadron Scattering
- Design Considerations
- Executive Summary

■ II - Physics

- Precision QCD and Electroweak Physics
- Physics at High Parton Densities
- New Physics at High Energy

■ III - Accelerator

- Ring-Ring Collider
- Linac-Ring Collider
- System Design
- Civil Engineering and Services
- Project Planning

■ IV - Detector

- Detector Requirements
- Central Detector
- Forward and Backward Detectors
- Detector Assembly and Integration

■ V - Summary

Appendix

Conceptual Design Report

- J. Phys. G: Nucl. Part. Phys. 39 (2012) 075001 [arXiv:1206.2913]
- Published July 2012
- 630 pages, summarizing 5 year workshops commissioned by CERN, ECFA and NuPECC
- ~200 participants,69 institutes

http://cern.ch/lhec

Additional material in subsequent updates:

- "A Large Hadron Electron Collider at CERN" [arXiv:1211.4831]
- "On the Relation of the LHeC and the LHC" [arXiv:1211.5102]

e[±] beam options: RR and LR

Ring-Ring

- e-p and e-A (A=Pb, Au, ...) collisions
- More "conventional" solution, like HERA, no difficulties of principle at first sight - but constrained by existing LHC in tunnel
- polarization 40% with realistic misalignment assumptions

Linac-Ring

- e-p and e-A (A=Pb, Au, ...) collisions, polarized e⁻ from source, somewhat less luminosity for e⁺
- New collider type of this scale, Energy Recovery Linac

Baseline: Energy Recovery Linac

- Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV
- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures

Luminosity [10 ³³ cm ⁻² s ⁻¹]	1-10**
Detector acceptance [deg]	1
Polarization [%]	90
IP beam sizes [µm]	7
Crossing angle [mrad]	0
e- L* [m]	30
Proton L* [m]	15
e- beta* _{x,y} [m]	0.12
Proton beta* _{x,y} [m]	0.1
Synchrotron power [kW]	10

- ep Lumi 10³³ (10³⁴ cm s⁻² s⁻¹)**
- 10 100 fb⁻¹ per year
- 100 fb⁻¹ 1 ab⁻¹ total
- eD and eA collisions have always been integral to programme
- e-nucleon Lumi estimates ~ 10³¹ (10³²) cm s⁻² s⁻¹ for eD (ePb)

** high luminosity achievable according to more recent estimates

O. Bruening & M. Klein, *Mod. Phys. Lett. A* 28, 1330011 (2013)

Baseline: Energy Recovery Linac

- Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV
- Two 10 GeV linacs.
- 3 returns, 20 MV/m
- Energy recovery in same structures

Luminosity [10 ³³ cm ⁻² s ⁻¹]	1-10**
Detector acceptance [deg]	1
Polarization [%]	90
IP beam sizes [µm]	7
Crossing angle [mrad]	0
e- L* [m]	30
Proton L* [m]	15
e- beta* _{x,y} [m]	0.12
Proton beta* _{x,y} [m]	0.1
Synchrotron power [kW]	10

ep Lumi

10 - 10

With the Higgs discovery and measured a striking eD and eA collision programme

Option to make the LHeC as a striking

Mith the Higgs alscovery and measured

And make the LHeC as a striking

Minning in a situit factory With maximum luminosity ■ e-nucleon Lumi estimates ~ \\ for eD (ePb)

** high luminosity achievable according to me. nt estimates

Civil Engineering Feasibility Studies

- ERL placed inside the LHC ring and tangential to IP2
- Two 1 km long LINACs; arcs have 1 km
- radius and are passed 3 times
- Whole racetrack ~9 km long (1/3 of the LHC length)

- ~ 960 cavities
- ~ 60 cryomodules per linac
- ~ 4500 magnets in the 2*3 arcs
- ~ 600 4 m long dipoles per arc
- ~ 240 1.2 m long quads per arc

The Interaction Region

- 3 beam interaction region
- Optics compatible with LHC running and β*=0.1m
- Only the p beam colliding with the e- is focused
- Head-on collisions achieved via long dipole across interaction region
- → High synchrotron radiation load
- → Dipole in main detector

Photon Number Density at the IP

A. Polini

LHeC Kinematics

LHeC - electron kinematics

•High x and high Q²: few TeV HFS scattered forward:

- → Need forward calorimeter of few TeV energy range down to 10° and below Mandatory for charged currents where the outgoing electron is missing
- Scattered electron:
- → Need very bwd angle acceptance for accessing the low Q² and high y region

11

Baseline Detector

- High acceptance Silicon Tracking System ~1°
- Liquid Argon Electromagnetic Calorimeter
- Iron-Scintillator Hadronic Calorimeter
- Forward Backward Calorimeters: Si/W Si/Cu...

12

Magnets

Baseline Solution:

- Solenoid (3.5 T) + dual dipole 0.3 T (Linac-Ring Option)
- Magnets (may be) embedded into EMC LAr Cryogenic System
- → Need of study the Calorimeter Performance and impact of dead material between EMC and HAC sections; it might be possible placing the magnet system even in front of the EMC at even lower radius at just outside of the tracking system

Baseline Detector

- Forward / backward asymmetry reflecting beam energies
- Present size 14m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
- e/γ taggers ZDC, proton spectrometer integral to design from outset system providing tagging, no independent momentum measurement

Physics Highlights

Deep Inelastic Scattering

- A rich history of exploiting scattering experiments to study structure, culminating in the HERA electronproton machine
- Confirmation of the QCD picture of the proton, structure mapped with high precision...

- There was no electron ion program
- Move to even lower x
- Tests of saturations
- The gluon is poorly known at low and high x
- \blacksquare There is no precision measurement of α_s
- Thankfully half of that machine has already been built in Geneva

PDF Constraints at LHeC

■ Full simulation of inclusive NC and CC DIS data, including systematics
→ NLO DGLAP fit using HERA technology...

- impact at low x (kinematic range) and high x (luminosity)
- ... precise light quark vector, axial couplings, weak mixing angle
- ... full flavor decomposition

PDFs uncertainties and the Higgs @ LHC

Dashed regions:
scale & PDF
contributions

- Many of the channels at LHC will be limited by PDF uncertainties
- With the LHeC, the huge improvements in knowledge of PDFs, precision of α_s will remove this, allowing the full exploitation of the LHC data for Higgs physics

Relevance of the high x region

e.g. High Mass 2 Gluino Production at the LHC

- Signature is excess at large invariant mass
- Expected SM background (e.g. gg → gg) poorly known for s-hat > 1 TeV.
- Both signal & background uncertainties driven by error on gluon density ...
- The HL-LHC (search) programme requires a more precise understanding of QCD, (strong coupling, gluon, valence, factorisation, saturation, diffraction..) which the LHeC provides

SM Higgs production in ep (i)

LHeC: E_e =60 GeV : \sqrt{s} = 1.3 TeV

	CC e ⁻ p	CC e+p	NC e⁻p
cross section [fb]	109	58	20
polarised cross section [fb] Pol. = 80%	196	N.A.	25

SM Higgs production in ep (ii)

- Study of H → bb in generic simulated LHC detector (CDR:E_e=150 GeV; New E_e=60 GeV)
- Di-jet invariant mass after all selection →
- 90% lepton polarisation enhances signal by factor 1.9
- with a luminosity of 10³⁴ luminosity, 10 times more data:
- ~5000 events @ Ee = 60 GeV H \rightarrow bb coupling to $\sim 1\%$.

	E _e = 150 GeV (10 fb ⁻¹)	E _e = 60 GeV (100 fb ⁻¹)
H → bb signal	84.6	248
S/N	1.79	1.05
S/vN	12.3	16.1

■ Precision from LHeC can add a very significant constraint on the mass of the Higgs

21 A. Polini

LHeC as an Electron-ion Collider

■ Four orders of magnitude increase in kinematic range over previous

DIS experiments.

Revolutionise our view of the partonic structure of nuclear matter.

- Study interactions of densely packed, but weakly coupled, partons
- Ultra-clean probe of passage of `struck' partons through cold nuclear matter

LHO

Impact of eA F₂ LHeC Data

 $R_{F_2}^{Pb}(x,5 \text{ GeV}^2)$

FGS10

■ Simulated LHeC ePb F₂ measurement has huge impact on uncertainties and allows to establish a genuine nPDF basis in a region never measured before

- Most striking effect for sea & gluons
- High x gluon uncertainty still large

0.2

CERN Mandate

Studies and prototyping of key technical components:

- Superconducting RF system for CW operation in an ERL
- SC Magnet development of the insertion regions of the LHeC with 3 beams
- Studies related to the experimental beam pipes with large beam acceptance
- The design and specification of an ERL test facility for the LHeC
- The finalization of the ERL design for the LHeC (optics design, beam dynamics studies and identification of potential performance limitations)

(S.Bertolucci at Chavannes workshop 6/12 based on CERN directorate's decision to include LHeC in the Medium Term Plan)

Linac Design

- In the CDR: 8 cavities per 14 m long module Choice between O(720 MHz) and O(1.3 GHz)
 - ~ 720 MHz had been baseline for CDR

Post CDR:

- → FINAL CHOICE: 801.58 MHz
- Frequency of a future LHC harmonic system
- It is (to less than a few kHz) equal to the existing SPS Landau system

LOWER FREQUENCY

ADVANTAGES

DISADVANTAGES

Reduced losses

Less required cooling power

Reduced wakefield

Somewhat higher RF cost Might be offset by reduced cryo cost or improved performance

CERN ERL Test Facility

- 100-MeV scale energy recovery demonstration of a recirculating superconducting linear accelerator
- Built-in flexibility
- Roadmap up to 1-GeV scale energy recovery demonstration of a recirculating superconducting linear accelerator

26

Summary and Outlook

Status

- The LHeC appears feasible and can be realized in parallel with HL-LHC
- The LHeC complements ideally the LHC pp and heavy ion program and provides fundamental input to reduce uncertainties
- A Conceptual Design Report and update documents available**
- Infrastructure investment with potential exploitation beyond LHeC
- Still significant room for optimization in design including a higher luminosity option

Plans

- Further develop and demonstrate Machine, Interaction Region,
 Detector and Detector Simulation
- Physics
- An ERL Test Facility at CERN
 - ** http://cern.ch/lhec