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LHeC Challenge

Add an electron beam to the LHC
 Next generation e±p collider
 e± polarized beam
 eA collider

Rich physics program: eq physics at TeV energies
 precision QCD & electroweak physics
 boosting precision and range of LHC physics results
 beyond the Standard Model
 high density matter: low x and eA

Tevatron/LEP/HERA (Fermiscale)  LHC/LC/LHeC (Terascale)
100 fold increase in luminosity, in Q2 and 1/x w.r.t. HERA  

LHC
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Latest & most promising idea 
to take lepton-hadron physics 
to the TeV centre-of-mass scale
… at high luminosity

Designed to exploit
intense hadron beams 
in high luminosity 
phase of LHC running 
from mid 2020s

LHeC Context
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LHeC Ee=60 GeV : √s= 1.3 TeV
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Conceptual Design Report
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 I - Introduction
– Lepton-Hadron Scattering
– Design Considerations
– Executive Summary

 II - Physics
– Precision QCD and Electroweak Physics
– Physics at High Parton Densities
– New Physics at High Energy

 III - Accelerator
– Ring-Ring Collider
– Linac-Ring Collider
– System Design
– Civil Engineering and Services
– Project Planning

 IV - Detector
– Detector Requirements
– Central Detector
– Forward and Backward Detectors
– Detector Assembly and Integration

 V  - Summary
– Appendix
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Conceptual Design Report
 J. Phys. G: Nucl. Part. Phys. 

39 (2012) 075001 
[arXiv:1206.2913] 

 Published July 2012 
 630 pages, summarizing 5 year 

workshops commissioned by 
CERN, ECFA and NuPECC

 ~200 participants, 
69 institutes 

http://cern.ch/lhec
Additional material in subsequent 
updates:
 “A Large Hadron Electron 

Collider at CERN” 
[arXiv:1211.4831]

 “On the Relation of the LHeC
and the LHC” [arXiv:1211.5102] 
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e± beam options: RR and LR

Ring-Ring
– e-p and e-A (A=Pb, Au, …) collisions
– More “conventional” solution, like HERA, no difficulties of principle - at 

first sight - but constrained by existing LHC in tunnel
– polarization 40% with realistic misalignment assumptions

 Linac-Ring
– e-p and e-A (A=Pb, Au, …) collisions, polarized e- from source, 

somewhat less luminosity for e+

– New collider type of this scale, Energy Recovery Linac

10, 30, 50 GeV

10 GeV

10 GeV
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Luminosity [1033cm-2s-1] 1-10**

Detector acceptance [deg] 1

Polarization [%] 90

IP beam sizes [μm] 7

Crossing angle [mrad] 0

e- L* [m] 30

Proton L* [m] 15

e- beta*x,y [m] 0.12

Proton beta*x,y [m] 0.1

Synchrotron power [kW] 10

Baseline: Energy Recovery Linac
 Design constraint: power consumption < 100 MW  Ee = 60 GeV

 Two 10 GeV linacs, 
 3 returns, 20 MV/m
 Energy recovery in                                                                                                           

same structures

 ep Lumi 1033 (1034 cm s-2 s-1 )**
 10 - 100 fb-1 per year 
 100 fb-1 – 1 ab-1 total 
 eD and eA collisions have always been integral to 

programme
 e-nucleon Lumi estimates ~ 1031 (1032 ) cm s-2 s-1 

for eD (ePb)
** high luminosity achievable according to more recent 
estimates    O. Bruening & M. Klein, Mod. Phys. Lett. A 28, 1330011 (2013)
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Civil Engineering Feasibility Studies

 ERL placed inside the LHC ring and 
tangential to IP2
 Two 1 km long LINACs; arcs have 1 km

 radius and are passed 3 times
 Whole racetrack ~9 km long (1/3 of the 
LHC length)

~ 960 cavities
~ 60 cryomodules per linac
~ 4500 magnets in the 2*3 arcs
~ 600 - 4 m long dipoles per arc
~ 240 - 1.2 m long quads per arc
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The Interaction Region

Photon Number Density at the IP

x [mm]

y 
[m

m
]

Q2Q1

Q2

Q1
• 3 beam interaction region
• Optics compatible with LHC 

running and β*=0.1m
• Only the p beam colliding

with the e- is focused
• Head-on collisions achieved 

via long dipole across 
interaction region

 High synchrotron radiation  
load

 Dipole in main detector
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LHeC Kinematics

•High x and high Q2: few TeV HFS scattered forward:
 Need forward calorimeter of few TeV energy range down to 10o and below █

Mandatory for charged currents where the outgoing electron is missing
• Scattered electron:                                                                                  
 Need very bwd angle acceptance for accessing the low Q2 and high y region █

11



A. Polini Menu2013, October 3rd, Rome, Italy

Baseline Detector

p/Ae∓

 High acceptance Silicon Tracking System   ~1°
 Liquid Argon Electromagnetic Calorimeter
 Iron-Scintillator Hadronic Calorimeter
 Forward Backward Calorimeters: Si/W  Si/Cu…

Beam Pipe Design

Central Tracker Si-Layers
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Magnets

Baseline Solution:
 Solenoid (3.5 T) + dual dipole 0.3 T (Linac-Ring Option)
 Magnets (may be) embedded into EMC LAr Cryogenic System
Need of study the Calorimeter Performance and impact of dead material 

between EMC and HAC sections; it might be possible placing the 
magnet system even in front of the EMC - at even lower radius at just 
outside of the tracking system
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Baseline Detector

p/A

dipole dipole

e∓

 Forward / backward asymmetry reflecting beam energies
 Present size 14m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
 e/γ taggers ZDC, proton spectrometer integral to design from outset 

system providing tagging, no independent momentum measurement
14
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Physics Highlights
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Deep Inelastic Scattering 

 A rich history of 
exploiting scattering 
experiments to study 
structure, culminating in 
the HERA electron-
proton machine

 Confirmation of the QCD 
picture of the proton, 
structure mapped with 
high precision...

Still Many open questions:
 There was no electron ion program
 Move to even lower x
 Tests of saturations
 The gluon is poorly known at low and high x
 There is no precision measurement of αs

 Thankfully half of that machine has already been 
built in Geneva
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PDF Constraints at LHeC
 Full simulation of inclusive NC and CC DIS data, including systematics 
 NLO DGLAP fit using HERA technology… 

 impact at low x (kinematic range) 
and high x (luminosity)

 … precise light quark vector, 
axial couplings, weak mixing angle

 … full flavor decomposition
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Gluon Sea

d valence
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PDFs uncertainties and the Higgs @ LHC

 Many of the channels at LHC will be limited by PDF uncertainties
 With the LHeC, the huge improvements in knowledge of PDFs, 

precision of αs will remove this, allowing the full exploitation of 
the LHC data for Higgs physics
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Dashed regions: 
scale & PDF 
contributions
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Relevance of the high x region

e.g. High Mass 2 Gluino Production at the LHC
 Signature is excess at large invariant mass 
 Expected SM background (e.g. gg gg) 

poorly known for s-hat > 1 TeV. 
 Both signal & background uncertainties                                                          

driven by error on gluon density …
 The HL-LHC (search) programme requires                                                    

a more precise understanding of QCD, 
(strong coupling, gluon, valence,                                                              
factorisation, saturation, diffraction..)                                                              
which the LHeC provides
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SM Higgs production in ep (i)
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e‐p
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Fwd jet
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Fwd Electron

Fwd jet

LHeC: Ee=60 GeV : √s= 1.3 TeV
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 Study of H  bb in generic simulated LHC  
detector (CDR:Ee=150 GeV; New Ee=60 GeV)

 Di-jet invariant mass after all selection 
 90% lepton polarisation enhances signal by 

factor 1.9
 with a luminosity of 1034 luminosity, 10 times 

more data:
 ~5000 events @ Ee = 60 GeV H bb                 

coupling to ~ 1%. 

 Precision from LHeC can add a very significant 
constraint on the mass of the Higgs   

21

SM Higgs production in ep (ii)
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LHeC as an Electron-ion Collider

 Revolutionise our view of 
the partonic structure of 
nuclear matter.

 Study interactions of 
densely packed, but 
weakly coupled, partons

 Ultra-clean probe of 
passage of `struck’ 
partons through cold 
nuclear matter
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 Four orders of magnitude increase in kinematic range over previous  
DIS experiments. 
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Impact of eA F2 LHeC Data
 Simulated LHeC ePb F2 measurement 

has huge impact on uncertainties and 
allows to establish a genuine nPDF basis 
in a region never measured before

 Most striking effect for sea & gluons
 High x gluon uncertainty still large 
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Valence

Sea

Glue

Example 
pseudo-data
from single 
Q2 Value 

Effects
on EPS09
nPDF fit
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CERN Mandate

Studies and prototyping of key technical components:
 Superconducting RF system for CW operation in an ERL
 SC Magnet development of the insertion regions of the LHeC

with 3 beams
 Studies related to the experimental beam pipes with large beam 

acceptance
 The design and specification of an ERL test facility for the LHeC
 The finalization of the ERL design for the LHeC (optics design,

beam dynamics studies and identification of potential performance 
limitations)
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(S.Bertolucci at Chavannes workshop 6/12 based on CERN 
directorate’s decision to include LHeC in the Medium Term Plan)
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Linac Design
 In the CDR: 8 cavities per 14 m long module

Choice between O(720 MHz) and O(1.3 GHz)                                                       
~ 720 MHz had been baseline for CDR

Post CDR:
 FINAL CHOICE: 801.58 MHz
 Frequency of a future LHC harmonic system
 It is (to less than a few kHz) equal to the existing SPS Landau system
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LOWER FREQUENCY
ADVANTAGES                          DISADVANTAGES

Reduced losses Somewhat higher RF cost
Might be offset by reduced cryo
cost or improved performance

Less required cooling power
Reduced wakefield
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CERN ERL Test Facility
 100-MeV scale energy recovery demonstration of a recirculating 

superconducting linear accelerator
 Built-in flexibility
 Roadmap up to 1-GeV scale energy recovery demonstration of a 

recirculating superconducting linear accelerator
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5 MeV Injector Dump

5 MeV Injector Dump

5 MeV Injector Dump
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Summary and Outlook
Status
 The LHeC appears feasible and can be realized in parallel with HL-LHC
 The LHeC complements ideally the LHC pp and heavy ion program and 

provides fundamental input to reduce uncertainties
 A Conceptual Design Report and update documents available**
 Infrastructure investment with potential exploitation beyond LHeC
 Still significant room for optimization in design including a higher 

luminosity option

Plans
 Further develop and demonstrate Machine, Interaction Region,                      

Detector and Detector Simulation
 Physics
 An ERL Test Facility at CERN

**  http://cern.ch/lhec
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