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Machine and Detector Design  

at the LHeC

A. Polini
for the LHeC WGs

Electron-Ion Collider Collaboration Meeting

Outline

• Basic Project Considerations and Physics Motivation

• Options and Challenges

• Accelerator Design

• Interaction Region

• Detector Design

• Status and Roadmap
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LHeC Challenge

Add an electron beam to the LHC
• Next generation e±p collider

• e± polarized beam

• eA collider

Rich physics program: eq physics at TeV energies
• precision QCD & electroweak physics

• boosting precision and range of LHC physics results

• beyond the Standard Model

• high density matter: low x and eA

Tevatron/LEP/HERA (Fermiscale) LHC/LC/LHeC (Terascale)

100 fold increase in luminosity, in Q2 and 1/x w.r.t. HERA  

LHC



EIC Workshop, Washington, July 29th 2010A. Polini 3

LHeC Context

The LHeC is not the first 
proposal for higher 
energy DIS, but it is the 
first with the potential 
for significantly higher 
luminosity than HERA …

[JINST 1 (2006) P10001]

Lepton Proton Scatering Facilities

• Done

• Planned
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New physics, distance

scales few . 10-20 m

High precision

partons in LHC

plateau

Nuclear 

Structure 

& Low x 

Parton

Dynamics

High 

Density 

Matter

Large x

partons

Kinematics & Motivation (60 GeV x 7 TeV ep)

s>> 1 TeV

• High mass (Meq, Q2)  
frontier

• EW & Higgs

• Q2 lever-arm at 
smallest up to x near 
to 1   PDFs

• Low x frontier [ x 
below 10-6 at Q2 ~ 1 
GeV2 ]

 novel QCD …
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eA with the LHeC
Saturation (low x, nonlinear QCD)

• eA: new realm:                                                                                                       

Extension of kinematic range by 3~4                                                                        

orders of magnitude into saturation region

• A: density ~A1/3 ~ 6 for Pb … worth 2 orders of magnitude in x
5

Nuclear Parton Densities
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LHeC Status
• CERN: European Organization for Nuclear Research

• ECFA: European Committee for Future Accelerators

• NuPECC: Nuclear Physics European Collaboration Committee

 Divonne III November 2010: CDR draft

http://cern.ch/LHeC
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RR LHeC: 
new ring 
in LHC tunnel,
with bypasses
around 
experiments

RR LHeC
e± injector 
10 GeV,
10 min. filling time

LR LHeC:
recirculating
linac with
energy 
recovery

Accelerator: Two Alternative Designs

8
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Two Alternative Designs

• Ring-ring

• e-p and e-A (A=Pb, Au, …) collisions, 

• More “conventional” solution, like HERA, no difficulties of 

principle - at first sight - but constrained by existing LHC 

in tunnel

• polarization 40% with realistic misalignment assumptions

• Steady progress with detailed design

• Linac-ring

• e-p and e-A (A=Pb, Au, …) collisions, polarized e from 

source, poorer Luminosity/Power

• No previous collider like this

• Comparisons of layouts
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GeV,EfbL,scm
e

6010010
11233

10 GeV injector     

into bypass of P1             

2 x 1010e                             

(LEP: 4 x1011)

~10 min filling time 

synchronous ep + pp

LHeC – Ring-Ring Configuration

Newly built magnets

installed on top of

the LHC bypassing

LHC experiments

in the twenties.
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Ring-Ring Design Criteria

LHeC

Transport 
zone 
must be 
kept free

• Compatibility with installed LHC and its tunnel infrastructure  

• Many details to study and take care of

• LHC would be running in p-p in parallel

• Minimise length of                                                                                 

installation shutdown

• LHC p-p would be                                                                                                                

running for high                                                                                       

integrated luminosity

• Bounds on power                                                                     

consumption (100 MW)
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ARC cell design: 

LFODO(e)=LFODO(p)/2

LHC Cryo jumpers accounted for in                    
asymmetric Focusing-Defocusing

Further interferences mapped and being studied

Experiments bypassed in new tunnels which                 
house RF cavities

LHeC – e Ring Design

Meet spatial LHC constraints

Synchrotron radiation < 50MW

Two types of quadrupoles

Reasonable sextupole parameters

Dipoles: 4 times lighter than LEP

Prototypes: Novosibirsk and CERN
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Overall Layout and Bypasses
M. Fitterer

Bypass design:

• shutdown time

• cost for tunnel

• match LHC and eRing circumference

• extra shafts being discussed        

e-p/A experiment could be 
at IP2 (shown), IP8 or …
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Beam Optics and Detector Acceptance

Luminosity: 10°: ~1.7x1033 cm s-2 ; 1°: ~ 6 x1032 cm s-2

Design suggests two detector configurations:
• Low Lumi, Low Q2

 High acceptance detector 1°

• High Lumi,High Q2
 Main detector 10° aperture
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GeVEfbLscm
e

60,100,10
11233

Baseline:

Energy Recovery Linac

60 GeV, Power 100MW

Also presented in CDR:

60 GeV pulsed 1032cm-2s-1

140 GeV pulsed 5 1031

Note: CLIC x LHC ~1030

due to different time

structure (0.5 vs 50ns)

Linac-Ring Configuration



EIC Workshop, Washington, July 29th 2010A. Polini 16

1.67 km
0.34 km

30-GeV linac

LHC p

LHC p

1.0 km

2.0 km

10-GeV linac

10-GeV linac
Pulsed-60 ERL

LHC p

70-GeV linac

3.9 km

2.0 km

Pulsed-140

injector
dump

injector dump

dumpinjector

IP

IP

IP

140-GeV linac

or linear

injector
dump

IP
7.8 km

Linac-Ring Configurations

Luminosity ~1033

High Energy, 0.5 1032

Least effort: ~ 1032
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LR Option -Dipole-Separation - SR Fan

• Elliptical Beam Pipe:

(very preliminary)

• inner-∅x = 12cm

• inner-∅y = 5cm

• outer-∅x = 12.8cm

• outer-∅y = 5.8cm

• thickness: 0.4cm

Beam envelopes of 10σ (electrons) [solid blue] or 11σ (protons) [solid green], 

the same envelopes with an additional constant margin of 10 mm [dashed], 

the synchrotron radiation fan [orange], and the approximate location of 

the magnet coil between incoming protons and outgoing electron beam [black].

M. Sullivan e         p
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LR – Interaction Region

IR Options:

Head on  dipoles

Crossing  like RR IR

Positron source

Difficult to reach high 
intensity. Perhaps best 
suited: hybrid target

production of unpolarised

positrons. Several stations?

cf Divonne 2009

βp=10 cm

l*= 10 m

p         e
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Design Parameters

electron  beam RR LR ERL LR

e- energy  at IP[GeV] 60 60 140

luminosity [1032 cm-2s-1] 17 10 0.44

polarization [%] 5 - 40 90 90

bunch population [109] 26 2.0 1.6

e- bunch length [mm] 10 0.3 0.3

bunch interval [ns] 25 50 50

transv. emit. x,y [mm] 0.58, 0.29 0.05 0.1

rms IP beam size x,y [ m] 30, 16 7 7

e- IP beta funct. *x,y [m] 0.18, 0.10 0.12 0.14

full crossing angle [mrad] 0.93 0 0

geometric reduction Hhg 0.77 0.91 0.94

repetition rate [Hz] N/A N/A 10

beam pulse length [ms] N/A N/A 5

ER efficiency N/A 94% N/A

average current [mA] 131 6.6 5.4

tot. wall plug power[MW] 100 100 100

proton beam RR LR

bunch pop. [1011] 1.7 1.7

tr.emit. x,y [ m] 3.75 3.75

spot size x,y [ m] 30, 16 7

*x,y [m] 1.8,0.5 0.1$

bunch spacing 

[ns]

25 25

$ smaller LR p- * value than for 
nominal LHC (0.55 m):

- reduced l* (23 → 10 m)
- only one p beam squeezed
- IR quads as for HL-LHC

RR = Ring – Ring

LR  = Linac –Ring

ERL= Energy Recovery Linac

In progress  last update  8.7.2010
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Interaction Region: Crossing Angle

• At LHC 1st parasitic interaction at 3.7 m from IP

• RR: Presently non zero crossing angle (0.93 mrad)

• RR: Focusing Quadrupoles close to IR to achieve high Lumi (1.2m)

• LR: Need dipole(s) close to interaction region 

(B 0.2 ~ 0.4 T at  0 ~1.5 m-9m from IP)

• RR could profit of bending dipole(s) to further reduce the crossing angle

HERA

96 ns bunch spacing

LHeC 

25 ns bunch spacing

1st parasitic interaction

3.7 m from IP

p

e

p

e
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Synchrotron Radiation - RR
(very preliminary)

Top View of IR

Absorbers

B. Nagorny, W. Schneekloth

m

16.4 kW
26.7 kW

4.4 kW

21
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U.Schneekloth

Backscattering of Sync Rad
(very preliminary)

Synchrotron Radiation simulation and collimator 

design with up to date optics is ongoing
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IR - Beam Separation

Crossing angle (0.93 mrad) to avoid first parasitic crossing (L x 0.77)

1st and 2nd bending quadrupoles 

(Dipole in detector? Crab cavities? Design for 25ns bunch crossing [50ns?]

Synchrotron radiation –direct and back, absorption … recall HERA upgrade…)

2nd quad: 3 beams in horizontal plane

Separation 85 mm, MQY cables, 7400 A

1st SC half quad (focus and deflect)

separation 50mm, g=127T/m, 

MQY cables, 4600A

Ring-Ring

23
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Detector Design
Detector Outline

• Physics Requirements
• Acceptance

• Track and energy resolution

• Benchmark processes

• Interaction Region Boundaries
• Optics, synchrotron fans

• Beam pipe 

• Disclaimer:
• As many of the boundary conditions (Optics, BP, IR) are still 

open, mostly qualitative design is currently possible.
• Much of the design work and interfacing with physics requirements still 

to be done. 

• Goal:
• Aim for a design concept for the CDR, not the proposal or technical 

design report yet

• A baseline detector solution and RD options

24
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LHeC Kinematics

•High x and high Q2: few TeV HFS scattered forward:
Need forward calorimeter of few TeV energy range down to 10o and below █. Mandatory for 
charged currents where the outgoing electron is missing. Strong variations of cross section at 
high x demand hadronic energy calibration as good as 1%
• Scattered electron:

Need very bwd angle acceptance for accessing the low Q2 and high y region █.
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Detector Acceptance

Highest acceptance - if possible

RAPGAP-3.2 (H.Jung et.al.- http://www.desy.de/~jung/rapgap.html)

HzTooL-4.2    (H.Jung et.al. - http://projects.hepforge.org/hztool/)

selection:   q2.gt.5.

10°

1°

DIFF     70GeV electron x 7 TeV proton

Jet Energy  [GeV]

DIFF     70GeV electron x 7TeV proton

10°

1°

Jet Energy  [GeV]

NRAD   70GeV electron x 7 TeV proton

10°

1°

CHARM  70GeV electron x 7 TeV proton

http://projects.hepforge.org/hztool/
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• The beam pipe drives the design:

• Elliptical: synchrotron radiation has to pass 

leaving the detector untouched (direct and 

backscattered SR); No φ symmetry.

• Length of detector - related at fixed angular 

acceptance to beam pipe radii The                                                         

dimensions of the BP defines the 

z-extension of the detector. 

• Multiple Scattering: BP as thin as possible

• SR collimators/absorbers incorporated

• 1° polar angle traversing tracks - radiation length optimisation

d = 6.0 

d = 5.0

d = 4.0

d = 3.0

d = 2.0

T
ra

c
k

 A
n

g
le

 [
°]

z-Distance to Vertex [cm]

Distance Detector-Beam-Line d [cm]

Beam Pipe
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Beam Pipe - continued

• Challenge:
is it possible to build a long beam pipe as thin as necessary?

• BP sandwich structure: 
Metal - Carrier - Metal

minimal thickness and excellent radiation length
e.g.   Be/Al - Nomex/Carbon foam - Be/Al *
*NIM 228 (1984) 207-209, A SANDWICH STRUCTURE BEAM PIPE FOR STORAGE RINGS,  G.B. BOWDEN, 

H.DESTAEBLER, Ch. T. HOARD and A. E. JOHNSTON, SLAC    (… The pipe has a radiation thickness of 
5.8x10-3Xo, a failure pressure of 3.5 atm and was baked for high vacuum service; Al-NomexAl, length 560mm! )

arXiv:nucl-ex/0205008v1 (2002), Integration and Conventional Systems at STAR, H.S. Matis et.al.

• R&D required:
vacuum tight, mechanical-,  electrical-,  thermal stability

• The detector dimensions depend heavily on the beam pipe size

• Reminder: LHeC has 3 beams:

• Interacting electron beam (synchrotron radiation)

• Interacting proton beam

• Spectator proton beam
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Benchmark Processes

• One of the benchmark processes*:

Vector Boson Fusion @ LHC CC

where (one possible) background 

process CC is      

will challenge the detector design - requiring:   

• large forward acceptance

• best resolution for hadrons produced

• good ET recognition and b tagging with maximal acceptance

* U. Klein

Ilcroot package:

V. di Benedetto,

C. Gatto

Higgs Production 

in ep event*
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Detector Requirements

• High resolution tracking system 
• excellent primary vertex resolution (rad hard, low budget material)

• resolution of secondary vertices down to small angles in forward direction    
for high x heavy flavor physics and searches

• precise pt measurement matching to calorimeter signals, calibrated and 
aligned to 1 mrad accuracy

• Acceptance in particular at small forward and backward angles (1°, 10°)

• The calorimeters  - Energy flow
• Full containment, granularity, forward acceptance
• electron energy to about 10%/ E calibrated using the kinematic peak         

and double angle method, to permille level

Tagging of  's and backward scattered electrons -
precise measurement of luminosity and photo-production physics

• hadronic part   30%/ E calibrated with pTe /pTh to 1% accuracy

• Muon detector/spectrometer, very forward 
detectors, luminosity measurement
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… the detector

… a draft
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Inner Tracking
Elliptical pixel detector:               2.9–4.6/3.47-6.05

Radius [cm]
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Inner Tracking
Radius [cm]

Barrel layer 1-5: 7.5–61

Elliptical pixel detector:               2.9–4.6/3.47-6.05
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Inner Tracking
Radius [cm]

Barrel cone 1-4: 5–61

Elliptical pixel detector:               2.9–4.6/3.47-6.05

Barrel layer 1-5: 7.5–61
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Angles for inner cone radius 8.5cm (6cm)

4.1 (2.9)˚
4.6 (3.2)˚

5.2 (3.6)˚
5.9 (4.2)˚

9.2˚

11.0˚
13.5˚

17.5˚

24.8˚

0.9˚

1.2˚

1.4˚

1.9˚

2.9˚

9.1˚
16.7˚

32.2˚
41.2˚

46.2˚
50.2˚

Track Angles

layer 5
layer 4

layer 3
layer 2

layer 1
Layer 0

Container ModelOne option: GAS-Si Tracker - GOSSIP Type NIKHEF

Gas On Slimmed Silicon Pixels (or Strixels/Pads)

Forward and backward (red) disks to be removed
For the High Lumi-High Q2 running.

Full Tracking (down to 1 degree)
(to be optimised)

Alternative technologies: Pixels, MAPS, DEPFET etc.
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Precision Tracking: Si-Gas Tracker – GOSSIP
Gas on Slimmed Silicon Pixels

• Gas for charge creation, Si-pixel/strips/pads for signal 
collection

• Lightweight detector (including mechanics, cooling 
infrastructure…)

• More than one hit per track - defines track segments

• Si radiation hard - standard CMOS ( 90 nm process )

• Trigger capable: 25ns, Gossipo 3|4  readout chip ~O(1) ns time 
resolution.

• Large volume detector 
affordable, industrial production

• Time measurement – 3D tracking

• Gas choice: radiator : 
Transition Radiation Tracker
- e/ identification

• Diffusion and drift velocity
limits position measurement 
currently to  ~<<20μm

Gossip Presentations: 
• E. Koffeman (Divonne 2008) 
• H. VanDerGraaf (Divonne 2009)

Interesting option for LHeC

36
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Silicon Pixel Detector
N. Wermes
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The Calorimeter

• A step back …
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The Calorimeter

1,10,100,1000 GeV

Longitudinal profile

Ratio of energy loss due to 

longitudinal leakage divided

by loss due to neutrinos vs 

thickness in interaction lengths

Calorimeter depth (X0)

• A step back …                                                     

… some distributions

Courtesy R. Wigmans et al.

39
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HERA Calorimeters

• H1
• Liquid Argon (cf. ATLAS)

• High granularity, compensation achieved via software

• Solenoid outside of the LAr CAL

• ZEUS
• Compensating Calorimeter (Uranium Scintillator)

• EMC 15%/ E; HAC 35%/ E, up to 7 I

• Lower granularity

• Solenoid between central tracking and main CAL

SC Solenoids

inside CAL

SC Solenoid

outside CAL

HERA

• 920 GeV p    

27 GeV e±

• c.m.s. energy

s ~ 300 GeV

40
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LHeC Calorimetry

LHeC:
• precision physics

• Similar energies and resolution required for ILC

• High energy resolution

• Jet Energies ~ O(1 TeV)

• Higher granularity

• Possibly compact design (detector size)

Choices:

PFA (particle Flow Algorithm) 
• CALICE High granularity calorimeters. Software compensation & 

PID combining with information coming from the tracking system

• New Concepts
• New Materials, Silicon, RPC, etc.

• Dual Readout Calorimeters:

Combine energy and Cherenkov measurements

• Liquid Argon concept still applicable as baseline solution

41

Calice: W-Si prototype
W plates: 10 x 1.4mm(0.4X0)

10 x 2.8
10 x 4.2mm

Si pads: 1cm x 1cm 
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LHeC Calorimeter

Present choice: Energy Flow Calorimetry:

For the geometry given:

• Electromagnetic Calorimeter: 

~30  x X0 Pb/W  & different det./R/O

• Hadronic Calorimeter: 

6 – 10+  x λI Fe/Cu & different det./R/O

• Presently the fwd/bwd calorimeter asymmetry more in 
functionality/detector response rather then in geometry

• A dense EmCAL with high granularity (small transverse size cells), 
high segmentation (many thin absorber layers), and with ratio  λI/X0  large,  
is optimal for E-Flow measurement      3-D shower reconstruction 

• Example Fe, W  

• brass (Cu) an option also ( CMS ), λI =15.1cm - denser than Fe  (adding λI) 
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EmC-Endcap-fwd

Central Tracking

Bwd TrackingFwd Tracking

EmC-insert-½-fwd

Solenoid

1⁰ and 179⁰
2⁰ and 178⁰
3⁰ and 177⁰
4⁰ and 176⁰

5⁰ and 175⁰

10⁰ and 170⁰

112

40
20

60

[cm]250217 250 250 217

177

40

40

177

289

EmC-Endcap-bwd

EmC-insert-½-bwd

HaC-insert-½-fwd HaC-insert-½-bwd

EmC-fwd EmC-bwd

HaC-Barrel-bwdHaC-Barrel-fwd

112

40
20

60

289

The Detector - Low Q2 Setup

EmC-Barrel

Fwd/Bwd asymmetry in energy deposited and thus in technology [W/Si vs Pb/Sc..]
Present dimensions: LxD =17x10m2 [CMS 21 x 15m2 , ATLAS 45 x 25 m2]

- High Acceptance
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EmC-Endcap-fwd

Central Tracking

EmC-insert-½-fwd

Solenoid

1⁰ and 179⁰
2⁰ and 178⁰
3⁰ and 177⁰
4⁰ and 176⁰

5⁰ and 175⁰

10⁰ and 170⁰

112

40
20

60

[cm]250217 250 250 217

177

40

40

177

289

EmC-Endcap-bwd

EmC-insert-½-bwd

HaC-insert-½-bwd

HaC-Barrel-bwdHaC-Barrel-fwd

112

40
20

60

289

The Detector - High Q2 Setup

EmC-Barrel

HaC-insert-½-fwd

Low Beta MagnetLow Beta Magnet

+ MagCal+ MagCal

Aim of current evaluations: 
avoid detector split in two phases: time and effort

- High Luminosity
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Solenoid
Modular structure:

• assembly CMS like on surface level or in the experimental area depending                       
on time constraints and access shaft opening

Solenoid dimensions:
• 6m half length

• 300 cm inner radius

• B field = 3.5 T

Geometry constraints:
• Current beam pipe dimensions

• Requirement of 10° tracking coverage

• Homogeneous B field in the tracking area

Detector Track Resolution:
i.e. assuming / using (Glückstern relation):                                  with

N track points on L; length of track perpendicular to field B, accuracy σ(x)

B = 3.5 T, Nmin= 56 track points   (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits )

s-gas module ~10° inclined more track points for inclined tracks - extended track segments

 ΔpT/pT = 0.03% pT

T

T

T
p

NaBL

x

p

p

4

720)(

2 GeVmT0.3a
11
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Fwd Tracker - active Thickness 8. cm each

Si-Pix/Si-Strip/SiGas  Tracker:

inner R =   4.86 cm; outer R = 61.3 cm

Planes 1 - 5: 

z1-5 = 140. / 200. / 260. / 320. / 370. cm

Elliptical Pixel Tracker:

inner-∅x = 9.32cm

inner-∅y = 7.82cm

2.4cm active radius

Barrel Tracker - active Radius 2.5cm each

Si-Pix/Si-Strip/SiGas  Tracker:

1. layer: inner R =   8.8 cm; outer R = 11.3 

cm2. layer:             = 21.3 cm;             = 23.8 

cm3. layer:             = 33.8 cm;             = 36.3 

cm4. layer:             = 46.3 cm;             = 48.8 

cm5. layer:             = 58.8 cm;             = 61.3 

cm

4 Cone structured fwd/bwd Si-pix/Si-strip/Si-gas 

Tracker

R min = 4.86 cm

2.5cm active thickness

Bwd Tracker - active Thickness 8. cm each

Si-Pix/Si-Strip/SiGas  Tracker:

inner R =   4.86 cm; outer R = 61.3 cm

Planes 1 - 5: 

z1-5 = -140. /-210. /-280. /-340. /-370. cm

Hadron Calorimeter - 5 Modules (beige)

inner R =   112. cm; outer R = 289. cm

Modules 1 - 5: 

ΔZ1-5 = 217. / 250. / 250. / 250. / 217. cm

Fwd/Bwd Hadron Calo - (grey)

inner R =   21.0 cm; outer R = 110. cm

ΔZ = 177. cm
Fwd/Bwd Hadron Calo Insert - (beige)

inner R =   6.5 cm; outer R = 20. cm

ΔZ = 177. cm

Fwd/Bwd Elecromagn Calo Insert 1&2 - (pink)

inner R1=   6.5 cm; outer R = 20. cm

inner R2=   21. cm; outer R = 40. cm

ΔZ = 40. cm

Solenoid - 3.5T

inner-R = 300.0cm

inner-R = 330.0cm

half length = 600. cm

Elliptical Beam Pipe:

inner-∅x = 7.3cm

inner-∅y = 5.8cm

outer-∅x = 8.1cm

outer-∅y = 6.6cm

thickness: 0.8cm

Fwd/Bwd Electromagn. Calo 2 - (green)

inner R =   21. cm; outer R = 110. cm

ΔZ = 40. cm

Fwd/Bwd Electromagn. Calo 1 - (green)

inner R =   70. cm; outer R = 110. cm

ΔZ = 250. cm

Barrel Electromagn. Calo - (green)

inner R =   70. cm; outer R = 110. cm

ΔZ = 250. cm

Low Q2 Detector
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Instrumented Magnets (a study)
Tim Greenshaw

MAGCAL Design

Geant 4 studies (Birmingham)

 Divonne 2009 workshop

47
MAGCAL
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Luminosity Measurement

48

Sergey Levonian

Linac-Ring:

• Head on collisions

• Similar to HERA, ’s travel along the p-beam

• Luminosity monitor located at z=100m

• Challenge: large aperture required for p at 60-80m

Ring-Ring:

• Non zero crossing angle at IP

• Large synchrotron radiation flux

• Challenge: difficult to catch zero-angle ’s

RR scheme
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Luminosity Measurement

49

Sergey Levonian

-tagger

e-tagger
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Further Considerations

About external detectors:

• Return Yoke + Backing Calorimeter (or alternative solutions)

• Muon Detectors/Spectrometers

• Very Forward Detectors

not detailed here, are being studied and will be included in the CDR

Considerations:

• It is clear that the definition of the beampipe, the boundaries of the 

optics and interaction region will push forward the detector design 

and will allow soon a more precise design

• The presence of additional dipole(s), required in the linac-ring 

design and useful in ring-ring option, is being presently worked out 

• New concepts and baseline solutions with the aim to demonstrate 

the feasibility of the project. But still lots of work ahead.

50
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• The physics arguments for an LHeC experiment at CERN is 

getting more pronounced

• Two independent machine options (Ring-Ring and Linac-Ring) are  

being investigated and are well advanced in the their concepts

• The beam pipe and the interaction region design play a key role 

defining the detector and currently in focus

• A base of a LHeC detector design has been presented and some 

boundary conditions for set up and performance discussed

• The LHeC detector is in some respects as complex and sizable 

as an LHC detector and aims for accuracy as an ILC detector. It 

will be a fantastic challenge to it build

• It would be a waste not to exploit the 7 TeV beams for ep and eA

physics at some stage during the LHC time (G. Altarelli)

Summary - Outlook
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Towards a Tentative Schedule

• CDR printed in spring 2011                                                                                

Study of installation and interference issues still to be done

• Installation of (ring or linac) LHeC towards 2021                        

Make maximum use of LHC shutdowns (~50 months).

• 2021-30: ~10 years of operation with LHC [p/A]                             

colliding with Ee ≈ 60 GeV [e-/e+ ]: ~100 fb-1 in ep

• later: possible extension to high Ee LHeC

During HE-LHC upgrade shutdown and long term operation               

with 16 TeV p colliding with e.g. Ee=140 GeV [e-/e+]                            

Q2
max=9TeV2 xmin=10-7 in DIS region

• The time schedule of the LHeC is linked to the LHC, ep has to be 

doable as an upgrade or a 5th experiment to the LHC; so far that 

looks feasible

52
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NuPECC – Roadmap 5/2010: New Large-Scale Facilities

G. Rosner, NuPECC Chair, Madrid 5/10 - DRAFT
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Prospects for polarized electron beam

• Rely on self-polarization of e beam by Sokolov-Ternov 

mechanism

• Theoretical understanding of 1980s confirmed by empirical 

experience of LEP:

Depolarizing effects of energy 
spread: polarization drop fast 
above ~ 60 GeV

But reasonable levels attainable 
with best design and techniques 
below this energy.

More exotic possibilities, e.g., 
snakes and asymmetric bends.

Linac Ring: 90% e- polarization
Recent simulations, models,
D.P. Barber, U. Wienands

preliminary
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Crossing angle:  Luminosity Loss Factor

Other possibility: use of Crab Cavities: 

with 7 TeV protons  additional issues
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R-R: Injector options with recirculation

H. Burkhardt

• Consider 10 GeV electron injector

• Not a major problem in comparison with rest of project but must be 

designed

• Natural to use same SC cavities as LeR 

• Linac ~ 500 m, 

• Possibly with recirculation, like scaled-down former ELFE project
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e-Pb collisions in Ring-Ring

• Assume present nominal Pb beam in LHC

• Same beam size as protons, fewer bunches

• Assume lepton injectors can create matching train of e-

• Lepton-nucleus or lepton-nucleon luminosity in ring-ring 

option at 70 GeV

• May be possible to exploit additional power by 

increasing electron single-bunch intensity by factor 

592/2808=4.7

J.M. Jowett
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7 208 82+
592 bunches of 7 10  Pb nuclei

b b
k N

10
592 bunches of 1.4 10  e

b b
k N

29 -2 -1 31 -2 -1

en
1.09 10  cm s     2.2 10  cm s

gives 11 MW radiated power

L L


