Electron-lon Collisions at a Large Hadron electron Collider Paul Newman Birmingham University ... for the LHeC Study Group Fri 6 July 2012 Can we add ep and eA collisions to the existing LHC pp, AA and pA programme? ... towards a full understanding of QCD at high temperatures, baryon and parton densities ... http://cern.ch/lhec ## Material from recently released Conceptual Design Report 630 pages, summarising a 5 year workshop commissioned by CERN, ECFA and NuPECC ~200 participants from 69 institutes CERN-OPEN-2012-015 LHeC-Note-2012-001 GEN Geneva, June 13, 2012 #### A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group arXiv:1206.2913 [physics.acc-ph] J. Phys. G39 (2012) 075001 Latest & most promising idea to take lepton-hadron physics to the TeV centre-of-mass scale ... at high luminosity #### time line of CERN HEP projects Potentially fits with high luminosity phase of LHC running from early-mid 2020s ... moving forward towards TDR ~ 2015 #### Other LHeC Talks at ICHEP'12 *Partons, QCD and Low x Physics at the LHeC'* Claudia Glasman, Thursday 10.15 `Design Concepts for a Large Hadron Electron Collider' Max Klein, Saturday 11.30 *`The LHeC Detector Design Concept'* Alessandro Polini, Saturday 15.15 *`Prospects for Higgs Physics at an LHeC'* Uta Klein, Saturday 17.00 ## Baseline[#] Design (Electron "Linac") Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV - Two 10 GeV linacs, - 3 returns, 20 MV/m - Energy recovery in same structures [CERN plans energy recovery prototype] - eD and eA collisions have always been integral to programme - e-nucleon Lumi estimates ~ 10^{31} (10^{32}) cm⁻² s⁻¹ for eD (ePb) [#] Alternative designs based on electron ring and on higher energy, lower luminosity linac also exist #### **Detector Overview** - Forward / backward asymmetry reflecting beam energies - Present size 14m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m) - ZDC, proton spectrometer integral to design from outset ## **DIS: Parton Microscopy** Q²: exchanged boson resolving power x: fractional momentum of struck quark Only previously studied in collider mode at HERA (ep, 1992-2007) #### Some LHeC Heavy Ion Highlights - Measurement of nuclear parton densities - Behaviour of struck quark passing through cold nuclear matter - How is low x growth of parton densities tamed to satisfy unitarity?... ## Some LHeC Heavy Ion Highlights - Measurement of nuclear parton densities - Behaviour of struck quark passing through cold nuclear matter How is low x growth of parton densities tamed to satisfy unitarity?... e.g recombination gg → g? ... new high density parton regime characterised by non-linear parton evolution dynamics (e.g. CGC) ... ## LHeC Strategy for making the target blacker LHeC delivers a 2-pronged approach: Enhance target `blackness' by: - 1) Probing lower x at fixed Q² in ep [evolution of a single source] - 2) Increasing target matter in eA [fixed Q] DENSE REGION DILUTE REGION In A [overlapping many sources at fixed kinematics ... density \sim $A^{1/3} \sim 6$ for Pb ... worth 2 orders of magnitude in x] #### **Current Status of Nuclear Parton Densities** Rich array of nuclear effects not fully understood All partons poorly constrained for x < 10⁻² Gluon ~ unknown R_i = Nuclear PDF i / (A * proton PDF i) ## Complementarity of AA, pA and eA Physics Need to constrain initial conditions to extract and quantify QGP properties from AA data #### Inclusive J/Ψ data Low-x-sensitive AA data not described by existing nPDFs New effects likely to be revealed in tensions between eA and pA, AA (breakdown of factorisation) ## Impact of eA F₂ LHeC data - Simulated LHeC ePb F₂ measurement has huge impact on uncertainties - Most striking effect for sea & gluons - High x gluon uncertainty still large x 0.6 0.2 EPS09 10⁻⁴ **nDS** $R_F^{Pb}(x,5 \text{ GeV}^2)$ 10⁻³ **FGS10** 10⁻² 10⁻¹ Data: LHeC #### **Exclusive / Diffractive Channels and Saturation** $^{\lambda*}$ $X(M_x)$ - 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon - 2) Additional variable t gives access to impact parameter (b) dependent amplitudes - → Large t (small b) probes densest packed part of proton? #### **Exclusive Diffraction in eA** Experimental separation of incoherent diffraction based mainly on ZDC ... saturation smoking gun? #### Some other LHeC eA Studies ... production & fragmentation x Mainly zeroth order feasibility studies Many more processes and observables still to be investigated #### **Summary** #### [More at http://cern.ch/lhec] - LHC is a new world for heavy ions even more than for protons - •LHeC adds ep and eA to existing pp, pA and AA programme - 3-4 orders of magnitude in nPDF kinematic range - New non-linear QCD dynamics of parton saturation - Baseline for establishing QGP effects - Conceptual Design Report available. Moving towards TDR ... with thanks to Nestor Armesto, Brian Cole, Max Klein, Anna Stasto and many experimentalist, theorist & accelerator scientist colleagues ... #### LHeC Study Group J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², S.Alekhin^{17,54}. P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷ N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁶ C.Bracco¹⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷ H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, V.Cetinkaya⁰¹, E.Ciapala¹⁶, R.Ciftci⁰¹ A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶. A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶ S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸ R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰ Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶ J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁸⁸ M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷ H.Kowalski¹⁷, G.Kramer¹⁸, D.Kuchler¹⁶, M.Kuze⁵⁸, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰ S.Levonian¹⁷, V.N.Litvinenko³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶ A.Milanese¹⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹ P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷ V.Ptitsyn³⁷, Y.Pupkov⁴⁰, V.Radescu¹⁷, S.Raychaudhuri³⁵, L.Rinolfi¹⁶, R.Rohini³⁵, J.Rojo^{16,31} S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a}, K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, U.Schneekloth¹⁷ T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Servi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷ H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sun⁵⁷ B.Surrow¹¹, L.Szymanowski^{66,f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶ J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶ D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰ J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶ R. Wallov⁶⁸, S. Wallon^{43,46,f}, G. Watt¹⁶, C. Weiss³⁶, U.A. Wiedemann¹⁶, U. Wienands⁵⁷, F. Willeke³⁷ B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹ F.Zomer⁴² ## **Back-ups** #### Example Low x Study in ep - We should be able to distinguish between different QCD-based models for the onset of non-linear dynamics - Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 \vee F_L$ in ep and / or F_2 in ep \vee eA ## Inclusive ep Diffraction and Nuclear Shadowing (Gribov-Glauber) nuclear shadowing as multiple interactions, starting from ep DPDFs 🖁 Diffractive event yield ($x_{TD} < 0.05$, $Q^2 > 1 \text{ GeV}^2$) LHeC delivers precise inclusive diffraction data in unprecedented ep and eA kinematic range. ## Complementarity of pA and eA Physics - LHeC offers access to lower x than is realistically achievable in pA at the LHC - Clean final states / theoretical control to (N)NLO in pQCD - New effects anyway likely to be revealed in tensions between eA and pA, AA (breakdown of factorisation) #### HERA's achievements ... and limitations - © Proton parton densities in unprecedented kinematic range with high precision in most of LHC region - Insufficient lumi for high x precision - Assumptions on flavour decomposition - No deuterons ... u and d not separated, no isoscalar target - ⊗No heavy ions (wasted opportunity!) ## Simulation of J/ψ Photoproduction in ep e.g. "b-Sat" Dipole model - "eikonalised": with impact-parameter dependent saturation - "1 Pomeron": non-saturating - Simulated data shown are extrapolations of HERA power law fit - Significant non-linear effects expected in LHeC kinematic range, even for ep. - → Satⁿ smoking gun?