Low x Physics at the LHeC: DIS with $E_e=70\text{GeV}$ and $E_p=7\text{TeV}$

P Newman, Birmingham

DIS2007, Munich
19 April 2007

Thanks to E Avsar, J Dainton, M Diehl, M Klein, L Favart, J Forshaw, L Lonnblad, A Mehta, E Perez, G Shaw, F Willeke

Contents

• What and where is low x Physics?

• The LHeC in overview

• Low x detector considerations

• Some first case studies:
 - F2
 - Geometric Scaling
 - DVCS
 - Diffractive structure functions
 - Diffractive final state observables
 - Forward Jets
 - Beauty production
 - eA
 - A long list of things I missed!
The Birth of Experimental Low x Physics

- Biggest HERA discovery: strong increase of quark density (F_2) and gluon density ($dF_2/d\ln Q^2$) with decreasing x in newly explored regime.

Low x, `large' Q^2 is high density, low coupling limit of QCD ...
Current Status of Low x Physics

RHIC, Tevatron and HERA have taught us a lot, ... but many questions are not fully answered...

- Are non-DGLAP parton evolution dynamics visible in the initial state parton cascade?
- How and where is the parton growth with decreasing x tamed (unitarity) ... barely separated from confinement region?
- Large (~ constant?) fraction of diffraction?

Problem is that low x kinematically correlated to low Q^2, which brings problems with partonic interpretation.
• Description of interesting low x region, where Q^2 small and partons not appropriate degrees of freedom ...

\[\sigma_{T,L}^{T,(L)}(x,Q^2) \sim \int dz \, d^2r \, |\psi_{\gamma^*}^{T,(L)}(z,r,Q^2)|^2 \sigma_{\text{dipole}}(x,r,z) \]

• Simple unified picture of many inclusive and exclusive processes ... strong interaction physics in (universal) dipole cross section σ_{dipole}. Process dependence in wavefunction Ψ Factors

• $qq\bar{q}-g$ dipoles also needed to describe inclusive diffraction
An Example Dipole Approach to HERA Data

Forshaw, Sandapen, Shaw
hep-ph/0411337,0608161
... used for illustrations here

Fit inclusive HERA data with dipole models containing varying assumptions for σ_{dipole}.

- FS04 Regge (~FKS): 2 pomeron model, no saturation
- FS04 Satn: Simple implementation of saturation
- CGC: Colour Glass Condensate version of saturation

- All three models can describe data with $Q^2 > 1 GeV^2$, $x < 0.01$
- Only versions with saturation work for $0.045 < Q^2 < 1 GeV^2$
- Similar conclusions from final state studies
E_e = 70 GeV
E_p = 7 TeV
\sqrt{s} = 1.4 TeV
(5 \times \text{HERA})

• Extension to higher Q^2 in x range covered by HERA

• Extension of low x (high W) frontier

W \leq 1.4 \text{ TeV}
x \geq 5.10^{-7} \text{ at } Q^2 \leq 1 \text{ GeV}^2

• Unprecedented lumi = 10^{33} \text{ cm}^{-2} \text{ s}^{-1} !!!
• eA mode possible using LHC ion beam
The LHeC for Low x Investigations

2 modes considered:

1) Focusing magnet To optimise lumi ... detector acceptance to 170° ... little acceptance below $Q^2=100 \text{ GeV}^2$

2) No focusing ... acceptance to $179^\circ \rightarrow$ access to $Q^2=1$ for all x $(x > 5 \times 10^{-7} !)$

Lumi $\sim 1 \text{ fb}^{-1} / \text{yr}$
Hadronic Final State Detector Considerations

- Considerably more asymmetric beam energies than HERA!
 - Hadronic final state at newly accessed lowest x values goes central or backward in the detector 😊
 - At x values typical of HERA (but large Q^2), hadronic final state is boosted more in the forward direction.

- Full Study of low x / Q^2 and of range overlapping with HERA, with sensitivity to energy flow in outgoing proton direction requires forward acceptance for hadrons to 1°
Example F_2 with LHeC Data

$F_2(x, Q^2=10 \text{ GeV}^2)$

- Precise data in LHeC region (1° acceptance)
- Cleanly establish saturation at Q^2 values where partonic language applicable
- Distinguish between models of saturation

Statistical precision < 0.1%, systematics 1-3%

(Jeff Forshaw)
Example 2: Interpreting Geometric Scaling

$$\sigma_{\gamma^*p}(\tau \text{ only}), \tau = Q^2 R_0^2(x)$$

$R_0^2(x)$ is “saturation radius”

Change of behaviour near $\tau=1$ often cited as evidence for saturation

... but data below $\tau = 1$ are very low Q^2 - various theoretical difficulties and confinement / change to hadronic dof’s

Need to see transition in a Q^2 region where partonic interpretation unquestionable
Geometric Scaling at the LHeC

LHeC reaches \(\tau \approx 0.15 \) for \(Q^2 = 1 \text{ GeV}^2 \) and \(\tau \approx 0.4 \) for \(Q^2 = 2 \text{ GeV}^2 \)

Some (though limited) acceptance for \(Q^2 < Q^2_s \) with \(Q^2 \) "perturbative"

Could be enhanced with nuclei.

\(Q^2 < 1 \text{ GeV}^2 \) accessible in special runs?
Linked Dipole Chain Model (~ CCFM):
Interacting dipole chains in onium-onium scattering
- Linearly (“1 pomeron”)
- Non-linearly (~ saturation) via multiple interactions & “swing” mechanism → recoupling within chains.
Effects important in saturation curve, but so is (non-scaling) finite quark mass.
Predict breaking of scaling for $\tau < 1$ if data with $Q^2 > 1$ become available (e.g. from LHeC)

Another Model: Avsar, Gustafson, Lonnblad

hep-ph/0610157,0702087
LHeC Comparison with Predictions

- '1 pom only' already disfavoured at HERA
- Subtle effects such as swing mechanism can be established cleanly at high W (low x) at LHeC
DVCS Measurement

... can be tackled as at HERA through inclusive selection of $ep \rightarrow ep\gamma$ and statistical subtraction of Bethe-Heitler background.

(Laurent Favart)
Example of DVCS at LHeC

DVCS (10 fb$^{-1}$, stat errors only)

- $Q^2 = 30$ GeV2
- $b = 7$ GeV2

Statistical precision 1-4%

Clearly distinguishes different models which contain saturation.

Interpretation in terms of GPDs much cleaner at larger Q^2 values accessed

VMs similar story

(1o acceptance)
Diffractive DIS at HERA

`Discovery' at HERA (~10% of low x events are of type ep -> eXp)

• Parton-level mechanism, relations to diffractive pp scattering, inclusive DIS, confinement still not settled.

• QCD Factorisation: Diffractive parton densities (DPDFs) universal to diffractive DIS (apply to both HERA and LHeC)

... can also be used to predict pp with additional `gap survival' factors
LHeC Diffractive Kinematics

- Tests of factorisation and evolution dynamics: DPDFs extracted at HERA predict LHeC cross section at moderate / large β, higher Q^2 using DGLAP.

- New dynamics: LHeC opens new low β region - parton saturation, BFKL etc showing up first in diffraction?

- Large Diff. Masses: Z, W, b production, studies of new 1^- states
LHeC Simulation

Statistical precision not an issue

Big extension to lower x_{IP} ... cleaner separation of the diffractive exchange

Higher Q^2 at fixed β & $x_{IP} \rightarrow CC$ (and z in NC) allows flavour decompositions of DPDFs

Lower β at fixed Q^2 & x_{IP}
Example F_2^D with LHeC

\[F_2^D(x_P, \beta, Q^2) \]

(10 fb^{-1})

- Diffractive structure function poorly known for $\beta \sim 0.01$... large extrapolation uncertainties.

- Plenty to learn from LHeC, including the proper way to saturate a qqbar-g dipole

Jeff Forshaw

Large Rapidity Gap method assumed.
Statistical precision $\sim0.1\%$, systematics $\sim5\%$
Final States in Diffraction

- Factorisation tests done at HERA with gluon initiated jet / charm processes... BUT ...
- Kinematically restricted to high β region where F_2^D is least sensitive to the gluon!
- Kinematically restricted to low $p_T < M_x/2$ where scale uncertainties are large.
- γp surprises \rightarrow understanding gap survival?... Diff H @ LHC?

Charm in DIS

Jets in DIS

Jets in γp

H1 preliminary data (corr. err.)
H1 2006 DPDF fit B (scale err.)
H1 Data
H1 2006 Fit B DPDF
correlated uncertainty
NLOX($1 + \delta_{\text{had}}$)
NLO
H1 Data
H1 D$^-$ Data
ZEUS D$^-$
H1 2006 DPDF fit A
H1 2006 DPDF fit B

$Q^2 = 35$ GeV2

$X_{IP} = 0.004$
Final States in Diffraction at the LHeC

• At LHeC, diffractive masses M_x up to hundreds of GeV can be produced with low x_{IP}

• Low β, low x_{IP} region for jets and charm accessible

• Final state jets etc at higher p_t ... much more precise factorisation tests and DPDF studies (scale uncty)

• New diffractive channels ... beauty, W / Z bosons

• Unfold quantum numbers / precisely measure exclusively produced new / exotic 1- states
Diffractive Detector Considerations

- Accessing $x_{IP} = 0.01$ with rapidity gap method requires η_{max} cut around 5 ...forward instrumentation essential!

- Roman pots, FNC should clearly be an integral part

- Not new at LHC: Roman pots already integrated into CDF, Atlas via Totem, FP420, FP220)

\[\eta_{\text{max}} \text{ and LRG selection ...} \]
Long HERA program to understand parton cascade emissions by direct observation of jet pattern in the forward direction. ... DGLAP v BFKL v CCFM v resolved γ* ...

Conclusions limited by kinematic restriction to high $x (\approx 2.10^{-3})$ and detector acceptance.

At LHeC ... more emissions due to longer ladder & more instrumentation → measure at lower x where predictions really diverge.
Beauty as a Low x Observable!!!

$F_2^b(x,Q^2=30 \text{ GeV}^2)$

(10° acceptance)

F_2^c and F_2^s also measurable (see Max Klein's talk).

Statistical errors $\sim 1\%$, systematics $\sim 5\%$
With AA at LHC, LHeC is also an eA Collider

- Rich physics of nuclear parton densities.

- Limited x and Q^2 range so far (unknown For $x \sim 10^{-2}$ and $Q^2 > 1 \text{ GeV}^2$)

- LHeC extends by orders of magnitude towards lower x.

- With wide range of x, Q^2, A, opportunity to extract and understand nuclear parton densities in detail

- Symbiosis with ALICE, RHIC, EIC … disentangling Quark Gluon Plasma from shadowing or parton saturation effects
Simple Model of Gluon Saturation

- Saturation point when $xg(x) \sim \frac{Q^2}{\alpha_s(Q^2)}$
- Nuclear enhancement of gluon density $a A^{1/3}$
- Compare extrapolated (NLO) gluon density from HERA

Saturation point reached in ep at LHeC for $Q^2 \lesssim 5 \text{ GeV}^2$
Reached in eA for much higher Q^2
Uncovered Topics

This talk contained an (embarrassingly) limited number of studies, which only scratches the surface of the low x physics potential of the LHeC.

Some obvious omissions:
- Lots of eA physics!
- All sorts of low x jet measurements
- All sorts of low x charm measurements
- F_L
- Prompt photons
- Photoproduction and photon structure
- Leading neutrons and other semi-inclusives
- Exclusive vector meson production

... studies of these and many other topics are very welcome, to evaluate the physics case for such a facility!
Summary

To further pursue low x physics with unpolarised targets, the natural next step is an extension to lower x (i.e. higher energy)

For its relative theoretical cleanliness, ep should be a large feature of this.

For its enhanced sensitivity to high parton densities, eA should also be a large part of the programme.

All of this is possible in the framework of the LHC - a totally new world of energy and luminosity!... Why not exploit it for lepton-hadron scattering?

First conceptual design exists ... no show-stopper so far ... some encouraging first physics studies shown here.

Much more to be done to fully evaluate physics potential and determine optimum running scenarios!