Higgs studies at the LHeC

Masahiro Kuz Tokyo Institute of Tec hology (for the LHeC Collab ation)

POETIC IV Jyväs 5/Sep/2013

ä

130th Anniversary in 2011

A new boson is found

•Full 2011 (7TeV) + 2012 (8TeV) data shown in EPS2013 $\cdot 7\sigma$ significance in single channels

ATLAS $H \rightarrow \gamma \gamma$

CMS H→ZZ*→4 lepton

0+ vs 0-

Cross section (divided by σ_{SM})

<u>Spin/Parity</u> 0+ favored at > ~99% CL

Is this SM or BSM Higgs?

Next important task: measure its coupling to SM particles

S. Komamiya, Seattle 2013 (Snowmass Energy Frontier)

ATLAS-PHYS-PUB-2013-007

HL-LHC prospects for cross section measurements

ATLAS Simulation

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$ [Ldt=300 fb⁻¹ extrapolated from 7+8 TeV

The LHeC project

Baseline design: L=10³³ (10 fb⁻¹/y) High-lumi option: L=10³⁴ (100 fb⁻¹/y)

LHeC Study Group, arXiv.1211.5102

60GeV electron beam in racetrack-ERL + 7TeV proton in LHC (and Pb) $\sqrt{s(ep)} = 1.3TeV$ (4x HERA)

parameter [unit]	LHeC	
species	e ⁻	$p, {}^{208}\mathrm{Pb}^{82+}$
beam energy (/nucleon) [GeV]	60	7000, 2760
bunch spacing [ns]	25,100	25,100
bunch intensity (nucleon) $[10^{10}]$	$0.1 \ (0.2), \ 0.4$	17(22), 2.5
beam current [mA]	6.4(12.8)	$860\ (1110),\ 6$
rms bunch length [mm]	0.6	75.5
polarization [%]	90	none, none
normalized rms emittance $[\mu m]$	50	3.75(2.0), 1.5
geometric rms emittance [nm]	0.43	$0.50 \ (0.31)$
IP beta function $\beta_{x,y}^*$ [m]	0.12(0.032)	0.1 (0.05)
IP spot size $[\mu m]$	7.2(3.7)	7.2(3.7)
synchrotron tune Q_s		1.9×10^{-3}
hadron beam-beam parameter	$0.0001 \ (0.0002)$	
lepton disruption parameter D	6 (30)	
crossing angle	0 (detector-integrated dipole)	
hourglass reduction factor H_{hg}	$0.91 \ (0.67)$	
pinch enhancement factor H_D	1.35	
CM energy [TeV]	1300, 810	
luminosity / nucleon $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	1 (10), 0.2	

The LHeC project

LHeC is the highest-energy ep facility (also eA)

Higgs production at LHeC

B. Mellado

1. Hbb couping measurement (deemed challenging at LHC)

Tokyo Tech - M. Ishitsuka, K. Kimura (M-thesis), MK Liverpool - C. Hengler, U. Klein (for LHeC CDR arXiv:1206.2913) 2. CP property of Higgs (test of anomalous HWW coupling) S. Biswal, R. Godbole, B. Mellado, S. Raychaudhuri Phys. Rev. Lett. 109 (2012) 261801

Higgs at LHeC

LHeC in simulation

LHeC CDR arXiv:1206.2913

Fragmentation
Hadronization by Pythia (+ mod. for ep)

Fast detector simulation by PGS

- * Calculate cross-section with tree-level
 Feynman diagrams
- * Generate final state of outgoing particles

Input parameters:

- 150 GeV electron beam
- 7 TeV proton beam
- 120 GeV SM Higgs boson mass
- (+ 60 GeV configuration as comparison)

Generator level cuts

- p_T > 5GeV (for parton besides b)
- |η| < 5.0
- For NC: Number of b quarks ≥ 2

LHeC in simulation

Event generation
SM Higgs production
CC & NC background
by MadGraph/MadEvent

Fragmentation
Hadronization by Pythia (+ mod. for ep)

Generic detector with

- Coverage:
 - Tracking: $|\eta| < 3$
 - · Calorimeter: $|\eta| < 5$
- Calorimeter resolution
 - · EM: 1% ⊕ 5%/√E
 - · Hadron: $60\%/\sqrt{E}$
 - · Cell size: $(\Delta \eta, \Delta \phi) = (0.03, 0.03)$
- Jet reconstructed by cone algorithm $(\Delta R=0.7)$
- b-tag performance
 - · Flat efficiency for $|\eta| < 3$
 - · Efficiency/mis-ID
 - b-jet: 60%
 - c-jet: 10%
 - Other jets: 1%

- \cdot NC rejection
 - Exclude electron-tagged events
 - E_{T,miss} > 20GeV
 - N_{jet} (p_T > 20GeV) ≥ 3
 - $E_{T,total} > 100GeV$
 - $y_{JB} < 0.9, Q^2_{JB} > 400 GeV$
- · b-tag requirement
 - N_{b-jet} (p_T > 20GeV) \ge 2
- Higgs invariant mass - $90 < M_H < 120GeV$
- · Single top rejection
 - M_{jjj,top} > 250GeV
 - M_{jj,W} > 130GeV
- · Forward jet tagging
 - η_{jet} > 2 (lowest η excluding b-tagged jets)

- \cdot NC rejection
 - Exclude electron-tagged events
 - E_{T,miss} > 20GeV
 - N_{jet} (p_T > 20GeV) ≥ 3
 - $E_{T,total} > 100GeV$
 - $y_{JB} < 0.9, Q^2_{JB} > 400 GeV$
 - b-tag requirement
 - N_{b-jet} (p_T > 20GeV) \ge 2
- Higgs invariant mass
 - 90 < M_H < 120GeV
- · Single top rejection
 - M_{jjj,top} > 250GeV
 - M_{jj,W} > 130GeV
- · Forward jet tagging
 - η_{jet} > 2 (lowest η excluding b-tagged jets)

 \Rightarrow 44% of remaining BG is single-top...

- · NC rejection
 - Exclude electron-tagged events
 - E_{T,miss} > 20GeV
 - N_{jet} (p_T > 20GeV) ≥ 3
 - $E_{T,total} > 100 GeV$
 - $y_{JB} < 0.9, Q^2_{JB} > 400 GeV$
 - b-tag requirement
 - N_{b-jet} (p_T > 20GeV) \ge 2
- Higgs invariant mass
 - $-90 < M_H < 120 GeV$
- · Single top rejection
 - M_{jjj,top} > 250GeV
 - M_{jj,W} > 130GeV
- · Forward jet tagging
 - η_{jet} > 2 (lowest η excluding b-tagged jets)

Events/10fb⁻¹/bin

- NC rejection
 - Exclude electron-tagged events
 - E_{T,miss} > 20GeV
 - N_{jet} (p_T > 20GeV) ≥ 3
 - $E_{T,total} > 100 GeV$
 - $y_{JB} < 0.9, Q^2_{JB} > 400 GeV$
- b-tag requirement
 - $N_{b-jet} (p_T > 20 GeV) \ge 2$
- Higgs invariant mass
 - $-90 < M_H < 120GeV$
- Single top rejection
 - M_{jjj,top} > 250GeV
 - M_{jj,W} > 130GeV
- Forward jet tagging

- η_{jet} > 2 (lowest η excluding b-tagged jets)

- \cdot NC rejection
 - Exclude electron-tagged events
 - E_{T,miss} > 20GeV
 - N_{jet} (p_T > 20GeV) ≥ 3
 - $E_{T,total} > 100GeV$
 - $y_{JB} < 0.9, Q^2_{JB} > 400 GeV$
- b-tag requirement
 - $N_{b-jet} (p_T > 20 GeV) \ge 2$
- Higgs invariant mass
 - $-90 < M_H < 120GeV$
- · Single top rejection
 - M_{jjj,top} > 250GeV
 - M_{jj,W} > 130GeV
 - Forward jet tagging

CDR Results (for E_e=150GeV)

- · Beam energy:
 - Electron beam 150 GeV
 - Proton beam 7 TeV
- · SM Higgs mass 120 GeV
- Luminosity 10 fb⁻¹

Signal and background cut flow

	H→bb	CC DIS	NC bbj	S/N	S/√N
NC rejection	816	123000	4630	6.38×10-3	2.28
+ b-tag requirement+ Higgs invariant mass	178	1620	179	9.92×10 ⁻²	4.21
All cuts	84.6	29.1	18.3	1.79	12.3

60GeV case (current baseline)

Events/10fb⁻¹/10GeV 140 • Beam energy: 120 150 GeV \Rightarrow 60 GeV - Electron beam 100 7 TeV - Proton beam 80 60 · SM Higgs mass 120 GeV 40 · Luminosity $10 \text{ fb}^{-1} \Rightarrow 100 \text{ fb}^{-1}$ 20 (1 year in high-lumi option!) 0 **6**0 80 100 120

	$E_e = 150 \text{ GeV}$ (10 fb ⁻¹)	$E_e = 60 \text{ GeV}$ (100 fb ⁻¹)
$H \rightarrow bb signal$	84.6	248
S/N	1.79	1.05
S/\sqrt{N}	12.3	16.1

Higgs + background

NC bbj background

CC background

160 180

M_{ii.H} (GeV)

200

140

CP property of Higgs

S. Biswal, R. Godbole, B. Mellado, S. Raychaudhuri Phys. Rev. Lett. 109 (2012) 261801

HVV coupling in SM and Beyond SM

$$\Gamma_{\mu\nu}^{\rm SM} = -gM_V g_{\mu\nu}$$

$$\Gamma_{\mu\nu}^{\rm BSM}(p,q) = \frac{g}{M_V} (M_V p \cdot q g_{\mu\nu} - p_\nu q_\mu) + (M_V \epsilon_{\mu\nu\rho\sigma} p^\rho q^\sigma]$$

$$CP$$

$$CP$$

LHeC can probe anomalous HWW couplings independent of other (HZZ, H $\gamma \gamma$) couplings since WW fusion in CC is dominant production. (advantage to LHC, ILC) Vector Boson W Fusion W H

Azimuthal correlation

 $\Delta \Phi$ between missing E_T and forward CC jet (VBF tagging jet)

Large modification at $\Delta \Phi \sim 0$, π

Sensitivity study

- Parton energy smeared with: $\sigma/E = 0.6/\sqrt{E \oplus 0.03}$
- Other selection cuts similar to Hbb study (backup)
- Background taken from Hbb study

•With 10fb-1, possible to test $\lambda(\lambda') \sim 0.2(0.3)$

Test normalized dist. - insensitive to PDF unc.

High-lumi LHeC - 1000fb⁻¹ in 10y

LHeC Higgs	3	$CC(e^-p)$	NC (e^-p)	$CC(e^+p)$
Polarisation	<u> </u>	-0.8	-0.8	0
Luminosity	$[ab^{-1}]$	1	1	0.1
Cross Sectio	on [fb]	196	25	58
Decay B	rFraction	$N_{CC}^{H} e^{-}p$	$N_{NC}^{H} e^{-}p$	$N_{CC}^{H} e^{+}p$
$H \rightarrow b\overline{b}$	0.577	113 100	13 900	3 350
$H \to c\overline{c}$	0.029	5 700	700	170
$H \rightarrow \tau^+ \tau^-$	0.063	$12 \ 350$	1 600	370
$H ightarrow \mu \mu$	0.00022	50	5	_
$H \rightarrow 4l$	0.00013	30	3	_
$H ightarrow 2l 2 \nu$	0.0106	2080	250	60
$H \rightarrow gg$	0.086	16 850	2050	500
$H \rightarrow WW$	0.215	42 100	$5\ 150$	$1 \ 250$
$H \rightarrow ZZ$	0.0264	5 200	600	150
$H \rightarrow \gamma \gamma$	0.00228	450	60	15
$H \rightarrow Z\gamma$	0.00154	300	40	10

LHeC as Higgs Factory - also other modes (e.g. $\tau \tau$) worth studying (complementarity with LHC)

Interplay LHC-LHeC

- Very precise PDF &
 α_S measurements
 from LHeC
- Much improved prediction of Higgs xsec at LHC (dominated by ggF)
- ~0.3% uncertainty → sensitivity to mass measurement
- Needs NNNLO developments (Anastasiou, Forte, Grojean, ...)

O. Brüning and M. Klein, arXiv:1305.2090

NNLO pp—Higgs Cross Sections at 14 TeV

Summary

- Detailed study of Higgs property (coupling, CP...) is absolutely central in particle physics in the next decade. LHC will of course do it.
- LHeC, with much cleaner experimental conditions (e.g. no pile-up) → LHeC + HL-LHC could be 'the' next Higgs facility.
 - –much stronger interplay with LHC than ILC/TLEP because it pins down PDFs and α_s needed at LHC.
 - -we have already half of it (LHC): just need an ERL.
 - -concrete ideas for 10^{34} option = $1ab^{-1}$: quantum leap in statistics.

Summary (2)

- Studies in LHeC CDR: (with limited manpower)
 - Hbb measurement: S:N~1:1 achievable:
 with 1ab⁻¹ (10 years in high-lumi mode),
 Hbb coupling precision down to 1%
 - -Anomalous HWW: coupling easily testable at ~0.3
- More studies will be pursued.
 - -Detailed detector simulation (not PGS), optimization
 - $-\tau \tau$ decay
 - -charm decay (Hcc coupling)
 - -Welcome to join in the efforts!

(backup)

Selection cuts for CP study

1203.6285v2

- 1. It is required that $MET > 25 \,\text{GeV}$.
- 2. Presence of two *b*-partons with $p_T^b > 30$ GeV and $|\eta_b| < 2.5$. The invariant mass of these *b*-partons must lie within 10 GeV of the Higgs boson mass.
- 3. Of the remaining partons, the leading one must have $p_T > 30$ GeV and $1 < \eta < 5$. This will be called the forward tagging parton.
- 4. We require $\Delta \varphi_{\text{MET}-J} > 0.2 \text{ rad}$ for all the jets (J).
- 5. A veto on leptons $(\ell = e, \mu, \tau)$ with $p_T^{\ell} > 10 \text{ GeV}$ and $|\eta_{\ell}| < 2.5$ is required.
- 6. The invariant mass of the Higgs boson candidate and the forward tagging jet must be greater than 250 GeV.
- 7. *b*-tagging efficiency: $\varepsilon_b = 0.6$ for $|\eta_b| < 2.5$. The mis-tagging factor for *c* and light quark jets is taken as 0.1 and 0.01 respectively.

Higgs at LHeC

NOTE: The plots shown are from initial study for LHeC CDR (1206.2913) using $E_e = 150$ GeV. Results also given for 60GeV (see later).

Kinematic distributions of generated Higgs ($m_H=120GeV$, $E_e=150GeV$, $E_p=7TeV$)

NC rejection

- Exclude electron-tagged events
- E_{T,miss} > 20GeV
- N_{jet} (p_T > 20GeV) ≥ 3
- $E_{T,total} > 100GeV$
- $y_{JB} < 0.9$, $Q^2_{JB} > 400 GeV$
- b-tag requirement
 N_{b-jet} (p_T > 20GeV) ≥ 2
- Higgs invariant mass
 90 < M_H < 120GeV
- · Single top rejection
 - M_{jjj,top} > 250GeV
 - M_{jj,W} > 130GeV
- · Forward jet tagging
 - η_{jet} > 2 (lowest η excluding b-tagge

- · NC rejection
 - Exclude electron-tagged events
 - E_{T,miss} > 20GeV
 - N_{jet} (p_T > 20GeV) ≥ 3
 - $E_{T,total} > 100 GeV$
 - $y_{JB} < 0.9, Q^2_{JB} > 400 GeV$
 - b-tag requirement
 - N_{b-jet} (p_T > 20GeV) \ge 2
- Higgs invariant mass
 - $-90 < M_H < 120 GeV$
- · Single top rejection
 - M_{jjj,top} > 250GeV
 - M_{jj,W} > 130GeV
- · Forward jet tagging
 - η_{jet} > 2 (lowest η excluding b-tagged jets)

