LHeC Facility Plans

Bernhard Holzer, CERN for the LHeC study group

The LHeC Study Group: Three Alternatives

Goal: Technical Design of the three Alternatives CDR within a Year

General Statement: Whatever we do ... the fundamental layout of the LHC delivers an enormous potential for e/p Luminosity

2808 bunches
7 TeV
$$\rightarrow \varepsilon_n = 3.75 \ \mu m$$

Example: LHeC Ring-Ring: basic parameters

Standard	Protons	Electrons	
Parameters	$Np=1.15*10^{11}$	$Ne=1.4*10^{10}$	
	nb = 2808	nb = 2808	
	Ip=582mA	Ie=71mA	
Optics	$\beta_{xp}=180cm$	β_{xe} =12.7cm	
	$\beta_{vp} = 50cm$	β_{ve} =7.1cm	
	$\varepsilon_{xp}^{r}=0.5nm\ rad$	$\varepsilon_{xe}^{"}$ =7.6nm rad	
	$\varepsilon_{yp} = 0.5$ nm rad	ε_{ye} =3.8nm rad	
Beam size	$\sigma_{xp}=30 \ \mu m$	$\sigma_{xe}=30\mu m$	
	$\sigma_{vp}^{T}=15.8 \ \mu m$	σ_{ye} =15.8 μm	
Luminosity	$8.2*10^{32} cm^{-2} s^{-1}$		

e storage ring on top of LHC

Optics Design: Proton Ring

Optics Design: Electron Ring

Design Constraints

- Matched beam sizes at the IP required for stable operation.
- Tolerable beam-beam tune shift parameters ... for both beams
- Choose parameters close to LEP design and optimise the lattice for one ep Interaction region

	Lep	LHeC
cell length	79m	59.25m
phase advance	<i>60/90/108</i> •	<i>72</i> •
number of cells	<i>290</i>	<i>384</i>

Electron Ring: Optical functions in IR 8

Alexander Kling

Layout IR 8

- Use a triplet focusing $(\beta_x = 7.1 \text{ cm}, \beta_y = 12.7 \text{cm})$
- Triplet is displaced to allow for a quick beam separation --> additional dispersion created close to IP
- Beam separation facilitated by crossing angle (1.5 mrad). 15 m long soft separation dipole completes the separation before the focusing elements of the proton beams.
- Interleaved magnet structure of the two rings: First matching quadrupole after the triplet: at 66.43 m to adjust optical functions --> try to avoid ''large'' β-functions
- Layout is asymmetric asymmetry compensated by asymmetrically powered dispersion suppressors.
- Optical functions matched to the values at the IP: x = 12.7cm, y = 7.07cm.

Layout IR 1 & 5 Guide the electron beam in "Bypass Beam Lines" around Atlas & CMS

Electron Beam in IR 1 & 5

geometrical layout of the bypass sections

Helmut Burkhardt

Interaction Region Design:

A First Complete Design for 10 ^33

Interaction Region Design: Challenges

Advantage of LHC: large number of bunches \rightarrow high luminosity

Disadvantage: fast beam separation needed

crossing angle to support early separation

LHC bunch distance: 25 ns1st parasitic crossing: 3.75mfirst e-quad positioned at 1.2m

... too far for sufficient beam separation

separation has "to start at the IP"

--> support the off-centre-quadrupole separation scheme by crossing angle at the IP.

technical challenges:

sc half quadrupoles, e beam guided through p-quad cryostat crab cavities needed to avoid loss of luminosity

IR Design: Synchrotron Radiation

overall radiation power in IR: 60 kW (HERA II: 30 kW) geometry of detector beam pipe and synchrotron radiation masks?

Ring-Ring Parameters

Luminosity safely 10³³cm⁻²s⁻¹

LHC upgrade: N_p increased. Need to keep e tune shift low: by increasing β_p , decreasing β_e but enlarging e emittance, to keep e and p matched.

LHeC profits from LHC upgrade but not proportional to N_p

Tuneshift Limit:

$$\Delta \mathbf{v}_{xe} = \frac{\boldsymbol{\beta}_{xe} \mathbf{r}_{e}}{2\pi \, \boldsymbol{\gamma}_{e}} * \frac{N_{p}}{\boldsymbol{\sigma}_{xp} (\boldsymbol{\sigma}_{xp} + \boldsymbol{\sigma}_{yp})}$$

Experience:

$$LEP \qquad \Delta v_e = 0.048$$

$$LHC-B \qquad \Delta v_p = 0.0037$$

$$HERA \qquad \Delta v_e = 0.051$$

$$\Delta v_p = 0.0016$$

Standard	Protonen	Elektronen	
<u>Parameter</u>	$Np = 1.15 * 10^{11}$	Ne=1.4*10 ¹⁰	nb=2808
	Ip = 582 mA	Ie=71mA	nv-2000
Optics	$\beta xp = 180 \text{ cm}$	$\beta xe = 12.7 cm$	
Opiics	$\beta yp = 50 \text{ cm}$	$\beta ye = 7.1 cm$	
	$\varepsilon x p = 0.5 \ nm \ rad$	$\varepsilon x e = 7.6 \text{ nm rad}$	
	$\varepsilon x p = 0.5 \text{ nm rad}$ $\varepsilon y p = 0.5 \text{ nm rad}$	$\varepsilon x e = 3.8 \ nm \ rad$	
Beamsize	$\sigma x = 30 \ \mu m$	$\sigma x = 30 \ \mu m$	
<u> </u>	$\sigma y = 15.8 \ \mu m$	$\sigma y = 15.8 \ \mu m$	
Tuneshift	$\Delta vx = 0.00055$	$\Delta vx = 0.0484$	
Tunesniji	$\Delta vy = 0.00029$	$\Delta vy = 0.0510$	
Luminosity	$L=8.2*10^{32}$	21 V y = 0.0310	
		1	
Ultim ate	Protonen	Elektronen	
Param eter	37 1 741011	N 1 4×1010	1 2000
	$Np=1.7*10^{11}$	Ne=1.4*10 ¹⁰	nb=2808
•	Ip=860mA	Ie=71mA	
Optics	$\beta xp = 230 \text{ cm}$	$\beta xe = 12.7 \ cm$	
	$\beta yp = 60 cm$	$\beta ye = 7.1 cm$	
	$\varepsilon xp = 0.5 \ nm \ rad$	$\varepsilon x e = 9 \ nm \ rad$	
	$\varepsilon yp = 0.5 \ nm \ rad$	εye=4 nm rad	
Beamsize	$\sigma x = 34 \mu m$		
	$\sigma y = 17 \mu m$		
Tuneshift	$\Delta vx = 0.00061$	$\Delta vx = 0.056$	
	$\Delta vy = 0.00032$	$\Delta vy = 0.062$	
Luminosity	$L=1.03*10^{33}$		
Upgrade Parameter	Protonen	Elektronen	
1 urumeter	$Np = 5*10^{11}$	Ne=1.4*10 ¹⁰	nb=1404
	Ip=1265mA	Ie=71mA	
Optik	$\beta xp = 400 cm$	$\beta xe = 8 cm$	
<i>-</i>	$\beta yp = 150 cm$	$\beta ye = 5 cm$	
	$\varepsilon x p = 0.5 \ nm \ rad$	$\varepsilon x e = 25 \ nm \ rad$	
	$\varepsilon y p = 0.5 \ nm \ rad$	$\varepsilon y e = 15 \ nm \ rad$	
Strahlgröße	$\sigma x = 44 \ \mu m$		
	$\sigma y = 27 \mu m$		
Tuneshift	$\Delta vx = 0.0011$	$\Delta vx = 0.057$	
	4vv = 0.00069	$\Delta vy = 0.058$	
Luminosität	$L=1.44*10^{32}$	27,7-0.000	

Luminosity Ring Ring & Performance Limit

Design values are for 14 MW synrad loss (beam power) and 50 GeV on 7000 GeV. May have 50 MW and energies up to about 70 GeV.

$$L = \frac{\sum_{i=1}^{n_b} (I_{ei} * I_{pi})}{e^2 f_0 2\pi \sqrt{\sigma_{xp}^2 + \sigma_{xe}^2} * \sqrt{\sigma_{yp}^2 + \sigma_{ye}^2}}$$

Luminosity Performance Limit: E_e, I_e due to Synchrotron Radiation

$$P_{\gamma} = \frac{e^2 c}{6\pi \varepsilon_0} * \gamma^4 * r^2 * N_e$$

10³³ can be reached in RR

$$E_e = 50 \; GeV \quad \leftrightarrow \quad P_{syn} = 10MW$$

 $E_e = 75 \; GeV \quad \leftrightarrow \quad P_{syn} = 50MW * 2$

klystron efficiency: 50%

Overall power consumption: limited to 100MW

Linac Ring Options:

SPL ... or a recirculating Linac

Linac Ring Options:

SPL ... or a recirculating Linac

		Pulsed	CW
e- energy [GeV]	30	100	100
comment	SPL* (20)+TI2	LINAC	LINAC
#passes	4+1	2	2
wall plug power RF+Cryo	100 (1 cr.)	100 (3 cr.)	100 (35 cr.)
bunch population [10 ⁹]	10	3.0	0.1
duty factor [%]	5	5	100
average e- current [mA]	1.6	0.5	0.3
emittance γε [μm]	50	50	50
RF gradient [MV/m]	25	25	13.9
total linac length $\beta=1$ [m]	350+333	3300	6000
minimum return arc radius [m]	240 (final bends)	1100	1100
beam power at IP [MW]	24	48	30
e- IP beta function [m]	0.06	0.2	0.2
ep hourglass reduction factor	0.62	0.86	0.86
disruption parameter D	56	17	17
luminosity [10 ³² cm ⁻² s ⁻¹]	2.5	2.2	1.3

new e-Linac: 100 GeV seem to be feasible recirculating size ≈ SPS / HERA

Luminosity Linac Ring:

$$L = \frac{N_p \gamma}{4\pi \, \varepsilon_{pn} \beta^*} * \frac{P_{total}}{E_e}$$

M.Tigner, B.Wiik, F.Willeke, Acc.Conf, SanFr.(1991) 2910

Luminosity Performance Limit: beam power

adequate for high beam energy

Conclusion:

* three options studied,

```
Ring-Ring
SPL - Ring ... optimising still to be done
Linac Ring
```

* Interaction Region & beam separation scheme do not differ too much, have to be optimised according to the beam characteristics

* Performance Limitations are quite different given an overall power limit of 100MW

```
Ring Ring: 75 GeV / 7 TeV, L = 2.2*10^{33} limited in energy SPL: 20-30 GeV / 7 TeV L = 2.5*10^{32} fast, cheap, easy Linac Ring: 100 GeV / 7 TeV, L = 2.2*10^{32} limited in luminosity 140 GeV / 7 TeV, L = 1.0*10^{33} only if energy recovery woks.
```

Electron-nucleus (e-A) collisions

- The LHC will operate as a nucleus-nucleus (initially Pb-Pb) collider
 - Physics programme is expected to include:
 - Pb-Pb at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$
 - p-Pb
 - A-A where A may be Ca, O, ...
- Natural possibility of colliding electrons with ²⁰⁸Pb⁸²⁺ nuclei
 - Requires maintenance of LHC ion injector complex (source-LINAC3-LEIR) through to the time of operation of LHeC
 - Also requires inclusion of ion capability in new generation of injector synchrotrons (PS → PS2, SPS → SPS2 ??)
- Electron-deuteron e-d collisions would require a completely new source (at least!)
 - Present CERN complex does not foresee deuterons

e-Pb collisions

- Present nominal Pb beam for LHC
 - Same beam size as protons, fewer bunches

$$k_b = 592$$
 bunches of $N_b = 7 \times 10^{7}$ ²⁰⁸Pb⁸²⁺ nuclei

• Assume lepton injectors can create matching train of e

$$k_b = 592$$
 bunches of $N_b = 1.4 \times 10^{10} \text{ e}^{-1}$

Lepton-nucleus or lepton-nucleon luminosity in ring-ring option at 70 GeV

$$L = 1.09 \times 10^{29} \text{ cm}^{-2} \text{s}^{-1} \iff L_{\text{en}} = 2.2 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$$

(gives 11 MW radiated power)

 May be some scope to exploit additional power by increasing electron singlebunch intensity

John Jowett

Very(!) tentative e-d luminosity

- Rough guess for beam via Linac3
 - Same beam size as protons, fewer bunches, as for Pb

$$k_b = 592$$
 bunches of $N_b = 1.7 \times 10^9$ deuterons

• Assume lepton injectors can create matching train of e

$$k_b = 592$$
 bunches of $N_b = 1.4 \times 10^{10} \text{ e}^{-1}$

Lepton-nucleus or lepton-nucleon luminosity in ring-ring option at 70 GeV

$$L = 2 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$$
 (gives 11 MW radiated power)

- Optimist might hope for maybe 10-50 times more if Linac4 and other systems work well.
- A lot of further study required!!

John Jowett