

Parton Distribution Functions determination and Heavy Flavour production at the LHeC

Alberto Guffanti Niels Bohr Institute & Discovery Center University of Copenhagen

> **POETIC IV** Jyväskylä, Finland 2-5 September, 2013

PDF fits, a brief Overview

	MSTW08	CTEQ6.6/CT10	NNPDF2.1/2.3	HERAPDF1.0/1.5	ABKM09/ABM11	GJR08/JR09
PDF order	LO, NLO, NNLO	LO, NLO, NNLO	LO, NLO, NNLO	NLO, NNLO	NLO, NNLO	NLO, NNLO
HERA DIS	✔ (old)	✔ (old/new)	✔ (new)	✓ (new/newest)	✔ (new)	✔ (new)
Fixed target DIS	~	v	v	-	~	v
Fixed target DY	~	 ✓ 	v	-	~	v
Tevatron W, Z	v	v	some	-	some	some
Tevatron jets	 ✓ 	v	v	-	~	v
LHC	-	-	-/W, Z, jets	-	-	-
HF Scheme	RTGMVF	SACOT GMVFN	FONLL GMVFN	RT GMVFN	BMSN FFNS	FFNS
Alphas (NLO)	0.120	0.118(f)	0.119	0.1176(f)	0.1179	0.1145
Alphas (NNLO)	0.1171	0.118(f)	0.1174	0.1176(f)	0.1135	0.1124

PDF fits - The LHC data charge

Z+b production 0

sensitive to b-quark

ABKM09 NNPDF2

 MSTW08 CT10 (NLC

-0.8 < |v| < 1.2

CT10

wrt

The LHeC project

a

139,No7

075001

July 20 12

http://cern.ch/lhec

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, P.Adzic⁷⁴, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², B.Allanach⁷³, S.Alekhin^{17,54},
P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸,
O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷,
H.Böttcher¹⁷, A.Bogacz³⁶, C.Bracco¹⁶, J.Bracinik⁰⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷,
H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, A.Caldwell⁷⁰, V.Cetinkaya⁰¹, V.Chekelian⁷⁰, E.Ciapala¹⁶, R.Ciftci⁰¹,
A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, P.DiNezza⁷², M.D'Onofrio²⁴,
A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹,
H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, A.Glazov¹⁷, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴,
A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸,
M.Jacquet⁴², B.Jeanneret¹⁶, E.Jensen¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶²,
K.Kimura⁵⁸, R.Klees⁷⁵, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷, H.Kowalski¹⁷,
M.Kraemer⁷⁵, G.Kramer¹⁸, D.Kuchler¹⁶, M.Kuze⁵⁸, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonian¹⁷, V.N.Litvinenko³⁷,
A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milanese¹⁶, J.G.Milhano⁷⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, M.Kraemer¹⁵, G.Kramer¹⁶, D.Kuchler¹⁰, M.Kuze⁵⁵, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonian¹⁷, V.N.Litvinenko³⁷,
 A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milanese¹⁶, J.G.Milhano⁷⁶, S.Moch¹⁷, I.I.Morozov⁴⁰,
 Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶,
 C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilice⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷, V.Ptitsyn³⁷, Y.Pupkov⁴⁰,
 V.Radescu¹⁷, S.Raychaudhuri³⁵, L.Rinolfi¹⁶, E.Rizvi⁷¹, R.Rohini³⁵, J.Rojo^{16,31}, S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a},
 K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, M.Schaefer⁷⁵, U.Schneekloth¹⁷, T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Seryi⁴⁴,
 P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷, D.South¹⁷, H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sur⁵⁷, B.Surrow¹¹, L.Szymanowski^{66, f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, P.Thompson⁰⁶, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶, D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰, T.Ullrich³⁷, J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶, R.Wallny⁶⁸, S.Wallon^{43,46,f}, G.Watt⁶⁹, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷, D.Wienands⁴⁸, M.S. F.Willeke³⁷, B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, F.Zomer⁴²

Present LHeC Study group and CDR authors

About 200 Experimentalists and Theorists from 76 Institutes

Supported by CERN, ECFA, NuPECC

The LHeC project

- The LHeC kinematics represents a substantial extension to the coverage of the data which are used today in PDF fits $rep \rightarrow v_{a} X$
- e' Increase in the precision of PDF in regions which are now
 γ/Z extrapolation regions

• Unique opportunity to study the = $-(k \sum_{k=1}^{k} k)$ = $-(k \sum_$

LHeC simulated dataset

• Scenario B

- Integrated Luminosity: e[±]p=50 fb⁻¹
- $E_p = 7$ TeV, $E_e = 50$ GeV, Pol = ± 0.4
- Kinematic coverage: $2 < Q^2 < 5 \cdot 10^5 \text{ GeV}^2$; $2 \cdot 10^{-6} < x < 0.8$

Uncertainties

- Full simulation of Neutral and Charged current measurements
- Including Statistical, Uncorrelated and Correlated Systematic uncertaities
- Based on H1 best values
- Typical uncertainties
 - Stat.: from ~0.1% (low Q², NC) to ~10% (CC, x = 0.7)
 - Uncorr. Syst.: 0.7 %
 - Corr. Syst.: typically 1-3% (up to 9% for high-x CC)

source of uncertainty	error on the source or cross section		
scattered electron energy scale $\Delta E'_e/E'_e$	0.1 %		
scattered electron polar angle	0.1 mrad		
hadronic energy scale $\Delta E_h/E_h$	0.5 %		
calorimeter noise (only $y < 0.01$)	1-3 %		
radiative corrections	0.5%		
photoproduction background (only $y > 0.5$)	1 %		
global efficiency error	0.7 %		

PDF determination setup

• Data

- Hera I combined dataset
- BCDMS fixed target proton/duteron DIS
- ATLAS W asymmetry data (adjusted uncertainties: stat/unc. syst: 0.5%, total:1%)
- LHeC simulated data Scenario B ($e^{\pm}p$ NC/CC red. cross sections, pol = \pm 0.4)

• Theory setup

- HERAPDF1.0 settings
- NLO DGLAP, Thorne-Roberts scheme for HQ treatment
- Fitted PDFs
 - $u_v, d_v, g, U = u+c, D = d+b$
 - f
- One small-x exp. for sea and one valence
- Valence and Momentum sum rules imposed

$$egin{array}{rll} xg(x)&=&A_g x^{B_g}(1-x)^{C_g}(1+D_g x)\,,\ xu_v(x)&=&A_{u_v} x^{B_{u_v}}(1-x)^{C_{u_v}}(1+E_{u_v} x^2)\,,\ xd_v(x)&=&A_{d_v} x^{B_{d_v}}(1-x)^{C_{d_v}}\,,\ xar{U}(x)&=&A_{ar{U}} x^{B_{ar{U}}}(1-x)^{C_{ar{U}}}\,,\ xar{D}(x)&=&A_{ar{D}} x^{B_{ar{D}}}(1-x)^{C_{ar{D}}}\,. \end{array}$$

PDF constraints from LHeC - valence sector

- Knowledge of **PDFs** at arge-x currently limited by
 - Luminosity barrier
 - Challenging systematics
 - Nuclear/higher twist effects
- LHeC data could help reduce the uncertainties on large-x valence distributions to
 - 2% for u_v at x=0.8
 - 4% for d_v at x=0.8
- Crucial to study the d/u ratio at large-x

PDF constraints from LH_C - small-x gluon

- Sensitivity of HERA data stops at x~5.10⁻⁴
- Uncertainties on small-x gluon driven by the parametrization
- LHeC data extend down to x~10⁻⁶, allowing for detailed studies of possible deviation from DGLAP evolution and evidence for BFKL resummation or saturation effects
- LHeC sensitivity to small-x gluon improved by use of F_L data (not considered in the present study)

FOF constraints from LHeC - large-x gluon

- Large-x gluon uncertainty in PDF fits quite large, mostly due to limited statistics (constrained by inclusive jet data)
- Related by evolution to large-x sea quarks (DGLAP evolution of valence distribution decouples)
- LHeC can disentangle the sea from the valence at large-x through measurements of CC reduced cross sections, F₂, F₂^{yZ}, xF₃
- Crucial for searches of high-mass resonances in BSM scenarios (gluino pair production)

Releasing standard assumptions - u=d at small-x

• Due to lack of constraining data standard PDF fits assume d=u at small-x

DESY

- HERA data do not constrain flavour separation at small-x, uncertainties grow substantially when theoretical assumptions are released
- LHeC data provide enough experimental constraints to keep uncertainties on small-x light flavour under control

Releasing standard assumptions - d/u ratio

Constrained decomposition:

Unconstrained sea decomposition:

Releasing standard assumptions - Ultimate fit

- Combined fit to HERA, LHC and LHeC data has the potential to deliver a PDF set with very small, reliable, uncertainties even when releasing most of the standard assumptions (u=d at small-x, free strange parametrization)
- Only onigh-energy, proton data: no higher-twist or nuclear corrections

Strangeness at the LHeC

- Strange is one of the least constrained PDFs in global fits (NuTeV, CCFR)
- Recent ATLAS measurement hints to "unsuppressed" strange with respect to non-strange sea
- Further constraints from LHC (W+c, DY)
- LHeC allows for precision measurements of s and s distributions in CC e[±]p with tagged charm
- Independent measurements of s and s (W⁺s → c and W⁻s → c̄)

Heavy Quark production - Overview

- Access to all quark flavours with high statistics
- Study heavy quark densities in the proton
- Intrinsic charm component
- Measurement of electroweak parameters (CKM matrix elem.)
- Better understanding of Heavy Flavours treatment in PDF fits

Heavy Quark production - Ocerview

- LO charm & bottom production in DIS through boson-gluon-fusion (BGF)
- Direct probe of the gluon distribution
- Predictions from different PDF sets differ because of treatment of Heavy Flavour contributions in fits
 - Fixed Flavour Number Scheme (FFN)
 - Zero-Mass Variable Flavour Number Scheme (ZM-VFNS)
 - General-Mass Variable Flavour Number Scheme (**GM-VFNS**)

Heavy Quark production - Charm

- F₂^{cc} simulation obtained with RAPGAP & CTEQ5L
- To be compared to the **combined** H1-ZEUS measurement (5-10% uncertainty)
- Hugely enlarged phase space accessible at the LHeC
- Substantially **improved tagging** efficiency, much **larger luminosity**

Heavy Quark production - Charm mass

 High precision determination of the charm mass from inclusive and F2^{cc} data

Data input	Experimental uncertainty on m_c [MeV]
HERA: NC+CC	100
HERA: NC+CC+ F_2^{cc}	60
LHeC: NC+CC	25
LHeC: NC+CC+ F_2^{cc}	3

- LHeC inclusive data alone have the potential to reduce the uncertainty on m_c determination from HERA data by a factor of 4
- \bullet Combination with $F_2{}^{cc}$ allows to aim for ultimate precision of $3\ MeV$
- Similar precision achievable in measurements involving b quarks

Heavy Quark production - Intrinsic charm

- Present data do not exclude a sizable (~1-5%) intrinsic charm component of the proton
- Possibly relevant for Higgs production in some BSM scenarios
- Precise measurement in the large-x region require very good forward tagging acceptance (possible in a reduced E_p run)
- Reliable determination of intrinsic charm is challenging but possible

Heavy Quark production - Beauty

- F₂^{bb} simulation obtained with RAPGAP & CTEQ5L
- To be compared to the combined H1 measurement (20-50% unc.)
- Hugely enlarged phase space accessible at the LHeC
- Precision measurement possible thanks to improved tagging
- Potentially important for Higgs production in the MSSM [JHEP0601:069, 2006]

Heavy Quark production - Top

- First opportunity to study top quark in DIS (negligible cross-section at HERA)
- CC: Wb → t production (cross section: O(10 pb))

- NC: tt pair production
- Details of top physics at the LHeC still under investigation

Conclusions & Outlook

- LHeC is the ideal machine to resolve the (unpolarized) flavour content of the proton
- It can provide a powerful handle on light flavour quark and antiquark separation, both in the valence and the sea sector
- Can help us constraining the **gluon** distribution both at **small-** and **large-x**
- Will significantly extend the HERA kinematic coverage for production of charm and bottom quarks
- Will allow us for the **first** time to **study top quark** production **in DIS**
- It is a challenging but realistic project and a natural extension to the LHC

