

36th International Conference on High Energy Physics

4 – 11 July 2012 Melbourne Convention and Exhibition Centre

Partons, QCD and Low xPhysics at the LHeC

Claudia Glasman Universidad Autónoma de Madrid

The LHeC Study Group http://cern.ch/lhec

ep colliders: HERA

The (only) ep HERA collider: QCD-precision machine using DIS processes

• Many high-precision results (data taking: 1992-2007):

- proton structure and PDFs
- α_s , tests of QCD and EW sector
- new particles/interactions
- jet production
- photon structure
- heavy flavours
- diffraction …

Still many issues unresolved ...

Claudia Glasman (Universidad Autónoma de Madrid)

ep colliders: HERA \rightarrow LHeC

The (only) ep HERA collider: QCD-precision machine using DIS processes

New ERA for ep colliders: LHeC

Claudia Glasman (Universidad Autónoma de Madrid)

LHeC: physics program

• Why an ep/A experiment at TeV energies now ? Exploit complementarity fully for ...

- resolving the quark structure of the proton
- mapping the gluon density
- testing further perturbative QCD
- searching and understanding new physics
- investigating the physics of parton saturation
- providing data which could be of use for future experiments ...

LHeC: physics program

- proton structure/PDFs
- photon structure
- heavy flavours
- $-\log x$
- $-\alpha_s$
- high P_T jets ...

- **Electroweak sector:**
- top
- Higgs
- -HWW coupling
- weak couplings
- mixing angles ...
- Physics with heavy ions...

- **Physics beyond SM:**
- leptoquarks
- quark substructure
- contact interactions
- extra dimensions
- excited leptons ...

Claudia Glasman (Universidad Autónoma de Madrid)

LHeC: physics program

Claudia Glasman (Universidad Autónoma de Madrid)

• Q^2 vs x kinematic plane for LHeC with $E_p = 7$ TeV and $E_e = 60$ GeV compared to HERA coverage for structure-function/cross section measurements from DIS:

ightarrow much wider coverage available than at HERA, with a large region of overlap: ightarrow from $Q^2_{
m max} pprox 0.03$ to 1 TeV² and from $x_{
m min} pprox 4 \cdot 10^{-5}$ to $2 \cdot 10^{-6}$

• The double-differential cross section for inclusive ep scattering is given in terms of the structure functions F_i in NC DIS by

 $rac{d^2 \sigma^{e^\pm p}}{dx \ dQ^2} = rac{2\pi lpha^2}{xQ^4} [Y_+ F_2(x,Q^2) \mp Y_- xF_3(x,Q^2) - y^2 F_L(x,Q^2)](1 + \delta_r(x,Q^2)) = d^2 \sigma_-$

- $=rac{d^2\sigma_{
 m Born}}{dx\ dQ^2}(1+\delta_r(x,Q^2))$ where $Y_{\pm}=1\pm(1-y)^2$ δ_r is the EW radiative correction
- F_2 : contains contributions from γ and Z exchange and interference terms; contribution from Z exchange significant only at high Q^2 ; $F_2 \propto (q + \bar{q})$
- xF_3 : parity-violating term arising from Z exchange; sizeable only for $Q^2 > M_Z^2$
- **F**_L: the longitudinal SF is 0 at LO QCD;

at higher orders, F_L is significant only for large y

The reduced cross section is defined as

$$\sigma_r = \frac{xQ^4}{2\pi\alpha^2 Y_+} \frac{d^2\sigma_{\rm Born}}{dx \, dQ^2}$$

and $\sigma_r \propto F_2$ for $Q^2 \ll M_Z^2$

• Simulation of e^-p NC inclusive reduced cross section measurement for $E_p = 7$ TeV and $E_e = 60$ GeV with $\mathcal{L} = 10$ fb⁻¹:

ightarrow cross sections will be measured with unprecedented precision and range: ightarrow predicted uncertainty $\lesssim 1\%$ at low x; at high x/Q^2 , statistics dominates

• For longitudinally unpolarised beams,

 $F_2^{CC}(e^+p) = x[d+s+\bar{u}+\bar{c}]$ $F_2^{CC}(e^-p) = x[u+c+\bar{d}+\bar{s}]$ $\Rightarrow \text{ measurements of } F_2^{CC}(e^\pm p) \text{ give }$ access to flavour content of proton

• Simulation of $e^{\pm}p$ CC inclusive reduced cross section measurement for $E_p = 7$ TeV and $E_e = 60$ GeV with $\mathcal{L} = 1$ fb⁻¹:

 \rightarrow cross sections will be measured with unprecedented precision and range: \rightarrow a precise determination of the u/d ratio up to large x appears to be feasible at very high Q^2

• The interference term in F_2 is given by

$$F_2^{\gamma Z} = x \sum 2 e_q v_q (q+ar q)$$

and gives a different quark information than $F_2^\gamma(\propto e_q^2)$

• $F_2^{\gamma Z}$ can be measured via NC DIS cross-section asymmetries using polarised beams

• Simulation of $F_2^{\gamma Z}$ measurement for $E_p = 7$ TeV and $E_e = 60/140$ GeV for $\mathcal{L} = 10$ fb⁻¹ with different polarisations at $Q^2 = 6.5 \cdot 10^4$ GeV²:

 $rac{1}{2}
ightarrow F_2^{\gamma Z}$ will be measured with high precision in a wide x range

• The parity-violating structure function is given by

 $xF_3^{\gamma Z}=rac{x}{3}(2u_v+d_v+\Delta)$, where Δ is the sea contribution

Neglecting sea contributions,

$$\int_{0}^{r^{1}} x F_{3}^{\gamma Z} rac{dx}{x} = rac{1}{3} \int_{0}^{1} (2u_{v} + d_{v}) dx = rac{5}{3}$$

and gives direct access to the valence quark distributions • $xF_3^{\gamma Z}$ can be measured via the difference of $e^{\pm}p$ NC DIS cross sections

• Simulation of $xF_3^{\gamma Z}$ measurement for $E_p = 7$ TeV and $E_e = 60$ GeV ($\mathcal{L} = 10$ fb⁻¹) at $Q^2 = 1500$ GeV² together with H1 and ZEUS measurements:

 $ightarrow xF_3^{\gamma Z}$ will be measured with high precision in a wide x range

- The structure function F_L in QCD receives contributions from quarks and gluons \rightarrow at low x, the gluon contribution is dominant
 - $\Rightarrow F_L$ is a direct measure of the gluon distribution in the proton
- F_L can be extracted by fits to measurements of σ_r^{NC} at fixed Q^2/x and varying y ($y=Q^2/sx,\ s=4E_eE_p$)
- Simulation of F_L measurement for $E_p\!=\!7$ TeV and $E_e=10,\ 20,\ 30,\ 60$ GeV:
 - ightarrow the expected accuracy is typically 4~(7)% at $Q^2=3.5~(25)~{
 m GeV}^2$
 - \Rightarrow the LHeC will provide the first precision measurement of F_L in a region where the behaviour of the gluon density is expected to change significantly

LHeC physics: proton PDFs

- PDFs are extracted from fits to data assuming a functional form for x at a given Q^2_{\min} value and then evolved via DGLAP evolution equations
- Current PDF status from HERA:

- Impact of LHeC data expected to be large thanks to
- new kinematic range
- huge luminosity
- polarised beams
- deuteron beams
- high precision data [®]

HERA I I+LHC(Wasymm)

HERA I+BCDMS

0.4

0.3

- ⇒ LHeC has the potential to provide significant constraints to the PDFs \rightarrow
- The reduction of uncertainties in nuclear PDFs are presented in the talk on heavy ions

Claudia Glasman (Universidad Autónoma de Madrid)

 $Q^2 = 1.9 \; {\rm GeV}^2$

10

LHeC physics: proton PDFs

- PDFs are extracted from fits to data assuming a functional form for x at a given Q^2_{\min} value and then evolved via DGLAP evolution equations
- Current PDF status from HERA:

- Impact of LHeC data expected to be large thanks to
- new kinematic range
- huge luminosity
- polarised beams
- deuteron beams
- high precision data

⇒ A precise value of α_s from DIS will also be possible at LHeC

Claudia Glasman (Universidad Autónoma de Madrid)

 \Rightarrow

- Measurements of heavy-flavour production at HERA provided high-precision pQCD tests and understanding of the dynamics of their production

 — direct sensitivity to gluon density in NC DIS via BGF process
- At LHeC, higher cms energy, larger luminosity and more advanced detector design will extend significantly these studies Total cross sections in ep collisions
- Predicted total cross sections and event rates for 10 fb⁻¹ and $E_p = 7$ TeV vs E_e together with calculations for HERA:
 - → LHeC cross sections one order of magnitude larger than at HERA
 - $\rightarrow s/\bar{s}$ densities will be probed with $10^6~{
 m CC}$ events with charm in the final state

- Measurements of heavy-flavour production at HERA provided high-precision pQCD tests and understanding of the dynamics of their production

 —> direct sensitivity to gluon density in NC DIS via BGF process
- At LHeC, higher cms energy, larger luminosity and more advanced detector design will extend significantly these studies

- 20

- Predicted total cross sections and event rates for 10 fb⁻¹ and $E_p = 7$ TeV vs E_e together with calculations for HERA:
 - → LHeC cross sections one order of magnitude larger than at HERA
 - $\rightarrow s/\bar{s}$ densities will be probed with $10^6~{
 m CC}$ events with charm in the final state
 - \rightarrow top will be probed via single-top production in CC DIS with b in the initial state

- \rightarrow more than 10^5 events with t in the final state and a similar number of \overline{t} are expected
- ⇒ LHeC will give access to all quark flavours with high statistics

- $F_2^{c\bar{c}}$ and F_2^{bb} in NC DIS give the contribution from charm and beauty to F_2
- The description of HF production in pQCD is complicated due to the presence of several simultaneous large scales (HF mass, P_T of produced HF and Q^2)
- Several schemes for mass treatment available (FFNS, ZM-VFNS, GM-VFNS)
 - → treatment of mass terms have implications in global PDF fits and resulting densities
- LHeC data can help to shed light on the ambiguities in this and other HF issues
- Simulation of $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$ for $E_p = 7$ TeV and $E_e = 100$ GeV for $\mathcal{L} = 10$ fb⁻¹ with $m_c = 1.5$ GeV and $m_b = 4.75$ GeV together with HERA data

- $F_2^{c\bar{c}}$ and F_2^{bb} in NC DIS give the contribution from charm and beauty to F_2
- The description of HF production in pQCD is complicated due to the presence of several simultaneous large scales (HF mass, P_T of produced HF and Q^2)
- Several schemes for mass treatment available (FFNS, ZM-VFNS, GM-VFNS)
 - → treatment of mass terms have implications in global PDF fits and resulting densities
- LHeC data can help to shed light on the ambiguities in this and other HF issues
- Simulation of $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$ for $E_p = 7$ TeV and $E_e = 100$ GeV for $\mathcal{L} = 10$ fb⁻¹ with $m_c = 1.5$ GeV and $m_b = 4.75$ GeV together with HERA data
 - \rightarrow much wider phase space available at LHeC extending to very low x at low Q^2 and to higher x at high Q^2

 \rightarrow statistical precision of LHeC data is very good due to growing cross sections driven by the rise of the gluon density at low x

LHeC physics: high P_T jets

- The study of high P_T jets in DIS and photoproduction provides a testing ground for pQCD and sensitivity to α_s and the proton/photon PDFs
 - \rightarrow high-precision jet cross-section measurements from HERA have yielded

- → jet cross sections are directly sensitive to the gluon in the proton via BGF process
- * α_s determinations with an accuracy of $\mathcal{O}(3-4\%)$ (uncertainty mostly dominated by theory)
 - $ightarrow lpha_s$ is the least known of the couplings ($\Delta lpha_s({
 m WA})\!=\!0.6\%$)
 - $\rightarrow \Delta \alpha_s$ has influence on GUT and translates into uncertainty on PDFs and hadronic cross sections
 - \rightarrow unresolved issue: $\alpha_s(\text{DIS}) < \alpha_s(\text{WA}) < \alpha_s(\text{jets})$
 - \rightarrow precision data from LHeC should help understanding
- ***** potential to constrain the photon PDFs
 - \rightarrow photon PDFs very poorly constrained
 - \rightarrow crucial understanding for future e^+e^- accelerators (ILC/CLIC) since $\gamma\gamma$ collisions will provide a huge background for cms energies far above M_Z

LHeC physics: high P_T jets

- Predicted inclusive-jet cross sections vs E_T^{jet} for $E_p = 7$ TeV and various E_e for $\mathcal{L} = 10$ fb⁻¹ together with calculations for HERA:
- A much wider kinematic range, high luminosity and more advanced detector design will allow very highprecision data

 $\Rightarrow \text{Impact of LHeC jet} \\ \text{measurements on} \\ p \text{PDFs and } \alpha_s \text{ is} \\ \text{expected to be large} \\ \end{aligned}$

• The accuracy of α_s and the constraints on the PDFs will also benefit enormously from NNLO calculations of jet cross sections in ep

LHeC physics: low x physics

- Up to now, QCD studies at LHeC shown within the framework of fixed-order perturbation theory and collinear factorisation (DGLAP), valid for high Q^2/x , but CF expected to break down at low x
 - \rightarrow in DGLAP, parton densities expected to rise at small x (proton increasingly packed at low x) \rightarrow rise at low x observed at HERA
- New phenomena predicted at high parton densities
 - \rightarrow linear small-x resummation
 - \rightarrow non-linear evolution
 - \rightarrow parton saturation
- These effects would lead to deviations from DGLAP evolution at low $x \rightarrow$ some hints of such deviations

DENSE

\Rightarrow The low-x region is an exciting and largely unexplored territory

 \Rightarrow LHeC: ideal machine to study low-x regime and its non-perturbative dynamics at sufficiently large Q^2 , the transition towards a new state of dense QCD matter and to favour/disfavour the proposed models (eg dipole model) which aim to describe this kinematic region, by measuring at very low x and/or scattering off heavy nuclei

LHeC physics: low x physics

 $F_{o}(x,Q^{2}=10 \text{ GeV}^{2})$

0.00001

Linear approaches

NLO DGLAP

----- Small-x resummed

Non-Linear approaches

scatterings

Pseudodata

CGC

Reaae

0.001

Eikonal Multiple

NNPDF 1.0

1.4

1.2

0.8

0.6

0.4

0.2

0.01

1×10⁻⁶

 $F_{1}(x,Q^{2}=10 \text{ GeV}^{2})$

0.00001

- Precise LHeC data on F_2 , F_L discriminate between different models and constrain the dynamics at low x
 - \rightarrow simultaneous description of BOTH F_2 , F_L crucial
- Exclusive production of vector

mesons provide complementary information to that from inclusive measurements, as they are sensitive to the square of the gluon density $\sqrt{p} \rightarrow J/\psi + p$

0.0001

X

 $\rightarrow J/\psi$ production is a potentially very clean probe of the gluonic structure and is particularly sensitive to unitarity effects

5

2

 1×10^{-6}

$\hfill \bullet$ Other important probes of low-x dynamics include

0.0001

X

Claudia Glasman (Universidad Autónoma de Madrid)

0.01

Linear approaches

NLO DGLAP

Small-x resummed

on-Linear approaches

scatterings

CGC

Pseudodata

----- Regge

0.001

Eikonal multiple

NNPDF 1.0

Summary

- Many important aspects of the rich physics program on QCD have been reviewed \rightarrow proton structure and PDFs, heavy flavours, high P_T jets and low-x dynamics
- ★ The LHeC will be able to explore a new kinematic regime at high luminosity and provide information to
 - \rightarrow constrain the proton parton distributions
 - \rightarrow explore the new kinematic regime of low x and moderate-to-high Q^2
 - \rightarrow test further pQCD and the electroweak sector
 - \rightarrow search for new physics
 - \rightarrow physics with heavy ions
 - \rightarrow provide data to be used in future experiments
- ★ The experimental prospects challenge theory and require a continued feed-back between experimentalists and theoreticians
- The LHeC has passed a major milestone with a refereed CDR, supported and monitored by CERN, ECFA and NuPECC, published by The LHeC Study Group
 - → JL Abelleira Fernandez et al, "A Large Hadron Electron Collider at CERN" CERN-OPEN-2012-015, arXiv:1206.2913, submitted to J Phys G (2012)
 - \rightarrow Collaborations soon to be built for further design of machine and detector