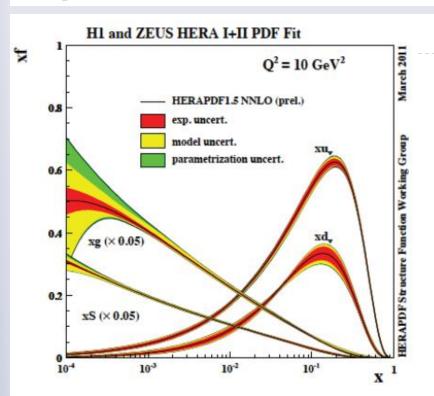

High Energy ep Scattering: Higgs and FCC

Monica D'Onofrio University of Liverpool

(on behalf of many...)

DIS 2014, Warsaw April 30th 2014

Outline


- The idea of an e-p collider at CERN, the **LHeC**, proposed in 2005, has been developed in the last years.
- ► The FCC-he: a realistic opportunity for energy frontier DIS \rightarrow 3 order of magnitude higher lumi wrt HERA; huge step in energy (Q²,1/x).
- In this talk:
 - Prospects for Higgs measurements at LHeC and FCC-he
 - Future Circular Collider (FCC) complex view
 - ▶ Highlights of physics programme (focus on e-p)

Other contributions

In this Conference, other talks on LHeC and/or FCC-he physics highlights:

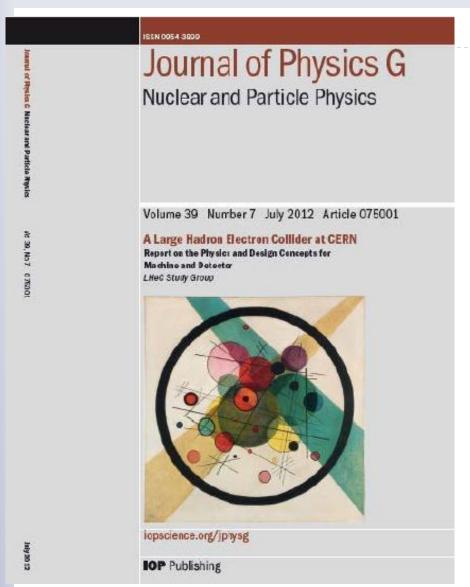
- LHeC accelerator Development
 - Emilia CRUZ ALANIZ
- Electroweak and top physics at energy frontier DIS
 - Christian SCHWANENBERGER
- Parton distributions in the proton from the LHeC
 - Voica Ana Maria RADESCU
- ▶ eA collisions at the LHeC and FCC
 - Guilherme TEIXEIRA DE ALMEIDA MILHANO
- LHeC detector design and simulation
 - Paul NEWMAN

e-p at HERA .. and beyond

- At HERA, extensive tests of QCD, measurements of α_s and base for PDF fits in x range relevant for hadron colliders
- But also:
 - New limits for leptoquarks, excited electrons and neutrinos, quark substructure and compositness, RPV SUSY etc.

The LHeC, proposed in 2005, has been developed in the last years: http://cern.ch/LHeC

Tevatron/HERA/LEP → HL-LHC/LHeC/(ILC?)


(fermiscale)

(Terascale)

(or, the complimentarity pattern)

LHeC: Conceptual Design Report (July 2012) and more

- 630 pages summarising 5 years of studies commissioned by CERN, ECFA and NuPECC
- About 200 participants, 69 institutes
- Further updates
 - 'A Large Hadron Electron Collider at CERN' arXiV:1211.4831
 - 'On the relation of the LHeC and the LHC' arXiV:1211.5102
 - 'The Large Hadron Electron Collider' arXiV:1305.2090
 - 'Dig Deeper' Nature Physics 9 (2013) 448
- Regular workshops and presentations in Conferences

Coordination group for future DIS at CERN

Toward a concrete planning: International Advisory Committee

Guido Altarelli (Rome) Sergio Bertolucci (CERN) Frederick Bordry (CERN) Stan Brodsky (SLAC) Hesheng Chen (IHEP Beijing) Andrew Hutton (Jefferson Lab) Young-Kee Kim (Chicago) Victor A Matveev (JINR Dubna) Shin-Ichi Kurokawa (Tsukuba) Leandro Nisati (Rome) Leonid Rivkin (Lausanne) Herwig Schopper (CERN) - Chair Jurgen Schukraft (CERN) Achille Stocchi (LAL Orsay) John Womersley ()

The IAC was invited in 12/13 by the DG with the following

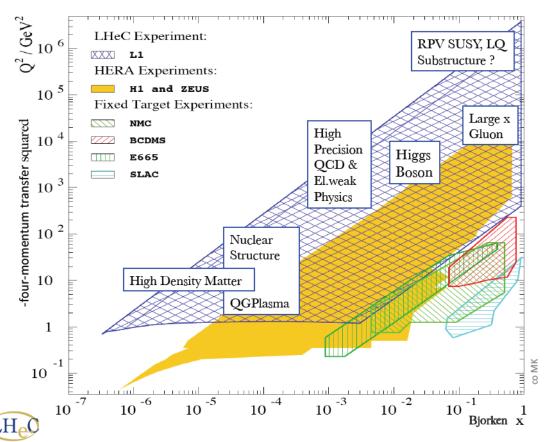
Mandate 2014-2017

Advice to the LHeC Coordination Group and the CERN directorate by following the development of options of an ep/eA collider at the LHC and at FCC, especially with:

Provision of scientific and technical direction for the physics potential of the ep/eA collider, both at LHC and at FCC, as a function of the machine parameters and of a realistic detector design, as well as for the design and possible approval of an ERL test facility at CERN.

Assistance in building the international case for the accelerator and detector developments as well as guidance to the resource, infrastructure and science policy aspects of the ep/eA collider.

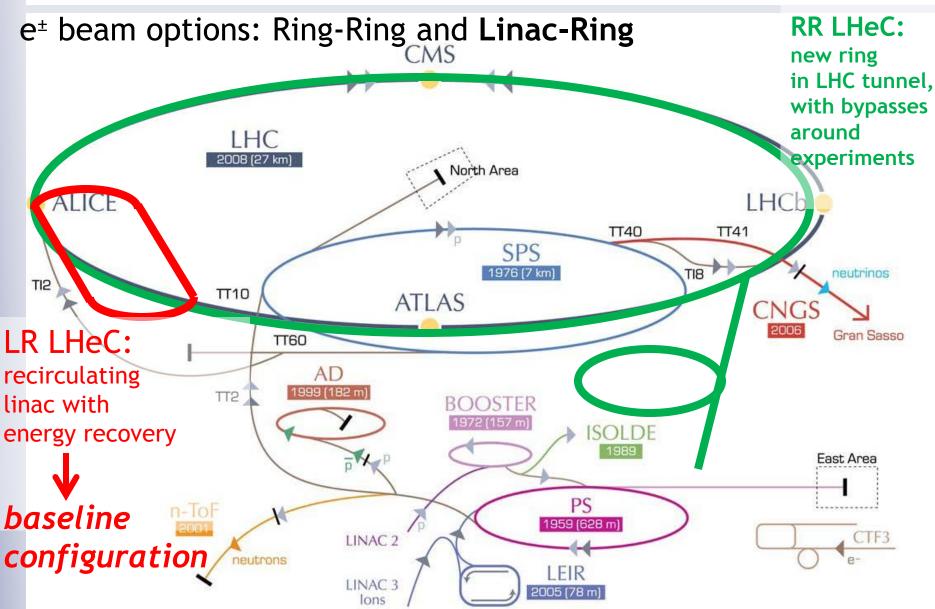
See also Panel discussion at the recent LHeC workshop (Chavannes, 20-21 Jan 2014) H. Schopper slides:


https://indico.cern.ch/event/278903/contribution/55

*) IAC Composition February 2014+ Oliver Brüning Max Klein ex officio

The LHeC

 Unique opportunity to take lepton-hadron physics to the TeV centre-of-mass scale at high luminosity


LHeC: E_e =60 GeV, \sqrt{s} = 1.3 TeV

Designed to exploit intense hadron beams in high luminosity phase of LHC running from mid 2020s:

- → Use 7 TeV protons
- → Add an electron beam to the LHC

The LHeC 'facility'

The LHeC baseline parameters

1-10**
1
90
7
0
30
15
0.12
0.1
10

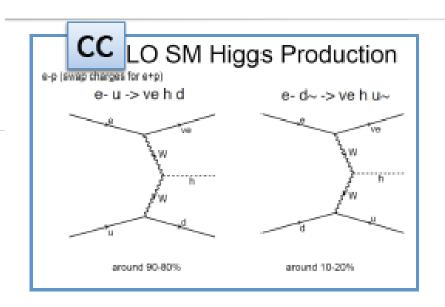
e⁻p and e⁺p collisions (possibly with similar luminosity)
→ 60 GeV (ele), 7 TeV proton

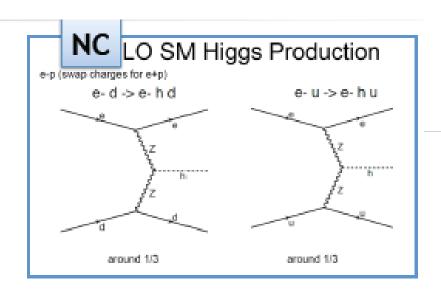
e⁻/e⁺ polarization

Operations simultaneous with HL-LHC pp physics

- ep Lumi: 10^{33} (10^{34})** cm⁻² s⁻¹ (**: according to recent studies)
- ▶ 10-100 fb⁻¹ per year
- ▶ 100 fb⁻¹ 1 ab⁻¹ total
- eD and eA collisions integral part of the programme
 - e-nucleon Lumi estimates \rightarrow 10³¹ (10³²) cm⁻² s⁻¹ for eD (ePb)

LHeC Physics


- Rich physics program for e-q physics at TeV energies:
 - Precision QCD,EWK physics
 - Higgs measurements and searches for BSM
 - Complimentarities to LHC physics program and boosting its precision (eg PDF at high x)


arXiv:1211:4831+5102

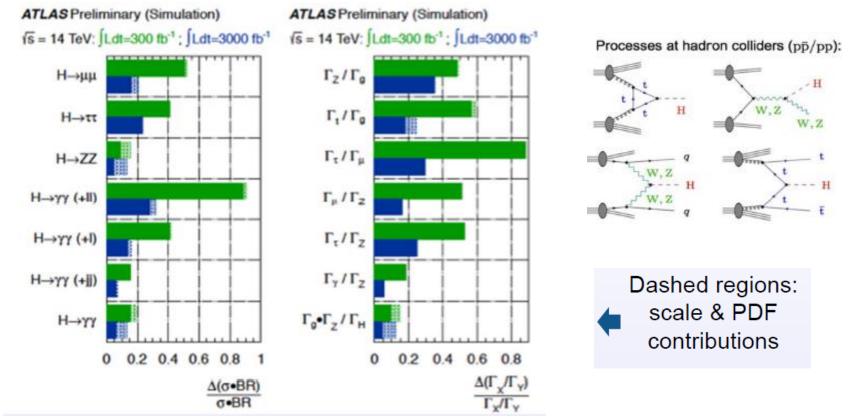
	_			
QCD Discoveries	$\alpha_s < 0.12, q_{sea} \neq \overline{q}$, instanton, odderon, low x : (n0) saturation, $\overline{u} \neq \overline{d}$			
Higgs	WW and ZZ production, $H \to b\bar{b}$, $H \to 4l$, CP eigenstate			
Substructure	electromagnetic quark radius, e^* , ν^* , W ?, Z ?, top?, H ?			
New and BSM Physics	leptoquarks, RPV SUSY, Higgs CP, contact interactions, GUT through α_s			
Top Quark	top PDF, $xt = x\overline{t}$?, single top in DIS, anomalous top			
Relations to LHC	SUSY, high x partons and high mass SUSY, Higgs, LQs, QCD, precision PDFs			
Gluon Distribution	saturation, $x = 1, J/\psi, \Upsilon$, Pomeron, local spots?, F_L, F_2^c			
Precision DIS	$\delta \alpha_s \simeq 0.1 \%$, $\delta M_c \simeq 3 \text{MeV}$, $v_{u,d}$, $a_{u,d}$ to $2 - 3 \%$, $\sin^2 \Theta(\mu)$, F_L , F_2^b			
Parton Structure	Proton, Deuteron, Neutron, Ions, Photon			
Quark Distributions	valence $10^{-4} \lesssim x \lesssim 1$, light sea, d/u , $s = \overline{s}$?, charm, beauty, top			
QCD	N ³ LO, factorisation, resummation, emission, AdS/CFT, BFKL evolution			
Deuteron	singlet evolution, light sea, hidden colour, neutron, diffraction-shadowing			
Heavy Ions	initial QGP, nPDFs, hadronisation inside media, black limit, saturation			
Modified Partons	PDFs "independent" of fits, unintegrated, generalised, photonic, diffractive			
HERA continuation	F_L , xF_3 , $F_2^{\gamma Z}$, high x partons, α_s , nuclear structure,			

Table 3: Schematic overview on key physics topics for investigation with the LHeC.

Higgs measurements at LHeC

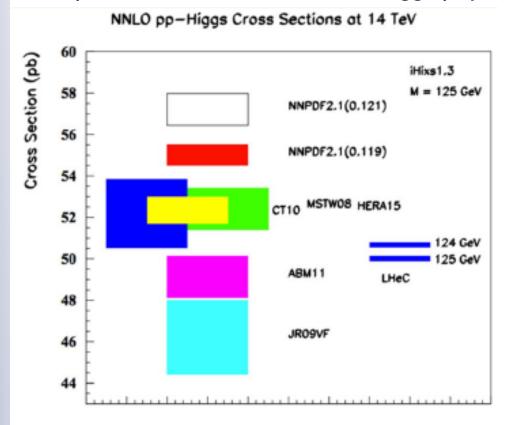
200 fb for CC, 25 fb for NC (polarized e beam)

- Less than LHC BUT less difficult
- Comparable to ILC

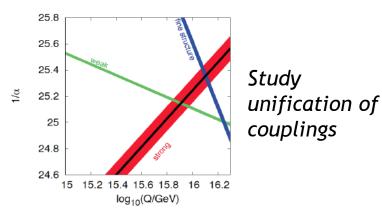

In other words, GREAT POTENTIAL!

Status of the art on Higgs: ATLAS example

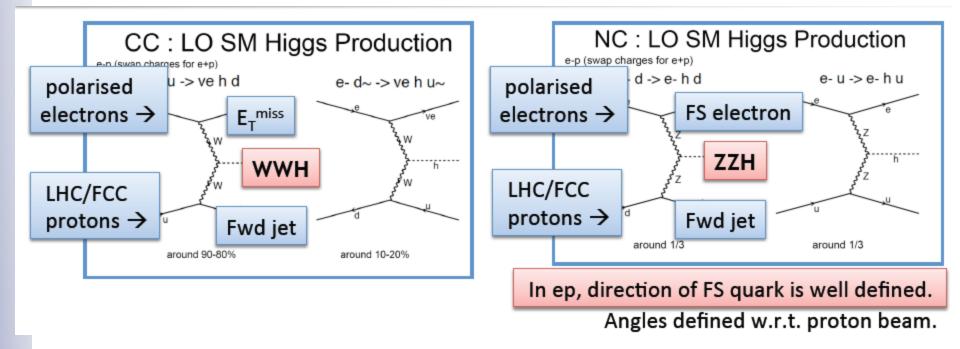
Higgs in pp HL-LHC and PDF uncertainties


- Studies for High Luminosity LHC shows that PDF uncertainties will be a limiting factor for several channels at the HL-LHC
- With LHeC: huge improvements in PDFs and precision in $\alpha_S \rightarrow$ full exploitation of LHC data for Higgs physics

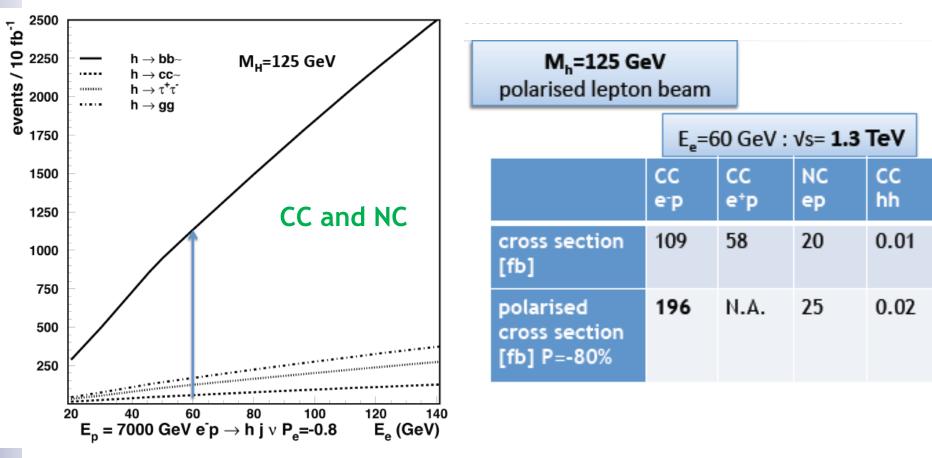
Similar conclusion and relations expected for FCC-he $\leftarrow \rightarrow$ FCC-hh


Higgs in pp HL-LHC and PDF uncertainties

- Studies for High Luminosity LHC shows that PDF uncertainties will be a limiting factor for several channels at the HL-LHC
- With LHeC: huge improvements in PDFs and precision in $\alpha_S \rightarrow$ full exploitation of LHC data for Higgs physics


 $\alpha_{\rm S}$ = underlying parameter relevant for unc. (0.005 \rightarrow 10%) @ LHeC: measure to permille accuracy (0.0002)

→ precision from LHeC can add a very significant constraint on the Higgs mass but also:


Similar conclusion and relations expected for FCC-he $\leftarrow \rightarrow$ FCC-hh

Study of Higgs production at e-p

- WWH and ZZH vertices can be probed uniquely and simultaneously
- Energy Recovery Linac: high electron polarization, 80-90% → lead to twice the CC rates!
- NLO QCD corrections in DIS small wrt to pp
- For Higgs: shape distortions of kinematic distributions up to 20% due to NLO QCD
- QED corrections: up to 5% [i.e.: arXiV:1001.3789]

Higgs Production rate at LHeC

Total event rate for 10 fb⁻¹

= 1 month of high luminosity running using 60 GeV LINAC

1100 events H \rightarrow bb; 140 events H $\rightarrow \tau\tau$; 60 events H \rightarrow cc

Analysis framework

Event generation

- SM Higgs production
- CC & NC background

by MadGraph5/MadEvent

- Fragmentation
- Hadronization

by PYTHIA (modified for ep)

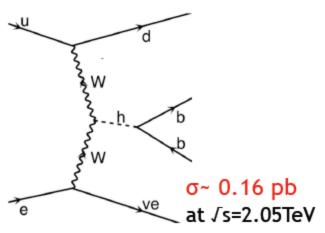
Fast detector simulation by PGS (LHC-style detector)

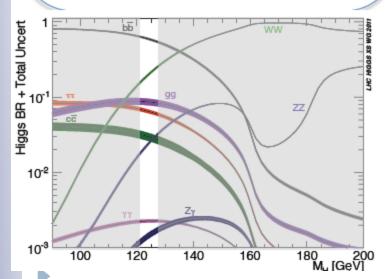
 $H \rightarrow b\bar{b}$ (any decay) selection

- Calculate cross section with tree-level Feynman diagrams using pT of scattered quark as scale (CDR: ŝ) for ep processes like single t, Z, W, H
- > Standard HERA tools can NOT to be used!
- NEW: full update for Madgraph5 v2.1 (CDR: MG4)
- Higgs mass 125 GeV as default since MG5 v2.1 (CDR: 120 GeV)
- MG5 and Pythia fully interfaced to most modern LHAPDF → test of LHeC PDFs
- Fragmentation & hadronisation uses <u>ep-</u> <u>customised Pythia</u>.

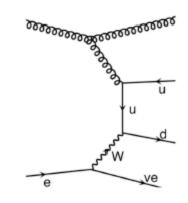
Any other model (UFO) can be easily tested → non-SM higgs, SUSY etc.

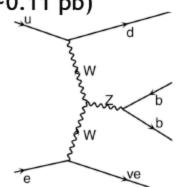
Valid for ep only.


Courtesy of U.Klein

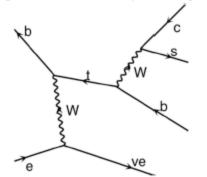

Example from CDR: Generated samples

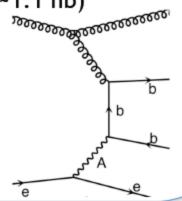
Graphs by MadGraph


CC: $H \rightarrow \overline{b}b$ (BR ~ 0.7 at M_H =120GeV)



Background (examples)


CC: 3 jets (~57 pb)


CC: Z production (~0.11 pb)

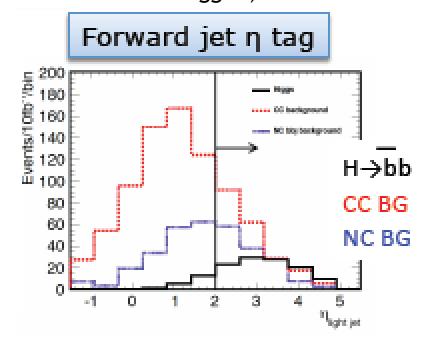
CC: single top production (~4.1 pb)

NC: b pair production (~1.1 nb)

NOTE: Background sample cross sections are after pre-selection in generator and for Ee=150 GeV

H→ bb @ LHeC: CDR studies (mH=120 GeV)

NC DIS rejection:


- Exclude electron-tagged e
- ETMiss>20 GeV, Njet(pT>20 GeV)≥3
- E_{T,total}>100 GeV
- $y_{JB}>0.9, Q_{JB}^2>400 \text{ GeV}^2$

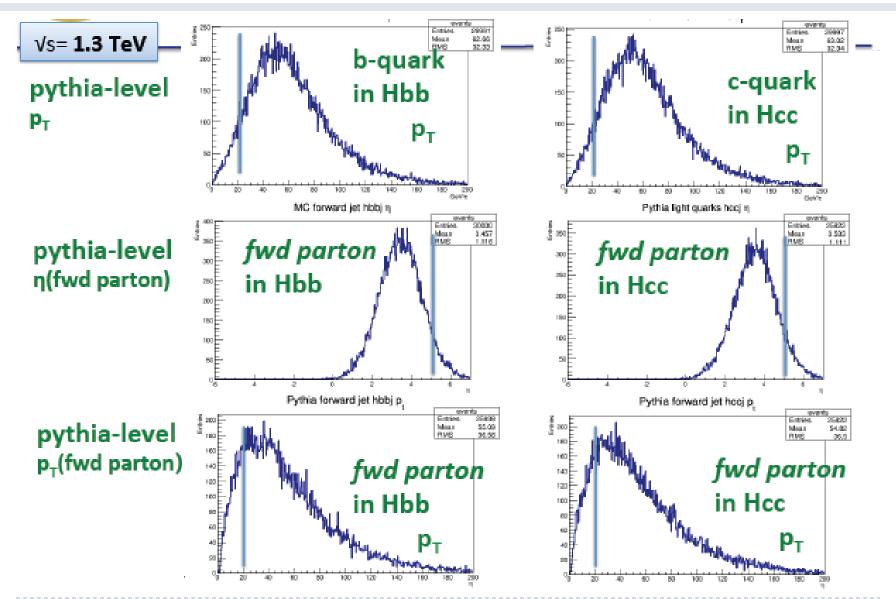
B-tagging:

- Assume flat efficiency ≈ 60% (10% c-tag, 1% mistag rate)
- N b-jet ≥ 2 (20 GeV threshold)
- 90<M(higgs)<120 GeV
- Single top rejection (>40% of total remaining background):
 - Mjjj,top>250 GeV
 - Mjj,W>130 GeV

Forward jet tagging

 η jet > 2 (lowest eta jet, anti-btagged)

For 10 fb⁻¹, unpolarized beam and Ee=150 GeV, reach $S/JB \sim O(10)$


H >> bb @ LHeC: most recent results

- Use similar approach, cut and count analysis:
 - Very clear signal!

Masahiro Tanaka, BSc thesis, Tokyo Tech 2014							
	M _H selection [100-130 GeV]	E _e = 60 GeV (50 fb ⁻¹ , P=0)					
	H → bb signal	175					
	S/N	1.9					
	S/√N	18.1					

- ▶ LINAC with high e polarization of about 90% → around 10K Higgs!
 - ▶ Allow Hbb coupling measurements with 1% statistical precision (1 ab⁻¹)
 - ► H→ccbar channel also under study
 - ▶ Low but still 'taggable' charm-jets → Clean environment wrt pp

Higgs → tau tau

- Feasibility studies on going
- ▶ Reasonable cross sections (expect 10% of H→bbbar)
- Promising channels:
 - mu+ tau_had
 - mu- tau_had
 - tau_had tau_had
 - ▶ e+ mu
- The main background will come from di-tau production:

SubProcesses and Feynman diagrams

Directory	# Diagrams	# Subprocesses	FEYNMAN DIAGRAMS	SUBPROCESS
P0_lq_vltaptamq	10	2	html postscript	e-u > ve ta+ta-d, $e-c > ve ta+ta-s$
	10	2	html postscript	e- d \sim > ve ta+ ta- u \sim , e- s \sim > ve ta+ ta- c \sim

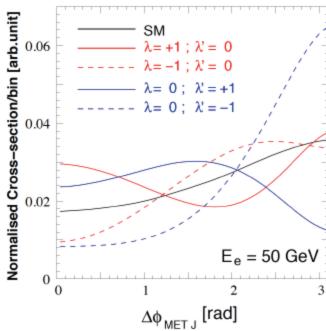
40 diagrams (20 independent).

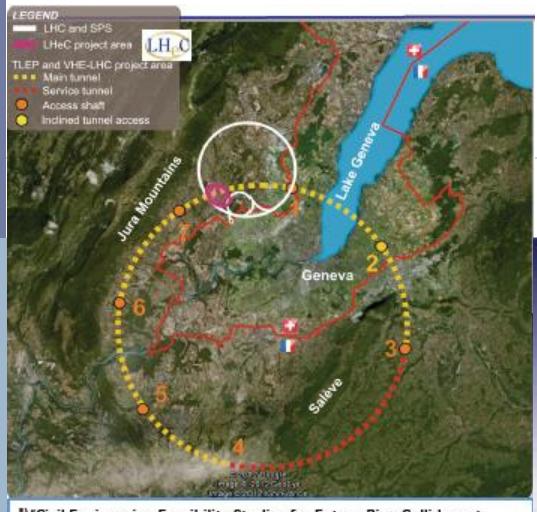
Reducible thanks to Hard cuts that can be applied on tau pT and di-tau mass

Next step is to look into the prospects of fakes, although if these channels are possible at the LHC \rightarrow also possible at the LHeC!

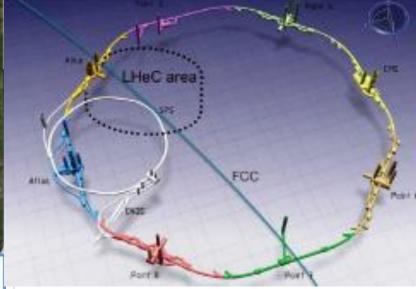
CP properties of the Higgs

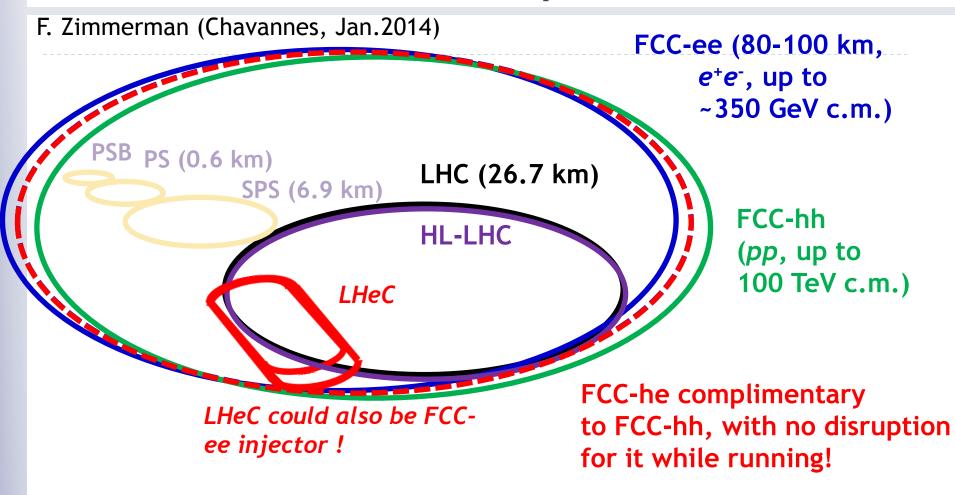
At the LHeC: unique access to HWW → searches for BSM exploring CP properties of HVV, since CP-even and CP-odd states would be differently modified by new physics


$$\Gamma^{\mu\nu}_{(SM)}(p,q) = gM_W g^{\mu\nu}$$


$$\Gamma_{\mu\nu}^{(\mathrm{BSM})}(p,q) = \frac{-g}{M_W} \left[\lambda \left(p.q \, g_{\mu\nu} - p_{\nu} q_{\mu} \right) + i \, \lambda' \, \epsilon_{\mu\nu\rho\sigma} p^{\rho} q^{\sigma} \right]$$

Analysis of LHC data indicate consistency with the SM 0+ hypothesis. However, we need to understand if there is a mixture of physics beyond the SM, even within the 0+ hypothesis.


Study shape changes in DIS normalised CC Higgs \rightarrow bbbar x-sect VS $\Delta \phi$ (MET-forward jet)

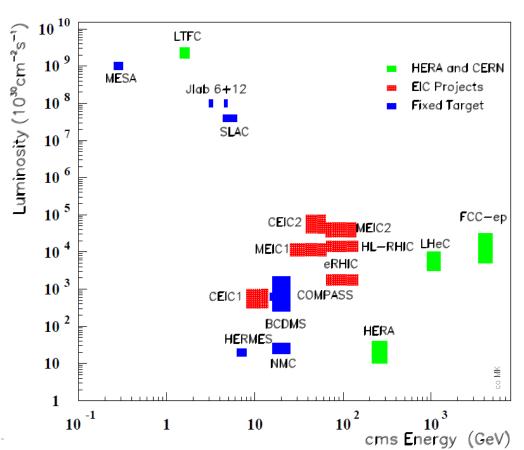

Beyond the LHeC: the FCC-he

") "Civil Engineering Feasibility Studies for Future Ring Colliders at CERN", Contributed by O.Brüning, M.Klein, S.Myers, <u>J.Osborne</u>, L.Rossi, <u>C.Waaijer</u>, F.Zimmerman to IPAC13 Shanghai

Possible view of FCC complex

LHeC/FCC-he: e^{\pm} (60-175 GeV) - p (7 and/or 50 TeV) collisions \geq 50 years $e^{\pm}e^{\pm}$, pp, $e^{\pm}p/A$ physics at highest energies!

From the LHeC to the FCC-he


Tevatron/HERA/LEP → HL-LHC/LHeC/(ILC?) → FLHC/FHeC/FLC

(fermiscale)

(Terascale)

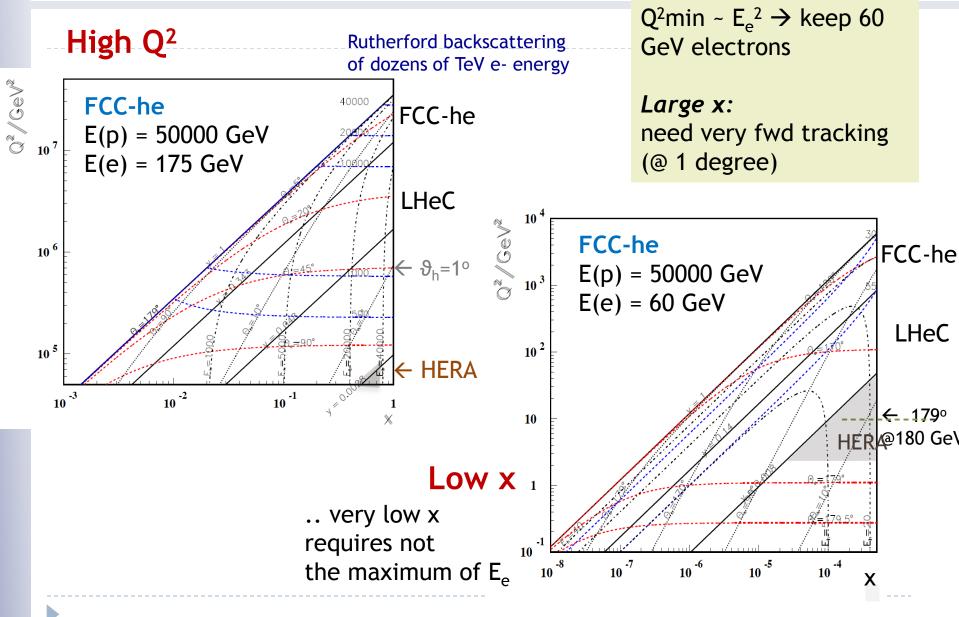
(Multi-Terascale)

Lepton-Proton Scattering Facilities

Realistic opportunity for energy frontier DIS → 3-4 order of magnitude higher lumi wrt HERA; huge step in energy (Q²,1/x)

FCC-he preliminary parameters

e energy = 60, 120 GeV up to 175 GeV
 (e option open)


Energy recovery is 60 GeV Ring-Ring might go up to 175 GeV

p energy = 50 TeV

CM energy [TeV] = 3.5 (60 GeV e), 4.9 (120 GeV e)

IP spot size determined by p

DIS: from HERA to FCC-he

Low x:

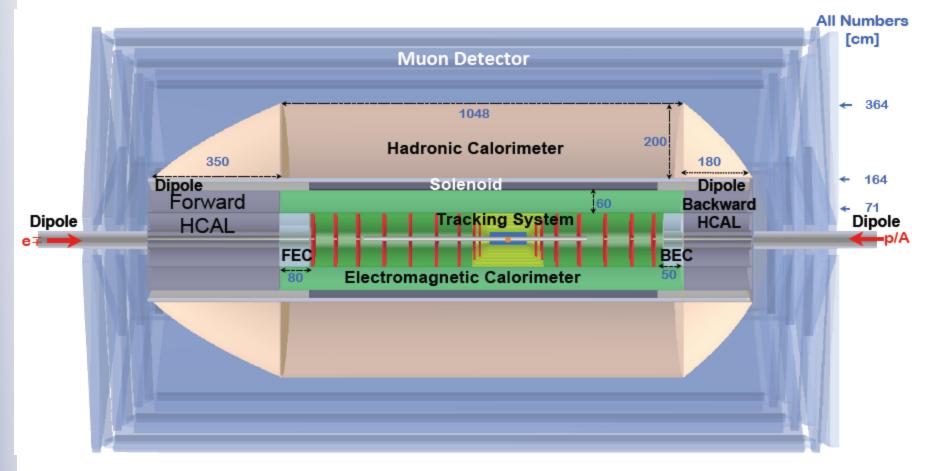
Detector layout

LHeC requirements:

- High acceptance silicon tracking system
- Liquid Argon Electromagnetic Calorimeter
- Iron-Scintillator Hadronic Calorimeter
- Forward-Backward asymmetry in energy deposited hence in calorimeters geometry and technology: Si/W, Si/Cu

Detectors design:

- 14m x 9m (e.g.: CMS 21m x 15m; ATLAS 45m x 25m)
- \bullet e/ γ taggers ZDC, proton spectrometer integral to design from outset system providing tagging
 - At -62 m(e), $100m(\gamma,LR)$, -22.4m(γ,RR),+100m(n),+420m(p)


Magnets:

- Solenoid (3.5 T) + dual dipole 0.3 T
- Might be embedded into EMC Lar Cryogenic System
 - Performance and impact of dead material in EMC-HAC sections under studies

FCC-he detector requirements very similar!

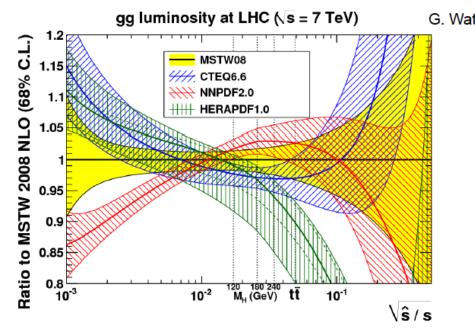
FCC-he detector layout

- Longer than LHeC in p direction (x 2 for calorimeters to contain showers)
- Same or slightly longer in electron direction (about 1.3 for 120 GeV)

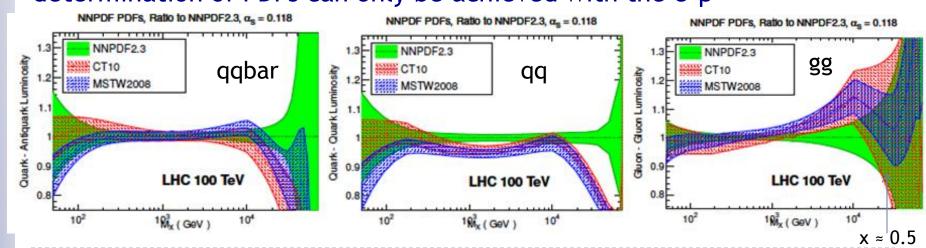
Alessandro Pollini and Peter Kostka

https://indico.cern.ch/event/282344/session/15/contribution/100/material/slides/0.pdf

Physics Highlights


- PDF fits, measurements of α_{S} and impact on higgs/BSM
- Higgs measurements (H→bbbar or ccbar, HHH couplings)
- New Physics (CI, LQ, RPV SUSY)
- EWK measurements $(\sin^2 \theta_W)$

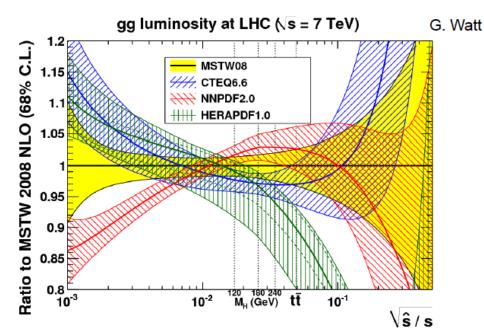
PDF fits @ 100 TeV


▶ Current status →

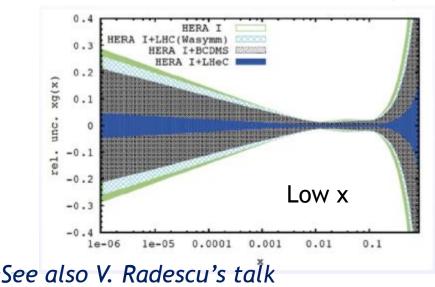
Need to know the PDFs much better than now at low and high x

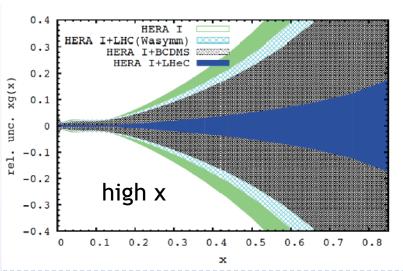
 E.g.: for QCD development, q-g dynamics, Higgs measurements and searches

The LHC will provide further constraints, but a new level of precision in determination of PDFs can only be achieved with the e-p



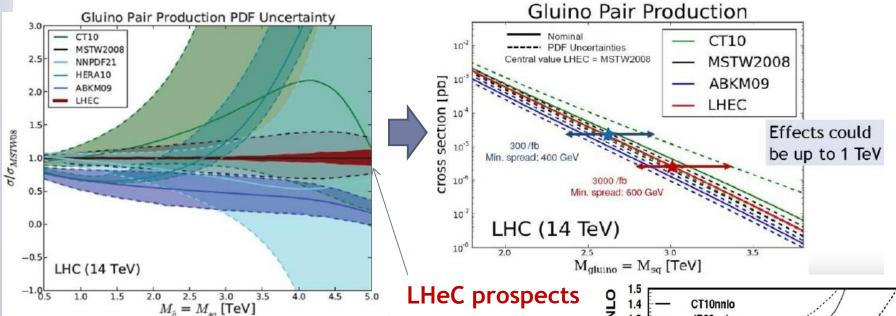
PDF fits


▶ Current status →

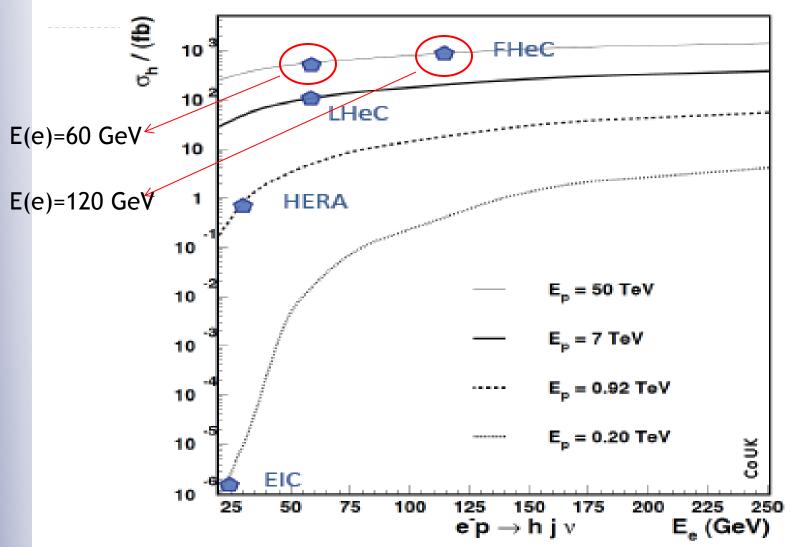

Need to know the PDFs much better than now at low and high x

 E.g.: for QCD development, q-g dynamics, Higgs measurements and searches

Example gluon PDF at the LHeC (blue band): < 5% at $x=10^{-6}$ and x=0.5



Monica D'Onofrio, DIS2014, Warsaw


Impact of high-x PDF on HL-LHC/FCC-hh

- Searches near HL-LHC / FCC-hh kinematic boundary may ultimately be limited by knowledge of PDFs (especially gluon at $x \rightarrow 1$)
 - ► Example: gluino production at HL LHC → Dependency on <u>discovery potential</u> and exclusion limits at 300 and 3000 /fb for 14 TeV c.o.m.

Similar conclusions for other non-resonant BSM signals involving high x partons (e.g. contact interactions signal in Drell Yan)

Higgs production rate: LHeC → FCC-he

Charged current ep: cross section much larger than e+e-

Higgs production rate: LHeC → FCC-he (II)

Higgs in e^-p	CC - LHeC	NC - LHeC	CC - FHeC
Polarisation	-0.8	-0.8	-0.8
Luminosity $[ab^{-1}]$	1	1	5
Cross Section [fb]	196	25	850
Decay BrFraction	N_{CC}^H	N_{NC}^{H}	N_{CC}^{H}
$H \rightarrow b\overline{b}$ 0.577	113 100	13 900	2 450 000
$H \rightarrow c\overline{c}$ 0.029	5 700	700	123 000
$H \rightarrow \tau^+ \tau^- 0.063$	12 350	1 600	270 000
$H \rightarrow \mu\mu$ 0.00022	50	5	1 000
$H \rightarrow 4l$ 0.00013	30	3	550
$H \rightarrow 2l2\nu \qquad 0.0106$	2 080	250	45 000
$H \rightarrow gg$ 0.086	16 850	2 050	365 000
$H \rightarrow WW = 0.215$	42 100	5 150	915 000
$H \rightarrow ZZ$ 0.0264	5 200	600	110 000
$H \rightarrow \gamma \gamma$ 0.00228	450	60	10 000
$H \rightarrow Z \gamma$ 0.00154	300	40	6 500

Higgs production rate: LHeC → FCC-he (III)

M_h=125 GeV polarised lepton beam

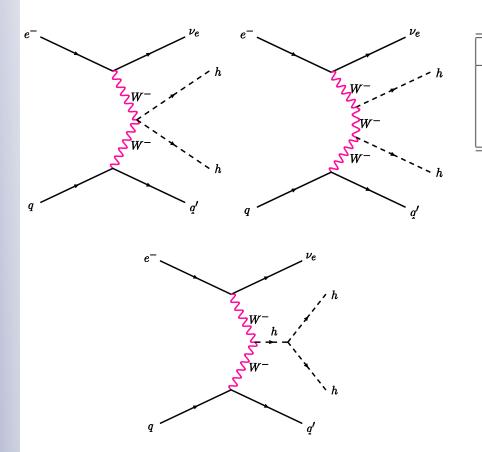
E_e=60 GeV : vs= 1.3 TeV

 E_e =60 GeV : \sqrt{s} =3.5 TeV

	CC e⁻p	CC e⁺p	NC ep	CC hh	CC e⁻p	CC e⁺p	NC ep	CC hh
cross section [fb]	109	58	20	0.01	566	380	127	0.24
polarised cross section [fb] P=-80%	196	N.A.	25	0.02	1019	N.A.	229	0.43

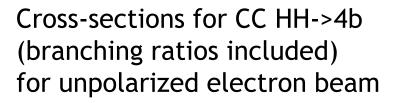
7 TeV LHC protons

50 TeV FCC protons


and

electrons from a 60 GeV energy recovery LINAC

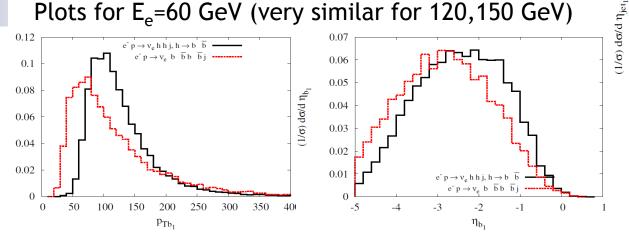
Extremely high precision measurements of Hbb Can also explore H → HH!!


Double higgs production @ 50 TeV

Electron-proton collisions offer the advantage of reduced QCD backgrounds and negligible pile-up with the possibility of using the 4b final state $(\sigma \times BR(HH \rightarrow 4b)=0.08 \text{ fb})$.

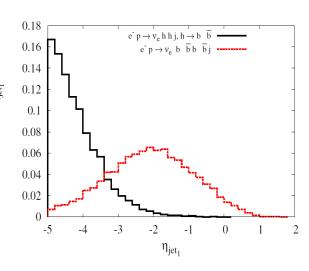
Processes	E_e (GeV)	$\sigma(\mathrm{fb})$	$\sigma_{eff}({ m fb})$
	60	0.04	0.01
$e^-p \to \nu_e hhj, h \to b\bar{b}$	120	0.10	0.024
	150	0.14	0.034

$$p_{T_{j,b}} > 20 \ GeV_{i}$$
 $E_{T} > 25 \ GeV_{i}$
 $|\eta_{j}| < 5, \ \Delta R = 0.4$



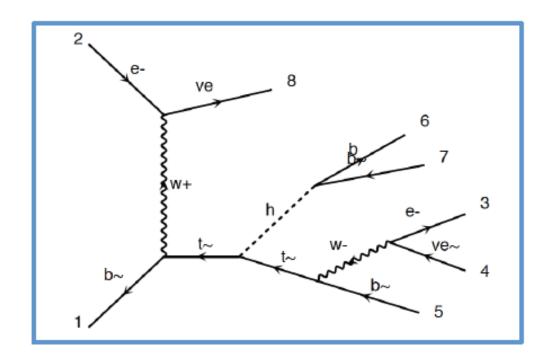
First feasibility studies

Cross-sections for CC backgrounds in fb for E_e=60, 120,150 GeV


Processes	$E_e = 60 \text{ GeV}$		$E_e = 120 \text{ GeV}$		$E_e = 150 \text{ GeV}$	
Frocesses	$\sigma(\mathrm{fb})$	$\sigma_{eff}(\mathrm{fb})$	$\sigma(\mathrm{fb})$	$\sigma_{eff}(\mathrm{fb})$	$\sigma(\mathrm{fb})$	$\sigma_{eff}(\mathrm{fb})$
$e^-p \to \nu_e b \bar{b} b \bar{b} j$	0.086	0.022	0.14	0.036	0.15	0.038
$e^-p \to \nu_e b \bar{b} c \bar{c} j$	0.12	1.7×10^{-5}	0.36	1.8×10^{-3}	0.44	2.2×10^{-3}
$e^-p \to \nu_e c\bar{c}c\bar{c}j$	0.20	1.0×10^{-6}	0.24	3.4×10^{-5}	0.31	4.3×10^{-5}
$e^-p \to \nu_e b \bar{b} j j j$	26.1	3.9×10^{-3}	54.2	0.008	67.5	0.01
$e^-p \to \nu_e c\bar{c}jjj$	29.6	9.5×10^{-5}	66.9	2.0×10^{-4}	85.4	2.7×10^{-4}
$e^-p \to \nu_e j j j j j$	823.6	4.1×10^{-5}	1986	9.9×10^{-5}	2586	1.3×10^{-4}

Plots for E_e =60 GeV (very similar for 120,150 GeV)

Despite large beam energy imbalance, b-jets are relatively central


Results assume 70% b-tagging efficiency, 0.1 (0.01) fake rates for c (light) jets

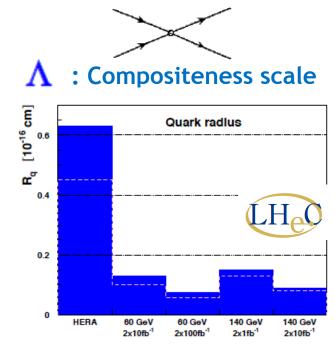
Scattered quark is more forward in signal → good discriminant!

Httbar

- Can also explore Httbar: 3bjets + W in final state!
 - ▶ Total cross section: 0.7 fb
 - Fiducial cross section: 0.2 fb, considering:
 - ▶ pT(b), pT(j)> 20 GeV
 - \rightarrow DR (j,b) > 0.4
 - Eta_jet < 5</p>
 - Eta_bjet< 3</p>

NP in inclusive DIS at high Q²

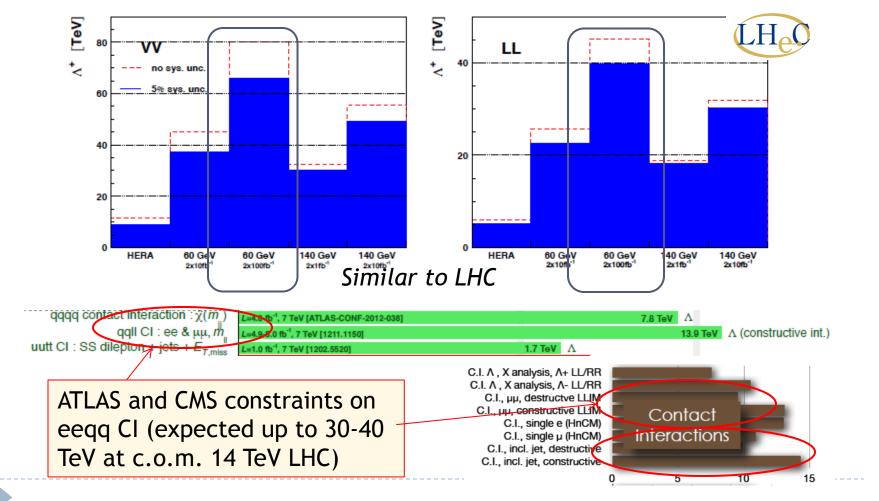
- At these small scales new phenomena not directly detectable may become observable as deviations from the SM predictions.
- A convenient tool: effective four-fermion contact interaction

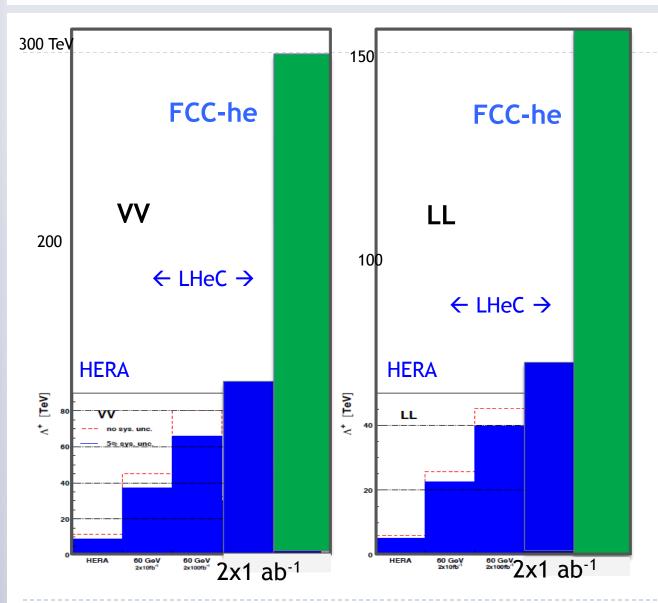

Observed as modification of the Q^2 dependence \rightarrow all information in $d\sigma/dQ^2$

Also parametrized as form factors

- Radius for composite fermions:
 - Proportional to scale

$$\begin{split} f(Q^2) &= 1 - \frac{1}{6} \left\langle r^2 \right\rangle Q^2 \;, \\ \frac{d\sigma}{dQ^2} &= \frac{d\sigma^{SM}}{dQ^2} \, f_e^2(Q^2) \end{split}$$


4-fermion interaction $\Rightarrow M_{eq \to eq} \sim \Lambda^{-2}$

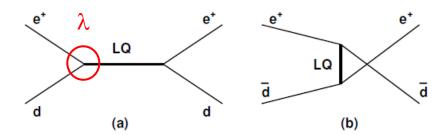

- reach well below 10-19(10-20) m (LHeC/FHeC)
- Complimentary to LHC/FCC-hh (not directly probing EWK Radius)

Contact interactions (eeqq)

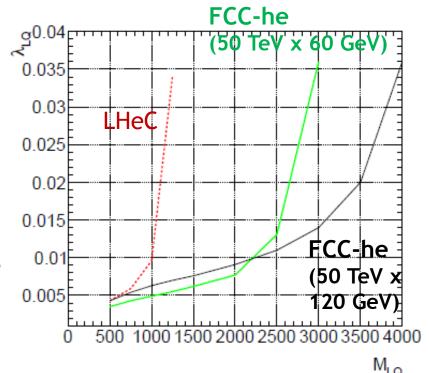
- New currents or heavy bosons may produce indirect effect via new particle exchange interfering with γ/Z fields.
- ▶ Reach for Λ (CI eeqq): 40-65 TeV with 100 fb⁻¹ of data depending on the model

Reach for CI (eeqq) at FCC-he

- Very preliminary scaling
- Reach about

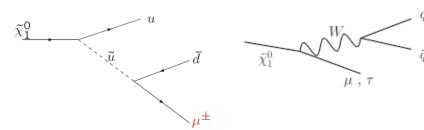

 O(100) TeV,
 expected to be
 competitive with

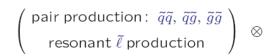
Lepto-Quark

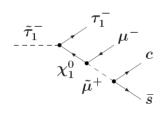

- High Q² e-p collider competitive with p-p collider for NP models where initial state lepton is an advantage
 - By providing both B and L in the initial state, ideal to study the properties of new particles with couplings to an e-q pair
 - Probe single particle prod.

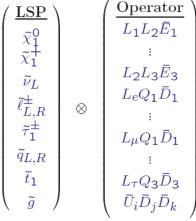
First gen. LQ

$$\sigma \approx \lambda^2 q(x)$$


- Can probe up to 4 TeV LQ at FCC-he
- If LQ are observed in p-p → in e-p can measure fermion number (red) and flavor structure (blue)




Preliminary studies in progress (G.Azuelos)
Assume 20 fb-1 for FCC)

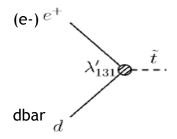

R-parity violating SUSY

- Several final states to explore:
 - LSP no longer stable
 - > 700 possibilities + bilinear couplings! Examples:

Relevant for e-p: squark production (e.g. stop): $\rightarrow \lambda_{131}$ ' couplings relevant

in e-p production, several can be explored for decays

Example for LHeC: 1107.4461.pdf


Assume decay via μ +b $\lambda'_{131} \leq 0.03$, $\lambda'_{233} \leq 0.45$

$$\lambda'_{131} \leq 0.03$$

$$\lambda'_{233} \leq 0.45$$

Sensitivity for high stop mass with 50-100 fb⁻¹

M	$\sigma(e^+p)$	exclusion $\mathcal{L}(e^+p)$	$\sigma(e^-p)$	exclusion $\mathcal{L}(e^-p)$
(GeV)	(pb)	(pb^{-1})	(pb)	(pb^{-1})
600	0.14	50.03	2.73×10^{-2}	330.43
700	6.94×10^{-2}	109.36	8.52×10^{-3}	1.69×10^{3}
800	3.10×10^{-2}	282.27	2.22×10^{-3}	1.61×10^{4}

Many more decay modes (RPV or RPC) hard at LHC/FCChh can be explored (sbottom investigated as well)

Electroweak Physics in ep [$sin^2\theta_w$]

EWK precision measurements relevant for NP

Present situation

See also C. Schwanenberger's talk

- $\sin^2 \hat{\theta}_w(m_Z) = 0.23070 \pm 0.00026$ from A_{LR} , SLD
- $\sin^2 \hat{\theta}_w(m_Z) = 0.23193 \pm 0.00029$ from $A_{FB}^{b\bar{b}}$, LEP1
 - \rightarrow 3 σ difference!
- $\sin^2 \hat{\theta}_w(m_Z) = 0.23125 \pm 0.00016$ world average
- $\sin^2 \hat{\theta}_W(m_Z) = 0.23104 \pm 0.00015$ from α , G_{μ} , m_Z and m_W

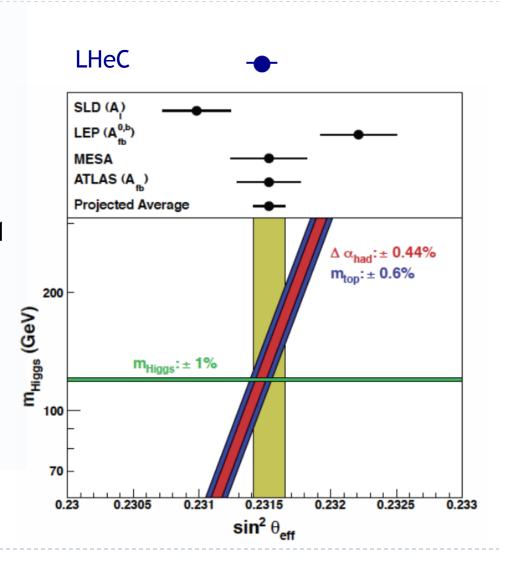
Very different implications for new physics: look at *S*, *T*, *U* parameters, e.g.,

- from $A_{LR} \rightarrow S = -0.18 \pm 0.15 \rightarrow \text{Susy}$?
- from A_{FB} → S = +0.46 ± 0.17 → heavy Higgs? KK at 1 2 TeV?
- from average → S = +0.11 ± 0.11 → new heavy doublets? KK above 3 TeV?

H. Spiesberger (Mainz)

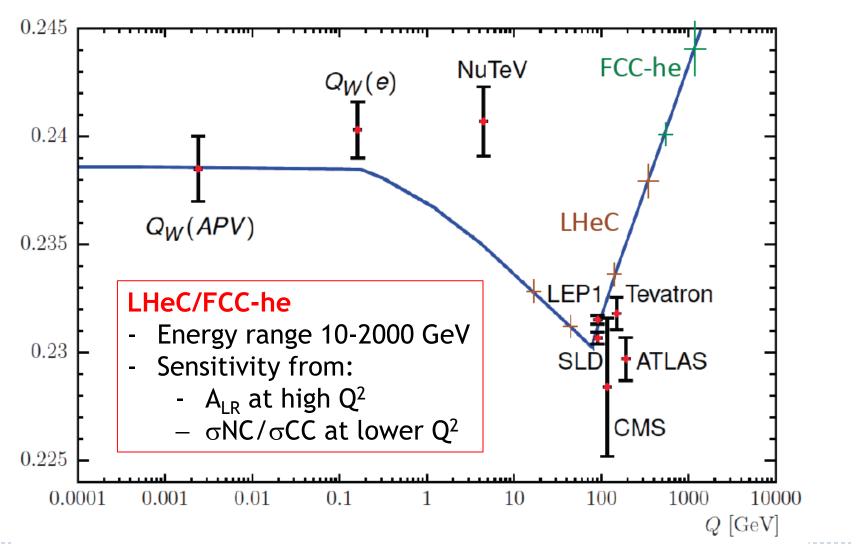
LHeC, 20. 1. 2014

Electroweak Physics in ep (II)


Polarisation Asymmetry A⁻(Q)

NC-to-CC Ratio R- for P=±0.8

Measure weak mixing angle redundantly with very high precision of about 0.0001 as a function of the scale.


 $1\% \delta M_{top}$ is about $\delta = 0.0001$

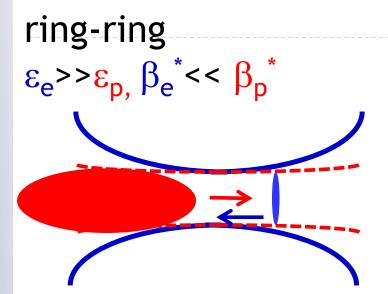
PDF uncertainty comes in at second order and ep provides very precise PDFs

Scale dependence of $sin^2\theta_w$

Preliminary sketch

Summary

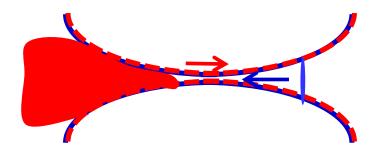
- LHeC design matured over past 6 years; CDR published in 2012 and more publications followed up
- Great physics potential, complementary to HL-LHC
 - Very exciting possibilities for Higgs measurements, competitive with pp!
- LHeC compatible with long-term strategy (FCC)
 - FCC-he: 60...175 GeV E_e x 50 TeV
 - Rich physics program under development (in parallel with consolidation studies for LHeC)
 - E.g. double higgs production


→ The FCC-he is a great opportunity for precision DIS, BMS and Higgs genuinely complementary also to FCC-hh and FCC-ee

Back-up

LHeC Higgs factory (LHeC-HF) parameters

parameter [unit]		
species	e-	p
beam energy (/nucleon) [GeV]	60	7000
bunch spacing [ns]	25	25
bunch intensity (nucleon) [10 ¹⁰]	$\textbf{0.1} \rightarrow \textbf{0.4}$	17 → 22
beam current [mA]	$\textbf{6.4} \rightarrow \textbf{25.6}$	860 → 1110
normalized rms emittance [μm]	50 → 20	$3.75 \rightarrow 2.5$
geometric rms emittance [nm]	$\textbf{0.43} \rightarrow \textbf{0.17}$	$\textbf{0.50} \rightarrow \textbf{0.34}$
IP beta function $\beta_{x,y}^*$ [m]	$\textbf{0.12} \rightarrow \textbf{0.10}$	$\textbf{0.10} \rightarrow \textbf{0.05}$
IP rms spot size [μm]	7.2 → 4.1	7.2 → 4.1
lepton D & hadron ξ	6 → 23	$0.0001 \rightarrow 0.0004$
hourglass reduction factor H_{hg}	0.91	→ 0.70
pinch enhancement factor H_D	1.	35
luminosity / nucleon [10 ³³ cm ⁻¹ s ⁻¹]	1.3	→ 16

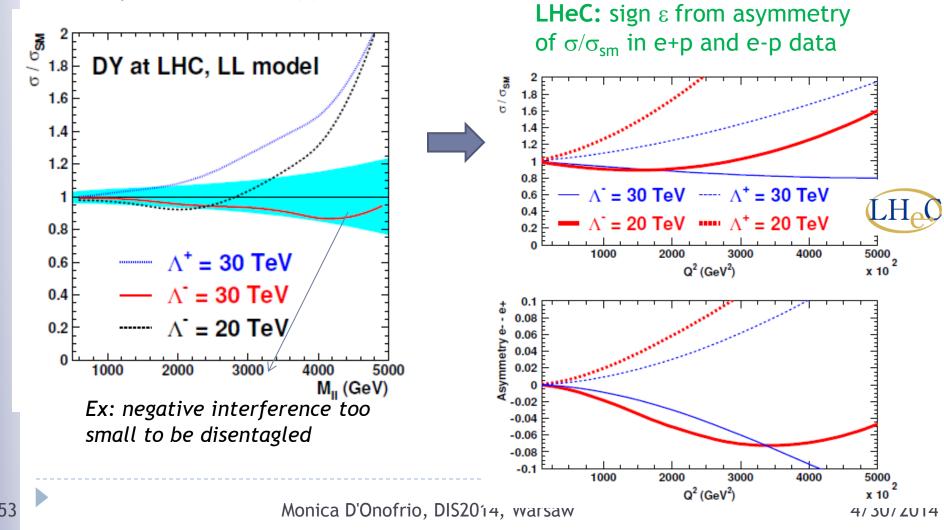

Electron possibilities

minimum e⁻ beta function and beam sizes limited by hourglass effect; small crossing angle acceptable; little disruption

ring-linac

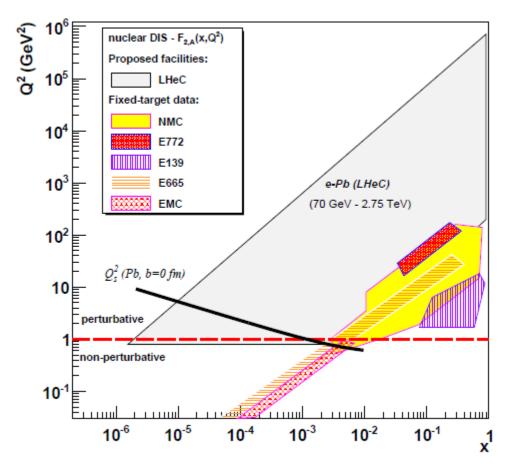
$$\varepsilon_e \approx \varepsilon_p$$
, $\beta_e^* \approx \beta_p^*$

much smaller e emittance smaller beta function and beam sizes possible; head-on collision required; significant disruption


hourglass reduction factor

$$H_{hg} = \frac{\sqrt{\pi}ze^{z^2} \mathrm{erfC}(z)}{S}$$
; $z \equiv 2 \frac{(\beta_e^*/\sigma_{z;p})(\varepsilon_e/\varepsilon_p)}{S}$ \$; $S \equiv \sqrt{1 + \frac{\sigma_{z,p}^2 \theta_c^2}{8\sigma^{*2}}}$

CI at LHC and LHeC

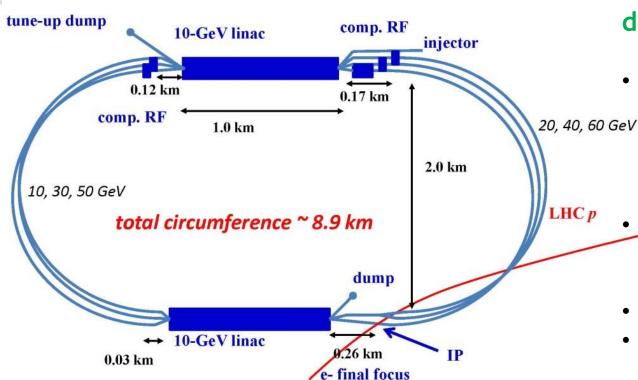

LHC: Variation of DY cross section for CI model

Cannot determine simultaneously Λ and sign of interference of the new amplitudes wrt SM (ϵ)

LHeC as electron-Ion Collider

- Four orders of magnitude increase in kinematic range over previous DIS experiments
 - → will change QCD view of the structure of nuclear matter

Study interactions of densely packed but weakly decoupled partons

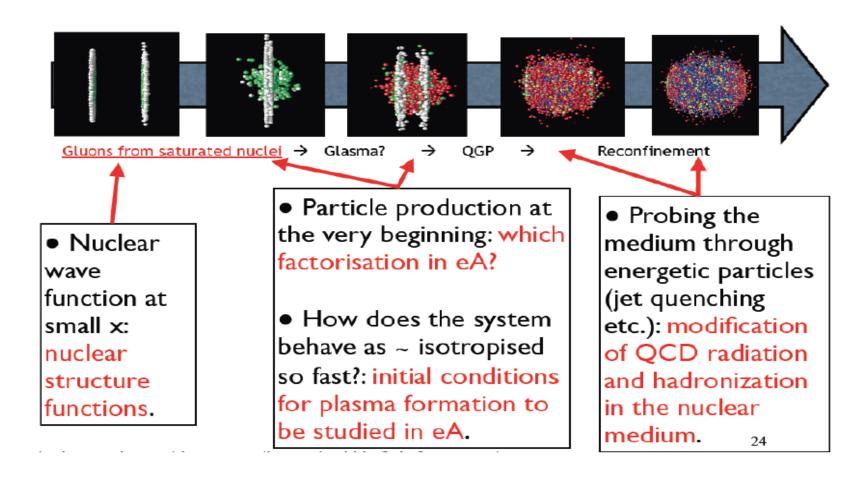

Precision QCD study of parton dynamics in nuclei

May lead to genuine surprises:

- no saturation of $xg(x,Q^2)$,
- broken isospin invariance
- ...

Energy Recovery Linac

- ▶ Power consumption < 100 MW, **E(ele)=60 GeV** (design constraints)
- Two 10 GeV Linacs; 3 returns, 20 MV/m
- Energy recovery in same structures
- ▶ 60 GeV e-'s collide w. LHC protons/ions


Test Facility under design

- Development of SuperConducting RF technology at CERN (Approved November 2013)
- Operation and experience with S.C. energy recovery linac
- Quench tests of magnets
- Possible e/γ experiments

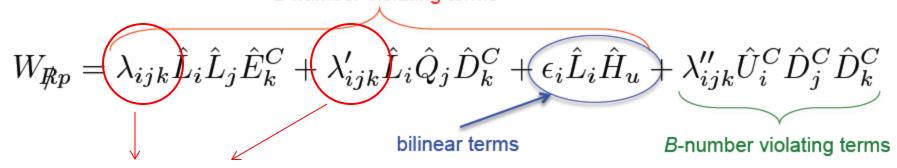
More in O. Brunig and F. Zimmerman talks on Friday

e-lon physics

- Rich program, e.g. for Nuclear Parton density determination
 - More in B.Cole talk on tomorrow

Key parameters of the FCC-he

collider parameters	<i>e</i> ⁺ scenarios)S	protons
species	e [±]	e [±]	e ±	p
beam energy [GeV]	60	120	250	50000
bunch spacing [µs]	0.125	2	33	0.125 to 33
bunch intensity [10 ¹¹]	3.8	3.7	3.3	3.0
beam current [mA]	477	29.8	1.6	384 (max)
rms bunch length [cm]	0.25	0.21	0.18	2
rms emittance [nm]	6.0, 3.0	7.5, 3.75	4, 2	0.06, 0.03
$\beta_{x,y}$ *[mm]	5.0, 2.5	4.0, 2.0	9.3, 4.5	500, 250
σ _{x,y} * [μm]	5.5, 2.7			
beam-b. parameter ξ	0.13	0.050	0.056	0.017
hourglass reduction	0.42	0.36	0.68	
CM energy [TeV]	3.5	4.9	7.1	
luminosity[10 ³⁴ cm ⁻² s ⁻¹]	21	1.2	0.07	


R-parity violating SUSY

Squarks in RPV models could be an example of 'Leptoquarks'

R-parity = $(-1)^{3(B-L)+2s}$ (R = 1 for SM particles, -1 for MSSM partners)

If not conserved (RPV) → different terms, couplings constraint by proton decay

L-number violating terms

 Δ L =1, 9 λ couplings, 27 λ ' couplings Plethora of new couplings, only partially constraints (m/100 GeV)

	$\lambda_{ijk}L_iL_j\bar{E}_k$	$\lambda'_{1jk}L_1Q_j\bar{D}_k$	$\lambda'_{2jk}L_2Q_j\bar{D}_k$	$\lambda'_{3jk}L_3Q_j\bar{D}_k$
weakest	0.07	0.28	0.56	0.52
strongest	0.05	5. · 10 ⁻⁴	0.06	0.11

Various strong constraints from LHC on Lambda and Lambda" (from multilepton and multijet searches)