

LHeC Ring-Ring

early stage : all rather preliminary !

- LHeC: LHC Proton-Ion Ring + Electron Ring (or Linac, see next talk)
- Introduction baseline assumptions
- Layout Bypass Tunnels
- Power considerations
- Injectors
 - re-using LEP injectors ?
 - alternatives LINAC and scaled ELFE @ CERN

based on

original plans : E. Keil, "LHC ep option," LHC-Project-Report-093 March 1997 more recently : J. B. Dainton, M.Klein, P. Newman, E.Perez, and F. Willeke, hep-ex/0603016 here mostly : discussions and material from my CERN colleagues and in particular Oliver Brüning, John Jowett, Kurt Hübner, John Andrew Osborne, Brennan Goddard, Volker Mertens, Trevor Linnecar, Hans Braun, Werner Herr

LHeC : existing LHC 7 TeV Proton and Ion Ring + new ~ 50 - 70 GeV Electron Ring or Linac - see next talk for ~ TeV collisions in c.m.s Ring-Ring : starting point and baseline

Original plan : electron storage ring - could become an energy recovery ring

Here mostly : looking at layout, integration, simple estimates and scaling with in particular bypasses around ATLAS / CMS

idea : allow to run the LHC and LHeC as much as possible in parallel install LHeC without need for very long LHC shutdown

tunneling speed about 10 m / week : 250 m tunnel pieces in 1/2 y shutdown

Layout LHeC

	Point 1 ATLAS	Point 5 CMS	Point 2 and/or 8 RF	Point 3 Collimators	Point 7 Collimators	
Туре	Bypass Experiment	Bypass Experiment	Bypass ; allow for space for e - ring RF	Bypass Collimation	Bypass Collimation	
Approximate Tunnel length	500 m	500 m	500 m	500 m	500 m	2500 m - 3000 m
Diameter	4.40 m	3.80 m	5.50 m	4.20 m	3.80 m	
Distance to p- Ring axis	10 - 13 m	10 - 13 m				

based on layout and integration considerations, very prelim.

from J.A. Osborne CERN/TS

7

well known starting point :

LEP with its FODO lattice, matching the tunnel and LHC layout.

basic LEP numbers :

73 % of circumference in arcs, 88 % of arcs with dipoles

79 m long cells ; bending angle of half cell 11.30640 mrad

from 3 × 11.55 m long dipoles

dipole bending radius $\varrho = 3096.175 \text{ m}$

31 cells per octant; in total $8 \times 31 = 244$ cells

Needed ?

- **Maybe** : for abort or rather ion-instability cleaning gap
- same C allows synchronisation with p-abort gap and fixed bunch pairing for collisions
- otherwise : packman bunch effects, mixed pairing with increased heating of pbeam, ---> beam-beam simulations to be more quantitative

Possible ?

Yes : a bypass adds little in circumference
 the 10 m bypass shown later adds only Δ = 0.42 m in C, can be compensated
 by decrease in e-ring radius of Δ/4π = 6.7 cm

Bypass Layout Study - based on LEP lattice - no extra bends

schematic layout Dainton / Willeke et al.

LEP lattice

						2	2 m
Point	θ	$\Delta \theta$	Δs IP5, m] 10	F	HARD	**************************************
QD24.L5	0.1100390391	0.0113064017	677.879431			×	
QF23.L5	0.09873263743	0.0113064017	638.379431			1	
QD22.L5	0.08742623577	0.0113064017	598.879431	5	_		0 m
QF21.L5	0.07611983411	0.0113064017	559.379431		7		
QD20.L5	0.06481343245	0.0113064017	519.879431				l I
QF19.L5	0.0535070308	0.0113064017	480.379431		33		l I
QL18.L5	0.04220062914	0.0113064017	440.479431	0		₩ ##1111₩1811- \1.11	8+++8+-+++
QL17.L5	0.03843462774	0.0037660014	408.049431				
2L16.L5	0.03089842621	0.0075362015	380.979431		01.18		
)L15.L5	0.02336222468	0.0075362015	353.909431	5			
QL14.L5	0.01582602315	0.0075362015	326.839431		1		
QL13.L5	0.008289821623	0.0075362015	299.769431		J		
QL12.L5	0.0007536200942	0.0075362015	272.699431		*		
QL11.L5	0.0	0.0007536201	245.629431	-10	F *		
				1	*	1	

-600

-400

-200

0

200

400

600

Compact **Bypass with extra bends**

using standard LEP bends, $\varrho = 3026$ m, we would need $\alpha = 57$ mrad to get $\Delta = 10$ m separation by 4 x 176 m of bends. This would add 3.6% in the total energy loss. In absolute, the loss in such a bypass is 1.8 MW at 70 GeV for 70 mA beam current.

With 2x stronger bends in bypass : 4 x 124.5 m long bends, adding 5.1% in power

 $f_{rev} = 11245.5 \text{ Hz} \quad \text{given by LHC circumference} \qquad \#\text{bun} = 2800$ high collision frequency f = #bun × frev = 31.5 MHz and high beam currentbeam current I = n e f $e = 1.60218 \times 10^{-19} \text{ As}$ Ring $: \text{loss in SynRad } U_0 = C_\gamma E^4 / \rho \ \rho = 2997 \text{ m}$ LEP had $\rho_{eff} = 3026.42 \text{ m}$ LINAC : beam power P = V I

machine	N / bun	#bun	Ntot / beam	I beam	V [GV]	P _{acc} = V I [MW]	U0 [GeV]	Psyn [MW]	
LEP 2	4.16E+11	4	1.67E+12	4×0.75 mA	100	300	2.923	8.77	
LHeC, ring-e	1.40E+10	2800	3.92E+13	70.63 mA	70	4944	0.7087	50.05	ultimate
					* 50	3531	0.184	13.0	LHeC 1

power needed in case of direct Linac, several GigaWatt

Luminosity: Ring-Ring

I ICHALY LOLA, LLICO, WAA MICH, OLIVIN JU. I LOU

 $\varepsilon_{pn} = 3.8 \mu m$ $N_p = 1.7 \cdot 10^{11}$ $\sigma_{p(x,y)} = \sigma_{e(x,y)}$ $\beta_{px} = 1.8 m$ $\beta_{py} = 0.5 m$

$$I_e = 0.35 mA \cdot \frac{P}{MW} \cdot \left(\frac{100 GeV}{E_e}\right)^4$$

10³³ can be reached in RR $E_e = 40-80 \text{ GeV } \& P = 5-60 \text{ MW}.$

HERA was 1-4 10^{31} cm⁻² s⁻¹ huge gain with SLHC p beam

F.Willeke in hep-ex/0603016: Design of interaction region for 10^{33} : 50 MW, 70 GeV

May reach 10³⁴ with ERL in bypasses, or/and reduce power. R&D performed at BNL/eRHIC

what we had, with electron energy range and what is left

- LIL 600 MeV ; gone ; replaced by CLIC
- PS 0.6 3.5 GeV ; nothing left for e-acceleration old machine not very reasonable to re-upgrade for leptons
- SPS 3.5 22 GeV ; 8 MV 200 MHz TW cavities not ok for leptons ; had extra cavities for leptons, removed for impedance reduction ; Impedance issue - no increase wanted ! rather needs further reduction for LHC ultimate

LEP injectors were all removed.

Rebuilding them is not really an option.

Parts and components could be re-used in new injectors

(kickers, parts and components of transfer lines)

basic parameters :

about 20 GeV injection energy

be able to fill reasonably fast - say within 10 min low intensity 1.4×10¹⁰ / bunch – could do without accumulation

many (2800) bunches, 25 ns spacing, total intensity 3.92×10¹³ electrons

injection scheduling :
analog to protons (3 - 4 batches of nominally 72 bunches)

e+ and e- : no principle problem - needs extra e+ source and possibility to change polarities

- low energy Linac, e- and e+ conversion (@ 0.2 0.5 GeV), EPA like e+ acc. ring accelerate with synchrotron; same principle as we had of LEP
- what about 20 GeV Linac based on CLIC ? <u>clictable2007.html</u>
 high gradient 100 MV/m in 85% of LINAC ; L = 235 m to reach 20 GeV
 N = 3.72c0 / burn k = 312 burn/train + Lines repetition rate of 50 Hz + 5.83c13 Els

N = 3.72e9 / bun; k = 312 bun/train ; Linac repetition rate of 50 Hz : 5.83e13 Elec/ sec. Significant overhead for drive beam generation - probably not very economic for a relatively short LINAC

- 20 GeV SC Linac, inspired by ILC gradient 31.5 MV/m (ILC BCD) in 85% of LINAC : L = 747 m N = 2e10 / bun, k = 2820 bun /train ; repetition rate of 5 Hz : 2.82e14 Elec/secs modify to match LHC batch structure
- or \rightarrow

ELFE @ CERN

Table 1: ELFE performance parameters.

Top energy	25 GeV
Beam current on target	$100 \ \mu A$
Beam power on target	2.5 MW
Injection energy	0.8 GeV
Number of passes	7
Energy gain per pass	3.5 GeV
Relative r.m.s. momentum spread at top energy	$\leq 10^{-3}$
Emittance at top energy	$\leq 30 \text{ nm}$
Bunch repetition time on target	2.8 ns

Table 2: Estimated capital expenditure for the construction of ELFE at CERN.

System	MCHF	MCHF	MCHF
Injection	20.400		
RF system	10.868		
Cryogenics	63.000		
Magnets	55.209		
Vacuum	19.410		
Beam diagnostics	9.400		
Power converters	11.165		
Control system	10.000		
Accelerator components		199.452	
Electrical power distribution	29.031		
Civil engineering	109.700		
Experimental hall(s)	31.200		
Cooling, ventilation, etc.	25.773		
Access control, etc.	2.050		
Conventional construction		197.414	
Total			397.206

with LEP RF for free

ELFE@CERN

- $f_{rf} = 352 \text{ MHz}, \text{ gradient } 8 \text{ MV} / \text{m}$
- V_{rf} = 3.5 GV, 72 rf-modules
- 7 passes (last at 21.5 GeV)
- L = 3924 m of which Linac 1081 m
- **e** = 56.9 m

LHeC injector

 $f_{\rm rf} \sim 1 \ GHz, \ gradient \ 31.5 \ MV/m$

Linac L = 150 m 7× shorter

 $V_{rf} = 4 \text{ GV}, 5 \text{ passes}; \text{last 16 GeV}$

 $\varrho = (16/21.5)^{4} \times 56.9 \text{ m} = 17.5 \text{ m}$

or 3.3× shorter

significantly downscaled $L \approx 600 \text{ m}$

and simplified (5 passes) version of ELFE@CERN

more cost effective (?) than single LINAC

+ extra phys. potential

p-Ring - e-Ring (both storage rings) as baseline option proven technology -- no fundamental problems expected

issues : mostly layout - integration

- cost and time effective bypass design
 - -- with possible synergy with energy recovery rings
- RF and injectors

Backup Slides

LEP: 352 MHz RF system

At one point:

- 10 SC modules on each side of IP.
 1 module contains 4 cavities
 Each klystron (1.3 MW) drives 8 cavities (2 modules)
- 80 cavities in 20 modules, 10 klystrons at one point. Nb/Cu cavities, 7.5 MV/m average finally ~12 MV /cavity, 960 MV total / point
- One point filled with RF, energy ~75 GeV
- Dynamic cryogenic (4.5K) losses 133 W / cavity @ 7.5 MV/m 12 KW cryogenic plant per point (18 kW finally in LEP but other uses)
- 1 HV power convertor (100 KV / 40 A) for 2 klystrons (65% efficiency).
 ~25 MVA total
- Availability
 No klystrons left
 SC modules stored (state and quantity to be confirmed)
 HV convertors LHC proton RF
- Space

10 modules @ 12 m on each side Total tunnel length 250 m, *fully occupied* Module diameter ~ 80 cm (plus bits sticking out)

Klystron galleries *fully occupied* 5 x 1.3 MW RF power / wave-guides / control racks (50) / water cooling units / HV bunkers (3) Personnel access possible in LEP, not true with 7 TeV protons (electronics in control racks?)

SPS:

• Injection into LHC at 22 GeV (20)

Email from Oliver Brüning, April 2008, on potential collaborators:

General machine design and beam dynamics (lattice and magnets): DESY PSI EPFL BNL FERMILAB SLAC John Adams Institute (Ted Wilson) JAI Royal Holloway Crockcroft From Louis Rinofli I got the following list of interested collaborators for the source development:

- i. Polarized electron source design
- 1. JLAB (M. Polker), Mainz (K. Aulenbacher)
- 2. LOA (V. Malka), RAL (G. Hirst)
- 3. LAL (R. Roux), CEA (F. Orsini)
- ii. Unpolarized positron source design
- 1. LAL (A. Variola)
- 2. LNF (M. Ferrario), CEA (F. Orsini)
- 3. Cockcroft Institute (I. Bailey), SLAC (J. Sheppard)
- 4. LAL (A. Variola), IPNL (R. Chehab)
- iii. Polarized positron source design
- 1. LAL (R. Roux), DESY (S. Schriber)
- 2. LOA (V. Malka), RAL (G. Hirst)
- 3. LNF (M. Ferrario), CEA (F. Orsini)
- 4. KEK (Omori) Ukraine (E. Bulyak)
- 5. LAL (F. Zomer), KEK (J. Urakawa)
- 6. Cockcroft Institute (I. Bailey), SLAC (J. Sheppard)
- 7. LAL (A. Variola), IN2P3 (R. Chehab)

Concerning the polarized positron, we have the POSIPOL group including CERN, LAL, KEK, Hiroshima University, BNL, ANL, SLAC, DESY, Ukraine University, Cockcroft, etc...

The POSIPOL group could be contacted and informed about such proposal.