The LHeC project

INT workshop - Science case for an EIC Seattle, WA, November 18, 2010 Olaf Behnke (DESY)

..Logo from the ongoing logo contest..

1

Need for LHeC

- 27.5 GeV x 920 GeV ep HERA
- with integrated L~0.5 fb⁻¹ was a
- high precision machine for QCD
- modest precision machine for electroweak physics

Where could we go with a 20-150 GeV x 7 TeV e[±]p, also eA collider

with integrated L~1-100 fb⁻¹ ?

Lepton proton scattering experiments

LHeC Accelerator options

 $L = \frac{N_p \gamma}{4\pi e \varepsilon_{pn}} \cdot \frac{I_e}{\sqrt{\beta_{px} \beta_{py}}}$ $N_p = 1.7 \cdot 10^{11}, \varepsilon_p = 3.8 \mu m, \beta_{px(y)} = 1.8(0.5)m, \gamma = \frac{E_p}{M_p}$ $L = 8.2 \cdot 10^{32} cm^{-2} s^{-1} \cdot \frac{N_p 10^{-11}}{1.7} \cdot \frac{m}{\sqrt{\beta_{px} \beta_{py}}} \cdot \frac{I_e}{50mA}$ $I_e = 0.35mA \cdot P[MW] \cdot (100 / E_e[GeV])^4$

Ring-Ring

Power Limit of 100 MW wall plug "ultimate" LHC proton beam 60 GeV e[±] beam

$$\rightarrow$$
L = 2 10³³ cm⁻²s⁻¹ \rightarrow O(100) fb⁻¹

LHeC Accelerator options

$$\begin{split} L &= \frac{1}{4\pi} \cdot \frac{N_p}{\varepsilon_p} \cdot \frac{1}{\beta^*} \cdot \gamma \cdot \frac{I_e}{e} \\ N_p &= 1.7 \cdot 10^{11}, \varepsilon_p = 3.8 \,\mu m, \beta^* = 0.2m, \gamma = 7000/0.94 \\ L &= 8 \cdot 10^{31} cm^{-2} s^{-1} \cdot \frac{N_p 10^{-11}}{1.7} \cdot \frac{0.2}{\beta^*/m} \cdot \frac{I_e/mA}{1} \\ I_e &= mA \frac{P/MW}{E_e/GeV} \end{split}$$

LINAC Ring

60 GeV "Circus Maximus" with Energy recovery: $P=P_0/(1-\eta)$ $\beta^*=0.1m$ $L = 10^{33} \text{ cm}^{-2}\text{s}^{-1} \rightarrow O(100) \text{ fb}^{-1}$ 140 GeV LINAC few times 10^{32}

1. Inclusive NC & CC DIS: simulated Default Scenarios

	http://hep.ph.liv.ac.uk/~mklein/simdis09/Ihecsim.Dmp.CC, readfirst							Max Klein, LH			
config.	E(e)	E(N)	N	$\int L(e^+)$	∫L(e ⁻)	Pol L/10 ³² P/MV			V years type		
A	20	7	р	1	1	-	1	10	1	SPL	
В	50	7	p	50	50	0.4	25	30	2	RR hiQ ²	
С	50	7	p	1	1	0.4	1	30	1	RR lo x	
D	100	7	р	5	10	0.9	2.5	40	2	LR	
Е	150	7	р	3	6	0.9	1.8	40	2	LR	
F	50	3.5	D	1	1		0.5	30	1	eD	
G	50	2.7	Pb	0.1	0.1	0.4	0.1	30	1	ePb	
Н	50	1	р		1		25	30	1	lowEp	

Max Klain 1 Hac

The Detector 'that should do it': - Low Lumi (Low Q²) Setup

- Solenoid surrounding the HAC modules
- -Outer detectors (HAC tailcatcher/muon detectors not shown)

to be discussed: very forward detector setup (proton taggers)

Pseudodata: Neutral Current Event Rates

Photon and Z exchanges are 1:1

11

Charge Asymmetry $xF_3^{\gamma Z}$

Get handle on valence quarks down to x~0.001

Parity violating polarisation asymmetries (for 60 GeV and 140 GeV lepton beams)

$$A^{\pm} = \frac{2}{P_R - P_L} \cdot \frac{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}{\sigma^{\pm}(P_R) + \sigma^{\pm}(P_L)}$$
$$A^{\pm} \simeq \mp k a_e \frac{F_2^{\gamma Z}}{F_2}$$

SLAC 1978 13

Pseudodata: Charged Current Event Rates

14

CC - events

Charged Currents

Strange =? Anti-strange quark density

 $\overline{\nu}_{e}$

How well do we know PDFs today? gg parton luminosities

Agree in region relevant for Higgs at LHC, but diverge towards smaller/largest shat

Proton PDF fit at LHeC Claire Gwenlan

» <u>only</u> PDF parameters free (LHeC NC and CC e[±]p included)

Large improvements, model and parameterisation uncertainties to be studied

 $Q^2 = 100 \text{ GeV}^2$

Sea quark uncertainties and usual constraint ubar=dbar for $x \rightarrow 0$

Further PDF improvements at LHeC with ep + eD

(13) There are five color-singlet combinations of the deuteron wavefunction in QCD, only one of which is the standard proton-neutron state. The "hidden color" [13] components will lead to high multiplicity final states in deep inelastic electron-deuteron scattering.

crucial constraint on evolution (S-NS), improved

Plenary ECFA, LHeC, Max α_s Klein, CERN 30.11.2007

In eA at the collider, test Gribovs relation between shadowing and diffraction, control nuclear effects at low Bjorken x to high accuracy

Strong Coupling Constant from inclusive DIS

(sensitivity mainly from dF2/dln(Q2)

Improve at LHeC to ~ permille precision level

2. High pt Jets

Measure change in slope at top threshold

Reach scales up to $2m_{top}$ where change of $1/\alpha_s$ slope is expected

NNLO THEORY (T. Gehrmann et al.)

- > NNLO calculations are ongoing. Matrix elements are either
 - already derived (NLO corrections to 3-jet production in DIS, Z. Nagy, NLOJET++) or
 - Contained in work by Gehrmann/Glover (for the two-loop 2-parton final state).
- > Required: subtraction method!

PLB676(2009)146

Currently implementing method into program for DIS jet production.

Thomas Schoerner-Sadenius | Jets @ LHeC | 12/13 November 2010 | Seite 38

Will reduce significantly theory (higher order) uncertainty for α_s extraction from jet data

Subtle topic: correct treatment of heavy flavour masses in pQCD

Sea quark like c,b

How to make properly the transition from left to right picture is a longstanding problem for PDF fits

Charm in DIS: test intrinsic charm in p

28

Beauty in DIS: \rightarrow determine b-density in proton

LHeC total cross sections (MC simulated)

TOP QUARK

3. Entering the mysterious world of low x physics

Low-x Physics and Non-linear Evolution

 Somewhere & somehow, the low x growth of cross sections must be tamed to satisfy unitarity ... non-linear effects

 Usually characterised in terms of an x dependent "saturation scale", Q²_s(x), to be determined experimentally

Going beyond HERA with Inclusive LHeC Data

Enhance target `blackness' by:

1) Probing lower x at fixed Q^2 in ep

2) Increasing target matter in eA ... target density ~ $A^{1/3}$ ~ 6 for Pb

Saturation region reach: LHeC vs EIC

NON DGLAP Hints from HERA

- Tension in data at small x and Q^2 when introduced in a global fit (NNPDF2.0).
- Deviation incompatible with NNLO → resummation or non-linear effects.

Forte,Rojo

Fitting for the Gluon with LHeC F_2 and F_L (Gufanti, Rojo ...)

Including LHeC data in NNPDF DGLAP fit approach ...

... sizeable improvement in error on low x gluon when both LHeC F_2 & F_L data are included.

... but would DGLAP fits fail if non-linear effects present? ³⁷

Can Parton Saturation be Established @ LHeC?

Simulated LHeC F_2 and F_L data based on a dipole model containing low x saturation (FS04-sat)...

... NNPDF (also HERA framework) DGLAP QCD fits cannot accommodate saturation effects if F_2 and F_L both fitted

Conclusion: clearly establishing non-linear effects needs a minimum of 2 observables ... next try F_2^c in place of F_L ...

eA: Impact of LHeC data on nuclear parton densities Global NLO fit with LHeC pseudodata [from N. Armesto] included

39

Many other reasons for eA (Ullrich)

As well as identifying non-linear dynamics, measuring nuclear effects in DIS will tell us lots about heavy ions / q-g plamsa:... "Symbiotic Relationship between eA and AA" ...

- Initial Conditions (saturation/CGC?)
 - impact on understanding of QGP properties (e.g. η/s)
- Thermalization (Glasma)
- Energy Loss (baseline/control) & Fragmentation
- Saturation & Multiplicity
- Understanding nuclear effects ((anti)-shadowing, EMC) 40

Elastic Vector meson production in ep scattering

Dedicated Low x Linac-Ring Scenario

Dream scenario!!!

 J/ψ photoproduction double differentially in W and t, E_e =150 GeV 1° acceptance

Probing x ~ 3.10^{-6} at eff Q² ~ 2.5 GeV^2

c.f. GB-W model $x_s \sim 7.10^{-6}$ at Q² ~ 2.5 GeV²

J/Ψ as Probe of Gluon in Nuclei (Kowalski)

- Coherent ($\gamma A \rightarrow J/\Psi A$) and incoherent ($\gamma A \rightarrow J/\Psi A$ 'nnp...) can both be studied.
- Coherent is the easier to interpret ... Fourier transform of the nucleus ... gluonic nuclear density / radius
- Incoherent gives info on
 2-body correlations /
 interactions within nuclei
- To separate, need good forward proton and (especially) neutron detection

Inclusive Diffraction

Additional variables ...

- x_{IP} = fractional momentum
 loss of proton
 (momentum fraction IP/p)
- **b** = x / x_{IP} (momentum fraction q / IP)

- \rightarrow Further sensitivity to saturation phenomena
- \rightarrow Diffractive parton densities in much increased range
- \rightarrow Sensitivity to rapidity gap survival issues
- Can relate ep diffraction to eA shadowing
 ... Link between ep and eA for interpreting inclusive data

Signatures and Selection Methods at HERA

Worked well: The methods have very different systs! What is possible at LHeC?...

New region of Diffractive Masses No alternative to proton spectrometer to select high M_x

- `Proper' QCD (e.g. large E_T) with jets and charm accessible
- New diffractive channels ... beauty, W / Z / H(?) bosons
- Unfold quantum numbers / precisely measure new 1-46states

4. SM electroweak and new physics at the high energy frontier

Light quark couplings to ZSM Higgs production

Leptoquarks + many other possibilities, e.g. excited leptons, anomalous single top production, etc.

Fermion couplings to Z boson

Higgs production at LHeC

New physics example Leptoquarks: determine quantum Numbers at LHeC

Scalar LQ, λ =0.1, single production gd LHeC, $e^+ d$ (E_e = 70 GeV) 10 ³ LHeC, $e^{\overline{d}}$ (E_e = 70 GeV) р 10 ² LHeC, $e^+ d$ (E_e = 140 GeV) ······ LHeC, $e^{\overline{d}}$ (E = 140 GeV) 10 JINST 1 2006 P10001 10 10 10 10 LHC, đìg _HC. d q 10 400 600 800 1000 1200 1400 1600 LQ Mass (GeV)

e-p vs e+p asymmetries at LHeC will reveal the Fermion number F

F=0

Single LQ production at LHC

Summary

The LHeC has potential to completely unfold the partonic content of the proton: u,d, c,s, t,b for the first time and in an unprecedent kinematic range. This is based on inclusive NC, CC cross sections complemented by heavy quark identification.

Puzzles as u/d at large x or a strange-antistrange asymmetry will be solved.

Precision measurements are possible of xg (up to large x) and the beauty density which are of particular relevance for the LHC. The (almost) whole p structure which the LHC assumes to know will become accurately known.

Determine α_s with permille level precision

Wealth of QCD tests with final states (not much discussed in this talk : Jets (study also photon structure), heavy flavours, prompt photons, other identified particles

Low x and diffractive physics with ep and eA: Measuring multiple observables (F2, FI, F2c, F2D, Vector mesons...) in ep and eA can lead to a microscopic understanding of non-linear evolution, unitarity constraints and parton saturation

Electroweak and new physics

- Light quark couplings to Z at ~1% level
- SM Higgs production for H-> bb coupling
- New physics: Leptoquarks and quantum numbers, quark radius, leptons* and more!

Backup slides

 $\sigma_{r,NC} = \frac{d^2 \sigma_{NC}}{dx dQ^2} \cdot \frac{Q^4 x}{2\pi \alpha^2 Y_+} = \mathbf{F_2} + \frac{Y_-}{Y_+} \mathbf{x} \mathbf{F_3} - \frac{y^2}{Y_-} \mathbf{F_L}$

 $\mathbf{F}_{2}^{\pm} = F_{2} + \kappa_{Z}(-v_{e} \mp Pa_{e}) \cdot F_{2}^{\gamma Z} + \kappa_{Z}^{2}(v_{e}^{2} + a_{e}^{2} \pm 2Pv_{e}a_{e}) \cdot F_{2}^{Z}$ $\mathbf{x}\mathbf{F}_{3}^{\pm} = \kappa_{Z}(\pm a_{e} + Pv_{e}) \cdot xF_{3}^{\gamma Z} + \kappa_{Z}^{2}(\mp 2v_{e}a_{e} - P(v_{e}^{2} + a_{e}^{2})) \cdot xF_{3}^{Z}$

γ**,** Ζ

p

 $(F_2, F_2^{\gamma Z}, F_2^Z) = x \sum (e_q^2, 2e_q v_q, v_q^2 + a_q^2)(q + \bar{q})$ $(xF_3^{\gamma Z}, xF_3^Z) = 2x \sum (e_q a_q, v_q a_q)(q - \bar{q}),$

$$F_L(x) = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \cdot \left[\frac{16}{3} F_2(z) + 8\sum e_q^2 \left(1 - \frac{x}{z}\right) zg(z),\right]$$

Vary charge and polarisation and beam energy to disentangle contributions

Charged Currents

$$\sigma_{r,CC} = \frac{2\pi x}{Y_+ G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 \frac{\mathrm{d}^2 \sigma_{CC}}{\mathrm{d}x \mathrm{d}Q^2}$$

$$\sigma_{r,CC}^{\pm} = \frac{1 \pm P}{2} \left(W_2^{\pm} \mp \frac{Y_-}{Y_+} x W_3^{\pm} - \frac{y^2}{Y_+} W_L^{\pm} \right)$$

$$W_2^{\pm} = x(\overline{U} + D), x W_3^{\pm} = x(D - \overline{U}), W_2^{-} = x(U + \overline{D}), x W_3^{-} = x(U - \overline{D})$$

$$U = u + c \qquad \overline{U} = \overline{u} + \overline{c} \qquad D = d + s \qquad \overline{D} = \overline{d} + \overline{s}$$

$$\sigma_{r,CC}^+ \sim x \overline{U} + (1 - y)^2 x D,$$

$$\sigma_{r,CC}^- \sim x U + (1 - y)^2 x \overline{D},$$

$$\sigma_{r,NC}^{\pm} \simeq [c_u(U + \overline{U}) + c_d(D + \overline{D})] + \kappa_Z [d_u(U - \overline{U}) + d_d(D - \overline{D})]$$
with $c_{u,d} = e_{u,d}^2 + \kappa_Z (-v_e \mp Pa_e) e_{u,d} v_{u,d} \text{ and } d_{u,d} = \pm a_e a_{u,d} e_{u,d},$

Complete unfolding of all parton distributions to unprecedented accuracy

The High Lumi (High Q²) Setup

(to be optimised)

L1 Low Q² SetUp \rightarrow High Q² SetUp

- Fwd/Bwd Tracking & EmC-Extensions, HaC-Insert-1 removed
- -Calo-Inserts in position
- -Strong Focussing Magnet installed

