Precision QCD and electroweak physics at

DIS 2012, Bonn, Germany 29th march 2012

Olaf Behnke (DESY)

1

Need for LHeC

- 27.5 GeV x 920 GeV ep HERA
- with integrated L~0.5 fb⁻¹ was a
- high precision machine for QCD
- modest precision machine for electroweak physics

Where could we go with a 60 GeV x 7 TeV e[±]p, also eA collider with integrated L~1-100 fb⁻¹ ?

Lepton proton scattering experiments

LHeC Accelerator options

Ring-Ring

Power Limit of 100 MW wall plug with "ultimate" LHC proton and 60 GeV e[±] beam

 \rightarrow L = 2 10³³ cm⁻²s⁻¹ \rightarrow O(100) fb⁻¹

LHeC Accelerator options

LINAC Ring

60 GeV "Circus Maximus" with Energy recovery L = 10^{33} cm⁻²s⁻¹ \rightarrow O(100) fb⁻¹

140 GeV pulsed LINAC L = 0.4 10^{32} cm⁻²s⁻¹ \rightarrow O(4) fb⁻¹

6

1. Inclusive NC & CC DIS: simulated Default Scenarios

	http://hep.ph.liv.ac.uk/~mklein/simdis09/Ihecsim.Dmp.CC, readfirst							Max Klein, LH		
config.	E(e)	E(N)	Ν	$\int L(e^+)$	∫L(e ⁻)	Pol L/10 ³² P/MW years type			rs type	
A	20	7	р	1	1	-	1	10	1	SPL
В	50	7	p	50	50	0.4	25	30	2	RR hiQ ²
С	50	7	p	1	1	0.4	1	30	1	RR lo x
D	100	7	p	5	10	0.9	2.5	40	2	LR
Е	150	7	p	3	6	0.9	1.8	40	2	LR
F	50	3.5	D	1	1		0.5	30	1	eD
G	50	2.7	Pb	0.1	0.1	0.4	0.1	30	1	ePb
Н	50	1	р		1		25	30	1	lowEp

Max Klain 1 Hac

The Detector 'that should do it': Ring-Linac scenario

Outer detectors (HAC tailcatcher/muon detectors not shown) also not shown: forward proton taggers, backward lumi monitors

Pseudodata: Neutral Current Event Rates

Neutral Current reduced $\boldsymbol{\sigma}$

12

10⁶

10⁶

 Q^2/GeV^2

Q²/GeV²

General Remark: LHeC can uniquely reach/exploit electroweak sector:

- Z and W exchanges assist γ exchange for complete quark flavour decomposition of proton structure (next slides)
- precision electroweak tests, e.g. $\sin^2 \theta_w(\mu)$ (end of talk)

x

 $xF_3^{\forall Z}(x)$

Pseudodata: Charged Current Event Rates

15

Strange =? Anti-strange quark density

How well do we know PDFs today? gg parton luminosities

Agree in region relevant for Higgs at LHC, but diverge towards smaller/largest shat

Impact of LHeC incl. NC & CC on PDFs: gluon

х

Impact of LHeC incl. NC & CC on PDFs: u_v,d_v

Impact of LHeC incl. NC & CC on PDFs: sea

Sea quark uncertainties and usual constraint ubar=dbar for $x \rightarrow 0$

Further PDF improvements at LHeC with ep + eD

(13) There are five color-singlet combinations of the deuteron wavefunction in QCD, only one of which is the standard proton-neutron state. The "hidden color" [13] components will lead to high multiplicity final states in deep inelastic electron-deuteron scattering.

crucial constraint on evolution (S-NS), improved α_s

In eA at the collider, test Gribovs relation between shadowing and diffraction, control nuclear effects at low Bjorken x to high accuracy

Plenary ECFA, Max Klein

Strong Coupling Constant from inclusive DIS

case	cut $[Q^2$ in GeV ²]	α_S	$\pm uncertainty$	relative precision in $\%$		
HERA only (14p)	$Q^{2} > 3.5$	0.11529	0.002238	1.94		
HERA+jets (14p)	$Q^{2} > 3.5$	0.12203	0.000995	0.82		
LHeC only (14p)	$Q^{2} > 3.5$	0.11680	0.000180	0.15		
LHeC only (10p)	$Q^{2} > 3.5$	0.11796	0.000199	0.17		
LHeC only (14p)	$Q^2 > 20.$	0.11602	0.000292	0.25	0 10/	
LHeC+HERA (10p)	$Q^{2} > 3.5$	0.11769	0.000132	0.11	~0.1%	
LHeC+HERA (10p)	$Q^{2} > 7.0$	0.11831	0.000238	0.20	precision	
LHeC+HERA (10p)	$Q^2 > 10.$	0.11839	0.000304	0.26	-	24
				•		

2. Measurements @LHeC with hadronic final states: Jets and Heavy flavours

High pt Jets

Measure change in slope at top threshold

"log(E)"

Jet production

NNLO THEORY (T. Gehrmann et al.)

- > NNLO calculations are ongoing. Matrix elements are either
 - already derived (NLO corrections to 3-jet production in DIS, Z. Nagy, NLOJET++) or
 - Contained in work by Gehrmann/Glover (for the two-loop 2-parton final state).
- > Required: subtraction method!

PLB676(2009)146

Currently implementing method into program for DIS jet production.

Thomas Schoerner-Sadenius | Jets @ LHeC | 12/13 November 2010 | Seite 38

Will reduce significantly theory (higher order) uncertainty for α_s extraction from jet data

Charm and Beauty

Subtle topic: heavy quark mass dependent terms in pQCD

c,b = massless seaquarks

How to make properly the transition from left to right picture is a longstanding problem for PDF fits

LHeC: Huge phasespace extension and high precision

LHeC: Huge phasespace extension and high precision

LHeC: Huge phasespace extension and high precision

Test intrinsic charm in proton

36

Beauty in DIS: \rightarrow determine b-density in proton

LHeC total cross sections (MC simulated)

TOP QUARK

3. SM electroweak and new physics at the high energy frontier

Light quark couplings to Z
SM Higgs production

Leptoquarks + many other possibilities, e.g. excited leptons, anomalous single top production, etc. (not further discussed in this talk)

Fermion couplings to Z boson

Running $\sin^2\theta_w(\mu)$

Higgs production at LHeC

Summary

The LHeC has potential to completely unfold the partonic content of the proton: u,d, c,s, t,b for the first time and in an unprecedent kinematic range. This is based on inclusive NC, CC cross sections complemented by heavy quark identification.

Puzzles as strange-antistrange asymmetry or u/d at large x will be solved.

Precision measurements are possible of xg (up to large x) and the beauty density which are of particular relevance for the LHC. The (almost) whole p structure which the LHC assumes to know will become accurately known.

Determine α_s with permille level precision

Wealth of QCD tests with final states: Jets (running α_s , test of higher orders, proton and photon structure), heavy flavours (mass terms in PQCD), not discussed here: prompt photons, other identified particles

Low x and diffractive physics with ep and eA: See following talk by Anna Stasto

Electroweak and new physics

- Light quark couplings to Z at ~1% level
- SM Higgs production for H-> bb coupling
- New physics: Leptoquarks and quantum numbers, quark radius, leptons* and more!

Physics summary - artistic view

Title plot from Conceptional Design Report

Backup slides

The High Lumi (High Q²) Setup

(to be optimised)

L1 Low Q² SetUp \rightarrow High Q² SetUp

- Fwd/Bwd Tracking & EmC-Extensions, HaC-Insert-1 removed
- -Calo-Inserts in position
- -Strong Focussing Magnet installed

The Detector 'that should do it': - Low Lumi (Low Q²) Setup

- Solenoid surrounding the HAC modules
- -Outer detectors (HAC tailcatcher/muon detectors not shown)

to be discussed: very forward detector setup (proton taggers)

 $\sigma_{r,NC} = \frac{d^2 \sigma_{NC}}{dx dQ^2} \cdot \frac{Q^4 x}{2\pi \alpha^2 Y_+} = \mathbf{F_2} + \frac{Y_-}{Y_+} \mathbf{x} \mathbf{F_3} - \frac{y^2}{Y_-} \mathbf{F_L}$

$$\mathbf{F}_{2}^{\pm} = F_{2} + \kappa_{Z}(-v_{e} \mp Pa_{e}) \cdot F_{2}^{\gamma Z} + \kappa_{Z}^{2}(v_{e}^{2} + a_{e}^{2} \pm 2Pv_{e}a_{e}) \cdot F_{2}^{Z}$$

$$\mathbf{x}\mathbf{F}_{3}^{\pm} = \kappa_{Z}(\pm a_{e} + Pv_{e}) \cdot xF_{3}^{\gamma Z} + \kappa_{Z}^{2}(\mp 2v_{e}a_{e} - P(v_{e}^{2} + a_{e}^{2})) \cdot xF_{3}^{Z}$$

 $(F_2, F_2^{\gamma Z}, F_2^Z) = x \sum (e_q^2, 2e_q v_q, v_q^2 + a_q^2)(q + \bar{q})$ $(xF_3^{\gamma Z}, xF_3^Z) = 2x \sum (e_q a_q, v_q a_q)(q - \bar{q}),$

$$F_L(x) = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \cdot \left[\frac{16}{3} F_2(z) + 8\sum e_q^2 \left(1 - \frac{x}{z}\right) zg(z),\right]$$

Vary charge and polarisation and beam energy to disentangle contributions

e

p

γ**,** Ζ

Charged Currents

$$\sigma_{r,CC} = \frac{2\pi x}{Y_+ G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 \frac{\mathrm{d}^2 \sigma_{CC}}{\mathrm{d}x \mathrm{d}Q^2}$$

$$\sigma_{r,CC}^{\pm} = \frac{1 \pm P}{2} \left(W_2^{\pm} \mp \frac{Y_-}{Y_+} x W_3^{\pm} - \frac{y^2}{Y_+} W_L^{\pm} \right)$$

$$W_2^+ = x(\overline{U} + D), x W_3^+ = x(D - \overline{U}), W_2^- = x(U + \overline{D}), x W_3^- = x(U - \overline{D})$$

$$U = u + c \qquad \overline{U} = \overline{u} + \overline{c} \qquad D = d + s \qquad \overline{D} = \overline{d} + \overline{s}$$

$$\sigma_{r,CC}^+ \sim x \overline{U} + (1 - y)^2 x D,$$

$$\sigma_{r,CC}^- \sim x U + (1 - y)^2 x \overline{D},$$

$$\sigma_{r,NC}^\pm \simeq [c_u(U + \overline{U}) + c_d(D + \overline{D})] + \kappa_Z [d_u(U - \overline{U}) + d_d(D - \overline{D})]$$
with $c_{u,d} = e_{u,d}^2 + \kappa_Z (-v_e \mp Pa_e) e_{u,d} v_{u,d} \text{ and } d_{u,d} = \pm a_e a_{u,d} e_{u,d},$

Complete unfolding of all parton distributions to unprecedented accuracy

Neutral current cross section errors at LHeC:

Figure 4.3: Neutral current cross section errors, calculated for $60 \times 7000 \,\text{GeV}^2$ unpolarised e^-p scattering, as result from scale uncertainties of the scattered electron energy $\delta E'_e/E'_e = 0.1$ %, of its polar angle $\delta \theta_e = 0.1 \,\text{mrad}$ and the hadronic final state energy $\delta E_h/E_h = 0.5$ %, at large $Q^2 = 20000 \,\text{GeV}^2$ and correspondingly large x. Note that the characteristic behaviour of the relative uncertainty at large x, i.e. to diverge $\propto 1/(1-x)$, is independent of Q^2 , i.e. persistently observed at $Q^2 = 20000 \,\text{GeV}^2$ for example too.

F_L at LHeC

Charged current processes at LHeC

47

Charm in DIS: test intrinsic charm in p

Requires c-tagging in very foward direction (θ ~1 deg.)

48

Beauty production contribution to $F_2 = F_2^{bb}$

SLAC 1978

50

New physics example Leptoquarks: determine quantum Numbers at LHeC

Scalar LQ, λ =0.1, single production gd LHeC, $e^+ d$ (E_e = 70 GeV) 10 ³ LHeC, $e^{\overline{d}}$ (E_e = 70 GeV) р 10 ² LHeC, $e^+ d$ (E_e = 140 GeV) ······ LHeC, $e^{\overline{d}}$ (E = 140 GeV) 10 JINST 1 2006 P10001 10 10 10 10 LHC, đìg _HC.dq 10 400 600 800 1000 1200 1400 1600 LQ Mass (GeV)

e-p vs e+p asymmetries at LHeC will reveal the Fermion number F