# **Aspects of BSM Physics at LHeC**



G. Azuelos

for the LHeC Collaboration

overview of some recent and ongoing preliminary work on exotic physics at LHeC

- Brief introduction to LHeC
- BSM processes
  - Leptoquarks
  - heavy and excited fermions
  - contact interactions
  - diquarks





## LHeC

Assume 7 TeV LHC proton or nucleus beam



#### • Detector design under study $\rightarrow$ see talk by P. Kostka [297]

F. Zimmermann at PAC09, Vancouver <u>http://www.ep.ph.bham.ac.uk/exp/LHeC//talks/zimmermann.PAC09.pdf</u> → see also talk by J. Jowett [290]

#### G. Azuelos - DIS2010, Florence

# Introduction

# We project into the future:

- o LHC is a "discovery machine"
  - → new bsm physics will likely be discovered there first
  - we will assume  $E_{CM} = 14 \text{ TeV}$  and  $\int \mathcal{L} dt = 100 \text{ fb}^{-1}$  achieved at LHC
- LHeC:
  - rich physics program in QCD and pdf
    - $\rightarrow$  see previous talks, this morning in Future of DIS session:
    - O. Behnke, K. Kutak, J. Rojo, N Armesto Perez
  - BSM: What could be the "added value" of LHeC ?
    - improved pdfs
       → higher precision from measurements performed at LHC
    - cleaner environment, better S/N
    - new observables in specific processes
      - · Higgs couplings to bb
        - $\rightarrow$  see next talk, U. Klein
      - · Leptoquarks
      - $\cdot$  heavy and excited fermions, diquarks



#### G. Azuelos - DIS2010, Florence

#### Leptoquarks

#### Leptoquarks are predicted in extensions of the SM

- E<sub>6</sub>: new fields possibly having both B and L quantum numbers
- technicolor: bound states of technifermions
- Pati-Salam: lepton is a 4<sup>th</sup> quark color
- squarks decaying by R-parity violation

$$\mathcal{W}_{RPV} = \lambda_{ijk} L_i Q_j \overline{D}_k \implies \begin{cases} e^- + \overline{d} \to \overline{\tilde{u}} \to e^- + \overline{d} \\ e^- + u \to \widetilde{d} \to e^- + u \end{cases}$$

#### LQ's carry baryon and lepton number; can be scalar or vector → Buchmüller classification

Quantum numbers of scalar and vector leptoquarks with  $SU(3) \times SU(2) \times U(1)$  invariant couplings to quark-lepton pairs  $(Y=Q_{em}-T_3)$ .

|                          | Spin | F=3B+L | SU(3) <sub>c</sub> | $SU(2)_{W}$ | $U(1)_{\gamma}$ |
|--------------------------|------|--------|--------------------|-------------|-----------------|
| S,                       | 0    | -2     | 3*                 | 1           | 1 3             |
| Ŝ <sub>1</sub>           | 0    | -2     | 3*                 | 1           | 43              |
| S <sub>3</sub>           | 0    | -2     | 3*                 | 3           | 1 <u>3</u>      |
| $\tilde{V_2}$            | 1    | -2     | 3*                 | 2           | 5               |
| $\tilde{\mathbf{V}}_{2}$ | 1    | -2     | 3*                 | 2           | - <del>1</del>  |
| $\mathbf{R}_{2}^{-}$     | 0    | 0      | 3                  | 2           | 7               |
| $\tilde{\mathbf{R}}_2$   | 0    | 0      | 3                  | 2           | ł               |
| Ū,                       | 1    | 0      | 3                  | 1           | 23              |
| $\tilde{U}_1$            | 1    | 0      | 3                  | 1           | 53              |
| U <sub>3</sub>           | 1    | 0      | 3                  | 3           | <u>2</u><br>3   |

- family mixing  $\rightarrow$  FCNC and LFV
- non-chiral ? (couple to L and to R quarks simultaneously)
  - $\rightarrow$  lepton universality

# at the LHC



#### ATLAS Collaboration, CERN-OPEN-2008-020 (arXiv:0901.0512)

# Present and expected bounds or discovery reach









combined single and pair production, eq and  $\nu q$  channels

| single + pair production |
|--------------------------|
| type 1: $2\ell + j$      |
| type 2: $\ell + j + E_T$ |

A. Belyaev et al., JHEP0509:005,2005 (arXiv:hep-ph/0502067)

#### G. Azuelos - DIS2010, Florence

# LQ at LHeC



DIS background suppressed by cut on  $y = \frac{1}{2}(1 - \cos \theta^*)$ 

A F Żarnecki(arXiv:0809.2917v1)

# If LQs are discovered, what can we learn at the LHeC?

# Quantum numbers and couplings:

• F: fermion number can be obtained from asymmetry in single LQ production, since q have higher x than  $\overline{q}$ 



 can also be probed in single LQ production at the LHC, but cross section is low





Note:  $\gamma \rightarrow ee$  followed by  $ep \rightarrow LQ$  not yet considered



# If LQs are discovered, what can we learn at the LHeC?



At LHC, we have poorer precision on the asymmetry main backgrounds:

Z + jets, fake electrons

#### Asymmetry also probes the LQ charge:



note: LQs belonging to an isodoublet might be degenerate

Preliminary results obtained with CalcHEP, new LQ model by A. Belyaev and A. Pukhov (private comm.)

# If LQs are discovered, what can we learn at the LHeC?

#### Quantum numbers and couplings:

- o spin
  - at LHC, pair production of LQ-LQ leads to angular distributions which depend on the g-LQ-LQ coupling
    - → may need to look for spin correlations
  - at LHeC,  $\cos \theta^*$  distribution is sensitive to the spin
  - vector leptoquarks can have anomalous couplings
- o chiral ?
  - could be probed by measuring sensitivity of cross sections to polarization of the electron beam
- o generation mixing ?
  - does LQ decay to 2<sup>nd</sup> generation? H1 Coll., Eur. Phys. J. C 11, 447 (1999)
- o RPV in squark decays
  - measure of R-parity violation in production and decay
- o BR to neutrino
  - good S/B in vj channel

$$e_L u_L \rightarrow S_3 \rightarrow v_e d_L$$







Preliminary results obtained with CalcHEP, new LQ model by A. Belyaev and A. Pukhov (private comm.)

### **Contact Interactions**

New physics could be at a higher scale  $\Lambda \gg \sqrt{s}$  :  $\Rightarrow M_{_{eq \rightarrow eq}} \sim \Lambda^{^{-2}}$ 



$$\mathcal{L} = \frac{4\pi}{2\Lambda^2} j_{\mu}^{(e)} j^{\mu(q)};$$
  

$$j_{\mu}^{(f=e,q)} = \eta_L \ \overline{f}_L \gamma_{\mu} f_L + \eta_R \ \overline{f}_R \gamma_{\mu} f_R + h.c.$$
  

$$\Rightarrow \text{ all combinations of couplings } \eta_{ij} = \eta_i^{(e)} \eta_j^{(q)}; \quad q = u, d$$

for comparable scale,

*s*, *u* channels must be treated separately (e.g. graviton exchange, LQ exchange)



A.F. Zarnecki, arXiv:0809.2917

### 95% exclusion limits



Large extra dimensions model

$$\eta_{LL} = \eta_{RR} = \frac{\mp \pi}{2M_{S}^{4}}(4t+s)$$
$$\eta_{LR} = \eta_{RL} = \frac{\mp \pi}{2M_{S}^{4}}(4t+3s)$$





# Excited fermions

- Excited fermions could be produced directly if their mass is below compositeness scale Assume spin = ½, L, R doublets
  - gauge interaction Lagrangian

$$\mathcal{L} = \frac{1}{2\Lambda} \overline{f}_R^* \sigma_{\mu\nu} \left[ g \mathbf{f} \frac{\tau_a}{2} W_{\mu\nu}^a + g' \mathbf{f}' B_{\mu\nu} + g_s \mathbf{f}_s \frac{\lambda_a}{2} G_{\mu\nu}^a \right] f_L$$

- contact interaction Lagrangian







present limits LHC could probe up to 1-2 TeV

for 
$$f = f' = 1$$
,  $\Lambda = m_{e^*}$ 

O. Cakir, A. Yilmaz, S. Sultansoy, PR D70 (2004) 075011,

A. Belyaev, C. Leroy, R. Mehdiyev, Eur Phys J C 41, s02, 1–10 (2005)

### exemple: $ep \rightarrow e^* \rightarrow e\gamma$

kinematic distribution

single production cross section



# heavy leptons (4th family)

#### Heavy fermions predicted in many BSM theories

- 4<sup>th</sup> family: not excluded by EW precision measurements
- GUT theories: E<sub>6</sub>
- mirror fermions,
- vector-like fermions
- ➔ will be copiously produced in pair at LHC, but anomalous coupling measurement more difficult

#### **Production by anomalous couplings:**

- charged current for production of  $v_4$  :

$$\mathcal{L} = \left(\frac{g_W}{\sqrt{2}}\right) \overline{\ell}_i \left[ \left| V_{\nu_4 \ell_i} \right| \gamma_\mu + \frac{i}{2} \frac{\kappa_W^{\nu_4 \ell_i}}{\Lambda} \sigma_{\mu\nu} q^\nu \right] P_L \nu_4 W^\mu \left( V_{\nu_4 \ell} < 10^{-3} - 10^{-5} \right) \right]$$

-neutral current for production of  $e_4$  or  $\nu_4$  :

$$\mathcal{L}_{NC}^{\nu_{4}} = \left(\frac{g_{Z}}{2}\right) \overline{\nu}_{i} \left[\frac{i}{2} \frac{\kappa_{Z}^{\nu_{4}\nu_{i}}}{\Lambda} \sigma_{\mu\nu} q^{\nu}\right] P_{L} \nu_{4} Z^{\mu}$$

$$\mathcal{L}_{NC}^{\ell_4} = g_e \frac{\kappa_{\gamma}^{\ell_i}}{\Lambda} \overline{\ell}_4 \, \sigma_{\mu\nu} \, \ell_i F^{\mu\nu} + g_Z \frac{\kappa_Z^{\ell_i}}{2\Lambda} \overline{\ell}_4 \, \sigma_{\mu\nu} \, \ell_i Z^{\mu\nu} + \text{h. c.}$$





A.K. Çiftçi et al., Mod Phys Lett A23 (2008) 1047

# heavy leptons (4th family)

#### **Charged leptons:**

→ can achieve 5  $\sigma$  discovery up to mass of 800 GeV, for  $\sqrt{s} = 1.4$  TeV and 1 fb<sup>-1</sup>

$$\left(\frac{\kappa_{\gamma}^{\ell}}{\Lambda} = \frac{\kappa_{Z}^{\ell}}{\Lambda} = 1 \text{ TeV}^{-1}\right)$$

#### 4th family neutrinos:



### ť quark

- Also possible at LHC, but possibly higher background
- Single production sensitive to new matrix elements in CKM matrix

• assume: t'  $\rightarrow$  W+q with V<sub>t'd</sub>=0.063, V<sub>t's</sub>=0.46, V<sub>t'b</sub>=0.47

→  $5\sigma$  significance up to ~ 800 GeV with 10 fb<sup>-1</sup>

# b' quark

- assume:  $m_{b'} < m_{t'}$ and  $V_{ub'}$ =0.028,  $V_{cb'}$ =0.116,  $V_{t'b'}$ =0.99

→  $5\sigma$  significance up to ~ 500 GeV with 10 fb<sup>-1</sup>



O. Cakir et al., arXiv:0905.4347 and arXiv:0912.2041



(b)

10

10

10<sup>-8</sup>

300

400



500

m<sub>Wb</sub> (GeV)

600

700

W

SM BG m.,= 400 GeV

m<sub>t</sub> = 500 GeV m<sub>t</sub> = 600 GeV

800

900

# heavy quarks: anomalous couplings in yp collisions



G. Azuelos - DIS2010, Florence

## Diquarks

#### **Diquarks predicted in superstring-inspired E6 and composite models**

$$W = \lambda_{0}hQQ; \quad \begin{cases} h = \text{diquark (B=2/3, L=0, Q=1/3)} \\ Q = \begin{pmatrix} u \\ d \end{pmatrix}_{L} \end{cases}$$

• more generally, diquarks could carry charge 1/3, 2/3, 4/3 and be scalar or vector

$$\mathcal{L}_{|B|=2/3} = \left(g_{1L}\overline{Q}_{L}^{c}i\tau_{2}Q_{L} + g_{1R}\overline{u}_{R}^{c}d_{R}\right)DQ_{1}^{c} + \text{h.c.}$$

where DQ<sub>1</sub> is a scalar isosinglet diquark (similar terms for other types of diquarks)

 $E_6$  diquarks excluded by CDF in range 290 <  $m_{DQ}$  < 630 GeV

Phys.Rev.D79:112002,2009 (2009)



• with a cut on  $p_T(jet) > 50$  GeV and on di-jet invariant mass,  $5\sigma$  significance is obtained up to

m < 700 GeV for 70 x 7000 GeV<sup>2</sup> 900 GeV 140 x 7000 GeV<sup>2</sup>

 vector and scalar quarks can be distinguished by the angular distribution of their decays



#### M Şahin and O. Çakir, arXiv:0911.0496

#### 21 Apr 2010

G. Azuelos - DIS2010, Florence

# Other examples of new physics

#### improved pdf's

 $\rightarrow$  better info from LHC measurements of cross sections in SM and BSM physics

#### $\rightarrow$ contact interactions:

- excess/reduction in dijet cross section due to poor knowledge of pdfs?
- make use of asymmetry in cross section in e<sup>+</sup> and e<sup>-</sup> to determine sign of interference
- in Drell-Yan: comparing qq 
  ightarrow ll and eq 
  ightarrow eq constrains  $\Lambda$

E. Perez, at LHC2FC

#### - R-parity conserved SUSY $eq \rightarrow \tilde{e}\tilde{q}$ via t-exchange of $\tilde{\chi}$

masses predicted ~ (700,150) GeV in CMSSM and NUHM1 models

(O. Buchmueller et al., JHEP 0809:117,2008)

have sizeable cross sections at LHeC:

→ could extend discovery over LHC and possibly yield improved information on masses and couplings?

#### Z' couplings

- polarization and charge asymmetries can help distinguish between Z' models (E<sub>6</sub>, LRSM, ALRSM, little Higgs, SSM, ...)
  - T. Rizzo, PR D77 (2008) 115016

#### Summary

- LHeC can complement LHC in understanding new physics phenomena
- more precision and more complete interpretation of LHC discoveries
- □ TeV ep collisions:
  - since there is no strong interaction, one can probe interraltion between leptons and quarks in a fundamental theory: leptoquarks, compositeness, contact interactions...

Many thanks to E. Perez, M. Klein, et al.