Diffractive and Exclusive Processes in ep Scattering at the LHeC

DIS 2011, Newport News

14 April 2011

Paul Newman

- The Importance of Diffraction to Low x Physics
- Exclusive J/Ψ and Y production
- Deeply Virtual Compton Scattering
- Inclusive Diffraction

Related LHeC talks: Low x Inclusive Physics (Anna Stasto) eA Physics (Brian Cole)

Low-x Physics and Non-linear Evolution

- Somewhere, somehow, low x growth of cross sections must be tamed to satisfy unitarity ... non-linear effects
- Dipole model language \rightarrow projectile qq multiply interacting
- Parton level language \rightarrow recombination gg \rightarrow g
- Main aim of low x at LHeC is to observe and understand associated microscopic dynamics $\rightarrow Q^2$ as large as possible

2 Benefits of Diffraction

- 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon
- 2) Additional variable t gives access to impact parameter (b) dependent amplitudes
 - \rightarrow Large t (small b) probes densest packed part of proton?

Elastic J/ Ψ Photoproduction: Golden Channel?

- `Cleanly' interpreted as hard 2g exchange coupling to qqbar dipole ... enhanced sensitivity to low x gluon
- c and c-bar share energy equally, simplifying VM wavefunction
- Clean experimental signature (just 2 leptons)
- ... LHeC reach extends to $x_g \sim 6.10^{-6}$ at $Q^2 \sim 3 \text{ GeV}^2$

(MNRT etc) $X_g \sim (Q^2 + M_V^2) / (Q^2 + W^2)$ $Q^2 = (Q^2 + M_V^2) / 4$

• Simulations of elastic J/ $\Psi \rightarrow \mu\mu$ photoproduction \rightarrow scattered electron untagged, 1° acceptance for muons (similar method to H1 and ZEUS)

- At fixed $\int s$, decay muon direction is determined by W = $\int s_{\gamma p}$
- \bullet As $\rm E_{\rm e}$ increases, higher W accessed; acceptance in outgoing electron beam direction crucial

Comparison with Dipole Model Predictions

e.g. "b-Sat" Dipole model "eikonalised": with impact-parameter dependent saturation "1 Pomeron": non-saturating

• Significant non-linear effects expected even for t-integrated cross section at LHeC.

[Pseudo-data shown are extrapolations of HERA power law fit]

t Dependence of Elastic J/ ψ Photoproduction

• J/ ψ photoproduction double differentially in W and t ...

- Precise t measurement from decay μ tracks over wide W range extends to $|t| \sim 2 \ GeV^2 \ and \ enhances sensitivity to \ saturation effects$

• Measurements also possible in multiple Q² bins

- Satⁿ effects smaller than J/Ψ (smaller dipole sizes, higher x).
- Cross sections also much smaller than for J/Ψ .
- Huge increase over HERA range \rightarrow anomalously large HERA cross sections can be tested.

Deeply Virtual Compton Scattering

No vector meson wavefunction
 Complications

Cross sections suppressed
 by photon coupling
 → limited precision at HERA

 Simulations based on FFS model in MILOU generator
 → Double differential distributions in (x, Q²) with 1° and 10° cuts for scattered electron
 → Kinematic range determined largely by cut on p_T^γ (relies on ECAL performance / linearity at low energies)

DVCS at low luminosity & high acceptance

1 fb⁻¹, $E_e = 50$ GeV, 1° acceptance, $p_T^{\gamma} > 2$ GeV

- Precise double differential data in low Q² region
- Statistical precision deteriorates for Q² >~ 25 GeV²
- W acceptance to ~ 1 TeV (five times HERA)

DVCS at high luminosity and low acceptance

100 fb⁻¹, $E_e = 50$ GeV, 10° acceptance, $p_T^{\gamma} > 5$ GeV

- Low Q² acceptance lost due to focusing magnets
- High lumi gives precision data to Q^2 of several hundred GeV² \rightarrow Completely unprecedented region for DVCS / GPDs

Inclusive Diffractive Dissociation

Additional variables ...

x_{IP} = fractional momentum
 loss of proton
 (fraction IP/p)

$$\beta = x / x_{IP}$$
 (fraction q/IP)

... used at HERA to extract diffractive parton densities

Diffractive DIS, Dipole Models & Saturation

Inclusive Cross Section

$$\sigma_{T,L}(x,Q^2) = \int d^2 \mathbf{r} \int_0^1 d\alpha \, |\Psi_{T,L}(\alpha,\mathbf{r})|^2 \hat{\sigma}(x,r^2)$$

Diffractive DIS

$$\frac{d\sigma_{T,L}^D}{dt}\Big|_{t=0} = \frac{1}{16\pi} \int d^2 \mathbf{r} \int_0^1 d\alpha \, |\Psi_{T,L}\left(\alpha,\mathbf{r}\right)|^2 \hat{\sigma}^2\left(x,r^2\right)$$

Extra factor of dipole cross section weights DDIS cross section towards larger dipole sizes \rightarrow enhanced sensitivity to saturation effects.

LHeC DDIS Kinematic Plane (1° Acceptance)

- Low $x_{IP} \rightarrow$ cleanly separate diffraction
- Low $\beta \rightarrow$ Novel low x effects ... non-linear dynamics?
- High $Q^2 \rightarrow DPDFs$: Lever-arm for gluon W, Z exchange for flavour separation

Signatures and Selection Methods at HERA

- Allows t measurement, but limited by stats, p- tagging systs

2) Select Large Rapidity Gaps

-Limited by control over proton dissociation contribution

- Methods have very different systematics \rightarrow complementary
- What is possible at LHeC?...

LHeC Forward and Diffractive Detectors

Large rapidity gap method restricted to low x_{IP}

• Reaching $x_{IP} = 0.01$ requires η_{max} cut around 5 ... corresponds to $\theta > 1^{\circ}$

- For $x_{IP} = 0.001$ need η_{max} cut around 3 ... similar to H1
- ... and still lots of data
- Misses interesting LHeC region at large M_x

A High Acceptance Proton Spectrometer

- Proton arm beam optics very similar to ATLAS / CMS
- `FP420'-style proton spectrometer accesses elastic scattered protons with full acceptance over wide t range at $x_{IP} \sim 0.01$ \rightarrow complementary x_{IP} region to gap method
- Zero Degree Calorimeter for neutrons also included in design

Simulated Data

- Simulated data
 combining rapidity gap
 & proton tagging methods
- Small subset of possible bins, emphasising β dependence in 4 wide x_{IP} , Q^2 bins
- Statistical precision not an issue ... phase space runs out before data

New region of Diffractive Masses Large x_{IP} region highly correlated with large Mx

- `Proper' QCD (e.g. large E_T) with jets and charm accessible
- New diffractive channels ... beauty, W / Z bosons
- Unfold quantum numbers / precisely measure new 1⁻ states

Inclusive Diffraction and the ep / eA Interface

Nuclear shadowing can be described (Gribov-Glauber) as multiple interactions, starting from ep DPDFs

... starting point for extending precision LHeC studies into eA collisions

Summary

• Diffractive ep supplements inclusive data (Anna's talk) to discover / understand non-linear effects in perturbative regime

- Comparison with diffractive eA (Brian's talk) provides a further degree of freedom to unfold effects
- First simulations suggest J/Ψ photoproduction will be key
- Other inclusive and exclusive channels look highly promising
- Diffractive jets, charm, W / Z, light VMs still to be studied

Chapter 7 [Coming soon in LHeC CDR]

Physics at High Parton Densities

Back-Ups Follow

J/psi Statistical Precision

Take one bin for every 50 GeV in W

To crudely predict numbers of events per bin ...

- Assume a similar measurement to HERA
- $Q^2 < 2 \text{ GeV}^2$... only see 2 muons in detector
- Simple $\gamma^{(*)}p$ cross section parameterisation: $\sigma(\gamma p \rightarrow Vp) = \sigma_0 \cdot W^{\delta} \cdot e^{bt}$
- Fix $\delta = 0.75 (J/\psi)$ and 1.00 (Y) b = 4.5 GeV⁻² σ_0 by normalising to HERA data

- Convert to ep cross section with photon flux from Weizsaecker-Williams approximation

J/psi Corrections and Systematics

Require geometric acceptance above 30%

Assume selection efficiency = 50% (20-40% at HERA)

Correct for branching ratios to $\mu\mu$ (ee results would be similar, possibly except for detector acceptance)

Systematics not yet included (depend heavily on detector), but some hints from HERA:

- \rightarrow Total syst ~ 10% (fairly correlated between bins)
- \rightarrow Trigger efficiency ~ 5%
- \rightarrow Selection efficiency ~ 5%
- \rightarrow Proton dissociation corrections ~ 5%
- \rightarrow Model dependences on geometric acceptance ~5%
- → Lumi ~ 2%
- \rightarrow Branching ratio ~ 2%

Leading Neutron Ideas (Buyatyan, Lytkin)

Size & location determined by available space in tunnel and beam-line appertures
Requires a straight section at θ~0° after beam is bent away.
H1 version → 70x70x200cm Pb-scintillator (SPACAL) @ 100m → θ<0.8mrad (p_t <~ 500 MeV)

Figure 5: General view of the H1-FNC calorimeter

- LHeC: aim for similar θ range?... more would be nice!
- Need ~ 10 λ to contain 95% of 7 TeV shower
- 2λ high granularity pre-sampler to reject EM showers from photon background and get impact point
- Main calorimeter coarser with 4-5 longitudinal segments?
- Achievable resolution could be $\sigma/E \sim 60\%/sqrt(E)$

Beam Scenarios for First Physics Studies

Many scenarios under study ... two discussed here ...

А	20	7	р	1	1	-	1	10	1	SPL
В	50	7	р	50	50	0.4	25	30	2	$RR hiQ^2$
С	50	7	р	1	1	0.4	1	30	1	RR lo x
D	100	7	р	5	10	0.9	2.5	40	2	LR
Е	150	7	р	3	6	0.9	1.8	40	2	LR
F	50	3.5	D	1	1		0.5	30	1	eD
G	50	2.7	Pb	0.1	0.1	0.4	0.1	30	1	ePb
Η	50	1	р		1		25	30	1	lowEp

config. E(e) E(N) N $\int L(e^{+}) \int L(e) |Pol| L/10^{32} P/MW$ years type

ep Studies based on a 20-150 GeV electron beam and lumi of 1-10 fb⁻¹ / year

Distinguishing Between Models

Dipole model Precdictions Give varying Results in some regions