

RING-RING DESIGN

Miriam Fitterer, CERN - KIT for the LHeC study group

Linac-Ring

Miriam Fitterer - LHeC Ring-Ring Design

Linac-Ring

Ring-Ring

Miriam Fitterer - LHeC Ring-Ring Design

General Layout

Miriam Fitterer - LHeC Ring-Ring Design

Miriam Fitterer - LHeC Ring-Ring Design

Miriam Fitterer - LHeC Ring-Ring Design

General Layout

Miriam Fitterer - LHeC Ring-Ring Design

Injector

Total filling

time

less than

10 minutes

LHeC requires new 10 GeV e+/e- injector

Pre-injector: e.g. LIL+EPA type e+/e- Injector (LEP) - 0.6 GeV at extraction

Injector: simplified and down scaled **ELFE** design:

LHO Main Ring Design Parameters

	Electrons	Protons
Energy	60 GeV	7 TeV
Current	100 mA	860 mA
Part. per bunch	2×10^{10}	1.7×10^{11}
Numb. of bunches	2808	2808
ϵ_x / ϵ_y	5.0 / 2.5 nm	0.5 / 0.5 nm
P_{γ}	< 50 MW	

Main Ring - Integration I

p-ring and e-ring have to fit into the existing LHC tunnel

Match e-ring and p-ring circumference, because:

p-beam could be "heated" up by the e-beam in the case of asymmetric collision schemes [*]

Typical cross section of the LHC tunnel

[*] K. Hirata and E. Keil, "Barycenter motion of beams due to beam-beam interaction in asymmetric ring colliders," Proc. EPAC 1990

Bypasses increase the circumference

 compensation by placing the ring more on the inside in respect to the LHC

Main Challenges:

1. QRL jumper connection at every second proton quadrupole in the main arc and around 8 per straight section

QRL jumper connection

2. Insertions, especially Dump Area, Collimation, RF, Cryogenics ...

Main Arc:

- 2 Lfodo, lhec \approx Lfodo, lhc
- FODO lattice with no elements at positions of QRL jumper connection
 main integration interferences avoided

Insertions

• similar design for even and odd insertions

s/m

- exemplarily avoiding QRL jumper connections in insertions
 - detailed design for each insertions at a later stage, but no real show stoppers

800

Bypass Layout

Miriam Fitterer - LHeC Ring-Ring Design

Miriam Fitterer - LHeC Ring-Ring Design

DIS 2011, Newport News 12.04.2011

Parameters

Reminder:

Beamsize: $\sigma = \sqrt{\beta \epsilon}$

Beta-function (drift space)

High Acceptance (1 Degree)

High Luminosity (10 Degree)

	Electrons	Protons		Electrons	Protons
B _x	0.4 m	4.05 m	β _x	0.18 m	1.8 m
By	0.2 m	0.97 m	βy	0.1 m	0.5 m
*	6 m	22.96 m	1*	1.2 m	22.96 m
$\sigma_{\rm X}$	45 µm		σ _x	30	um
Σy	22 µm		σ _y	15.8	μm
Crossing angle	1 mrad		Crossing angle	1 m	rad
Luminosity	8.54 10^{32} cm ⁻² s ⁻¹		Luminosity	1.8 10 ³³	cm ⁻² s ⁻¹
Luminosity loss factor	86%		Luminosity loss factor	75	%
Luminosity	7.33 10^{32} cm ⁻² s ⁻¹		Luminosity	$1.34 \ 10^{33} \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1}$	
γ	51 kW		Ργ	33 1	κW
Ec	163 keV		Ec	126	keV

Miriam Fitterer - LHeC Ring-Ring Design

DIS 2011, Newport News 12.04.2011

IR Optics - Electrons

1 Degree

Miriam Fitterer - LHeC Ring-Ring Design

IR Optics - Electrons

10 Degree

Miriam Fitterer - LHeC Ring-Ring Design

e-A Collisions

- Assume present **nominal Pb beam in LHC**: same beam size as protons, fewer bunches (592 bunches, $N_b=7\times10^7$ ²⁰⁸Pb⁸²⁺ nuclei)
- Assume e-injector chain can provide the desired bunch pattern (592 bunches of $N_b=6\times10^{10} e^{-1}$)

Lepton-nucleus and lepton-nucleon luminosity at 60 GeV and 45 MW synchrotron radiation losses

 $L=5\times10^{29}\,cm^{-2}s^{-1} \Leftrightarrow L_{en}=1\times10^{31}\,cm^{-2}s^{-1}$

Dipole

Challenge:

- Field reproducibility at injection (10 GeV)
- Constant field quality during the ramp
- Compactness
- Compatibility with synchrotron radiation power

Models by BINP (silicon steel iron lamination) and CERN (interleaved iron plastic **laminations plastic: iron=2:1) achieving** required field reproducibility.

Miriam Fitterer - LHeC Ring-Ring Design

Beam Energy	10-60 GeV
Number of magnets	3080
Magnetic length	5.35 m
Magnetic field	127 -763 Gauss
Vertical aperture	40 mm
Pole width	150 mm
Conductor material	copper/aluminium
Total power consumption of all dipoles at 60 GeV	0.8 MW
Cooling	air or water (depending on tunnel ventilation)
Field reproducibility	<0.1 Gauss

LH_C Main Ring NC Magnet Design

Quadrupole **Challenge:** Compactness

Arc quadrupole:		Insertion/bypass quadrupoles:
Number of magnets	368 (QF) + 368 (QD)	
Magnetic length	1.0 m	Number of magnets
Magnetic field	84(OD)	Magnetic length
	10.28 T/m (QF)	Magnetic field
Radial aperture	30 mm	Radial aperture
Weight	700 kg	Weight
Conductor material	copper	Conductor material
Total power (60 GeV)	2.5 kW	Total power (60 GeV
Cooling	water	Cooling

35 cm ber of magnets 148 (QF) + 148 (QD) 1.0 m (QF) / 0.7 m (QD) ignetic length agnetic field approx. 18 T/m 30 mm idial aperture 700 kg (QF) / 500 kg (QD) Weight ductor material copper 6.0 kW (QF) / 4.5 kW (QD) power (60 GeV) Cooling water

Miriam Fitterer - LHeC Ring-Ring Design

Magnet Design:

• similar to LHC MQXA magnets, no real challenges in respect of gradient

- Challenge:
 - field free region for electron
 - allow for a minimal distance between electron and proton beam

Proton SC IR Magnets

Proton SC magnet design

Q1: Half Quadrupole with field free regions for the e-beam

	Q1	Q2
Radial aperture	35 mm	36 mm
B_0	137 T/m	137 T/m
g 0	2.5 T	-
Beam separation	65 mm	107 mm
operation percentage on the load line of the sc	77%	73%
B _{fringe} e-aperture	0.03 T	0.016 T
g _{fringe} e-aperture	0.8 T/m	0.5 T/m

Main Ring RF

SPL type cavities:

- 120 cavities
- 721.4 MHz
- in total 500 MV
- 9.8 MV/m (conservative assumpt., SPL assumes 25 MV/m)
- 8 double cell cavities in 12 m cryomodules, 15 cryomodules total ->180 m + space for quads etc.
- feed two cavities with one 1 MW klystron

9 cryomodules = 108 m 36 klystrons

Cryogenics

Bypasses:

Cryogenic requirements:

- SPL type cryomodules
- three cryoplants (like LHC/ LEP2)
- 2 K operation

Total electrical power:

e-beam

ATLAS

cavern

detector

approx. 5 MW

Cryogenic requirements:

String of cryomodules cryoplant

- 12 ILC (XFEL) type cryomodules
- one cryoplant of modest size
- 2 K operation

- Integration (bypasses around the remaining pexperiments + e-ring integration into existing LHC tunnel)
- Main arc dipole magnet design (low field and high field quality dipole magnet)
- Interaction region (beam separation)
- Final focus proton magnets (quadrupoles with field free regions for the electron beam)

Challenges:

 Integration (bypasses around the remaining pexperiments + e-ring integration into existing LHC tunnel)

- Main arc dipole magnet design (low field and high field quality dipole magnet)
- Interaction region (beam separation)
- Final focus proton magnets (quadrupoles with field free regions for the electron beam)

- Integration (bypasses around the remaining pexperiments + e-ring integration into existing LHC tunnel)
- Main arc dipole magnet design (low field and high field quality dipole magnet)

- Interaction region (beam separation)
- Final focus proton magnets (quadrupoles with field free regions for the electron beam)

- Integration (bypasses around the remaining pexperiments + e-ring integration into existing LHC tunnel)
- Main arc dipole magnet design (low field and high field quality dipole magnet)
- Interaction region (beam separation)
- Final focus proton magnets (quadrupoles with field free regions for the electron beam)

- Integration (bypasses around the remaining pexperiments + e-ring integration into existing LHC tunnel)
- Main arc dipole magnet design (low field and high field quality dipole magnet)
- Interaction region (beam separation)
- Final focus proton magnets (quadrupoles with field free regions for the electron beam)

Challenges:

- Integration (bypasses around the remaining pexperiments + e-ring integration into existing LHC tunnel)
- Main arc dipole magnet design (low field and high field quality dipole magnet)
- Interaction region (beam separation)
- Final focus proton magnets (quadrupoles with field free regions for the electron beam)

High luminosity ep/A-collisions reachable with proven technology

THANK YOU FOR YOUR ATTENTION

Polarization

- Polarization of
 25% to 40% at 60
 GeV can be
 reasonably aimed
 for with harmonic
 closed orbit spin
 matching
- precision alignment of the magnets to better of 150 µm rms needed to achieve a high polarization level
- option of having siberian snakes

Synchrotron Radiation IR

1 Degree

1 Degree RR Option: Beam and Fan Envelopes

Synchrotron Radiation IR

10 Degree

(LH_C) Main Ring Lattice Parameters

Beam Energy	$60 \mathrm{GeV}$
Numb. of Part. per Bunch	2.0×10^{10}
Numb. of Bunches	2808
Circumference	26658.8832 m
Syn. Rad. Loss per Turn	$437.2 \mathrm{MeV}$
Power	43.72 MW
Damping Partition $J_x/J_y/J_e$	1.5/1/1.5
Damping Time τ_x	0.016 s
Damping Time τ_y	0.025 s
Damping Time τ_e	0.016 s
Polarization Time	61.71 min
Coupling Constant κ	0.5
Horizontal Emittance (no coupling)	5.53 nm
Horizontal Emittance ($\kappa = 0.5$)	4.15 nm
Vertical Emittance ($\kappa = 0.5$)	2.07 nm
RF Voltage $V_{\rm RF}$	500 MV
RF frequency $f_{\rm RF}$	721 MHz
Bunch Length	6.88 mm
Max. Hor. Beta	141.94 m
Max. Ver. Beta	138.43 m

123<Qx<24 83<Qy<84