LHeC: High p_T jets and heavy flavour physics prospects

April 14th 2011, DIS 2011, Newport News, VA, USA

Olaf Behnke (DESY)

1

This talk will focus on a *new era of QCD tests* at an LHeC with high pt Jets and Heavy flavours

The LheC Detector 'that should do it':

Tracking down to $\theta \sim 1$ degree forward direction

High p_T Jets

- Check QCD
- Determine running α_s
- Measure gluon density

High p_T Jets at HERA

Running α_s from jets at HERA H S ອ_{0.22} ZEUS (prel.) QCD NC DIS 300 pb⁻¹ 0.20 th. uncert. corr. uncert. • photoproduction 300 pb⁻¹ 0.18corr. uncert. th. uncert. 0.16 0.140.122030 1040 5060 70E^{jet}_T (GeV)

Measurements up to scale $\sim M_Z$

Measure change in slope at top threshold?

High p_T Jets in photoproduction (Q²~0 GeV²)

High p_T Jets in photoproduction ($Q^2 \sim 0 \text{ GeV}^2$)

NNLO THEORY (T. Gehrmann et al.) $O(\alpha_s)$

- > NNLO calculations are ongoing. Matrix elements are either
 - already derived (NLO corrections to 3-jet production in DIS, Z. Nagy, NLOJET++) or
 - Contained in work by Gehrmann/Glover (for the two-loop 2-parton final state).
- > Required: subtraction method!

PLB676(2009)146

Currently implementing method into program for DIS jet production.

Thomas Schoerner-Sadenius | Jets @ LHeC | 12/13 November 2010 | Seite 38

Will reduce significantly theory (higher order) uncertainty for α_s extraction from jet data

Adding jet data to PDF fits

a, (M.,

New HERA

Heavy flavour production

- Significant contributions to total ep cross sections
- QCD multiscale problem
- Sensitive to gluon density

Heavy quark multiple scale problem:

Massive or Massless Heavy Quarks?

- $m \neq 0 \longrightarrow$ correct threshold behavior no collinear divergences from $c \rightarrow c + g$ but terms $\propto \log (\mu/m)$ with $\mu = Q, p_T, ...$
 - large corrections at large µ
- m = 0 → mass singularities (1/ε-poles instead of log m²-terms) absorbed in PDFs and FFs
 - QCD prediction: DGLAP (RG) evolution resums large logarithms log (μ/m)
 - more reliable at large μ
 - not reliable at heavy quark threshold

Goal: combine massive (low scale) and massless (high scale) calculations

 exploit freedom to choose an appropriate factorization scheme G.Kramer, H.Spiesberger

Charm and beauty photoproduction at HERA ZEUS

 P_T reach up to ~35 GeV, Well described by massive scheme NLO

D* photoproduction at LHeC

LheC will allow to study transition $p_T \sim m_c$ (massive regime) to $p_T >> m_c$ (massless regime)

11.4.11

A. Geiser, high pT QCD in ep, DIS 11

20

5-10% precision

sensitive to charm quark mass m_c

Charm in DIS: test intrinsic charm in proton

Requires c-tagging in very foward direction (θ ~1 deg.)

F₂^{bb} at HERA

10-50% precision

LHeC: Much larger phasespace and much better precision compared to HERA

Summary

- High pt jets and Heavy flavours at LHeC: \rightarrow ideal tools for high precision QCD tests
- Jets:
 - Running alphas up to few 100 GeVs
 - Proton and photon structure: gluon densities!
- Heavy flavours:
 - For the first time top in ep collisions, mostly single
 - Charm and beauty:
 - Understanding of mass treatment in pQCD (massive vs massless)
 - Multi interests: PDF fits, proton gluon density, saturation at low x, intrinsic charm, b density

Strange =? Anti-strange quark density

16

 $\bar{\nu}_{e}$

Subtle topic: correct treatment of heavy flavour masses in pQCD

Sea quark like c,b

How to make properly the transition from left to right picture is a longstanding problem